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1. 1In the twenty past years great attention has been devotea
to the study of two-point or three-point boundary value
problems (hereafter only BVPs) for the above equation. As
far as we know, about thirty corresponding titles [1 - 24],
[26 - 32] have appeared up to the present time.

Among them we regard the result obtained by L.Jackson
and K.Schrader in [}7, 18] to be of extraordinary importance,
because they gave an affirmative answer to the old problem
whether the uniqueness of solutions of all two-point or three-
-point BVPs for our equation implies the existence under

some natural additional restrictions.

Further result of particular importance is due to D.Barr
and T.Sherman who have shown how solutions x(t) of our equa-

tion, satisfying the boundary conditions in two points, namely

X(a) = Al X(b) = B, X'(b) = B‘
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.

and x(b) = B, x“(b) =B ., X(c) = C,

can be "matched" to yield a unique solution satisfying the

boundary conditions at thre points, namely
x(a) = A, x(b) = B, x(c) = C,

Thus many earlier or more recent papers dealing with
two-point BVPs could be applied in this way (cf. e.g. [1 - 6},
[12], [26]). Let us note that in the last quoted papers im-
proved error bounds for the Picard iterations (whence the
employed technique) have been successively given.

Taking into account other interesting papers, let us
mention [9], where the coincidence degree technique has been
used for solving a periodic BVP and [32], where an asymptotic
BVP has been of interest.

2. 1In [7] we have proved by a manner similar to that of [9]
that the following BVP:

se e

x7°7 = f(t,x,x",x"7), fe€ct({0,8)*xR>), (1)

x(®) - x(0) = Ag, x7(®) - x"(0) = Aj. x"7(®) - x"7(0) =

= Az ’ (2)

where e,AO,Al,Azkare suitable reals, admits a solution, pro-
vided the function f is bounded for all its arguments, but

not necessarily x and
f(t,x,y,z), ngxl+ const. (3)

is satisfied everywhere for a small enough constant M to-
gether with

A
lim inf f(t,x,y,z)sgn x = I—%— (or lim sup f(t,x,y,z)sgn x £
Ix [»00 Ix] 20
A
< |2
]e ). (4)
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Here we would like to show that the same conditions (i.e.
(3), (4)) imply for © = 2a also the solvability of the follow-
ing incomplete BVP, namely (1) and
/ /
x(0) = x(a) =.x(2a), (5)

even if (4) is replaced by

lim inf f(t,x,y,z)sgn x>0 (or lim sup f(t,x,y,z)sgn x<0)
|x| 200 |x] »0
(4)

for te<0,2a> , (v,2)€ Rz.

In fact we will prove the same for (1) and (6), where

x(0) = x(a), x“(0) = x"(a) = x"(2a) (6)

3. For this purpose let us define the modified Levinson
operator, where M ,ve(o,1> are parameters and X(0) =
= (x(0), x"(0), x"7(0)) are Cauchy’s initial values, in the
following way:
[B(x(a)-x(0)),x"(a)-x"(0),x"(2a)-2x"(a)+
+ x'(O)] a2 for m=v=1,
Jp2(x(Va)x(0)) 1 u(x"(v2)=x"(0)), (x"((+9)2) -

. . . -1 -2
-x"(va)-(x"(ara)-x"(0))] (av) " a

for Miv € (0,1),

&
[x(va)-x(0),x"(va)-x"(0),x""(ya) -
-x7(0)] Wa)™t for M= 0,V€(0,1) ,

" (0).x""(0).,£(0,x"(0),x""(0)]

T(“'\,X(O)

fOr‘/A:‘V:O.

Theorem 1. The problem of (1), (6) is solvable, provided
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f(0,%(0),0,0)

fiol_x(o)lQLO) -
If(O.x(O).0,0)I% (f(0,x(0),0,0) # 0)

If(0,-x(0),0,0)I

(1)

holds for |x(0)l é'RO, where R, is a sufficiently large po-
sitive constant and

>
= RO (great

(ii) T '1X(0)f0, TO;,X(O)fO for "X(O)" 2R
enough R),

independently of HVE (0,1>

Proof. It is clear that our problem is solvable iff T1'1X(0) =
= 0. Since we will here employ the topological degree
arguments, the fundamental requirement for ensuring this

reads

Ty 4X(0) £ 0 (7)

on the sphere “X(O)" = R>0. But assuming (ii), condition
(7) can be replaced by

To,0X(0) # 0 for Ixco)ll = R (8)

by virtue of the well-known invariance under homotopy [25].
Furthermore, since the degree of an odd operator is not equal
to zero on the sphere according to the classical Borsuk’s
antipodal theorem [25], namely

d[To. gX(0)-Tg o(-X(0))uIx(0)l £ R\0] # 0
for lIx(o)l = R,

condition (8) can be replaced by
To,0X(0) = (1-3)Tq o(-X(0)) # O for 2€(0,1> ,

which is certainly implied by (i) for f(0,x(0),x"(0),x""(0))#
# 0. This completes the proof.

Lemma 1. If all solutions x(t) of (1), satisfying the follow-
ing boundary conditions
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x(Va)=x(0) x"(Va)=x"(0),x""(Ya)=x""(0) for allV€(0,1), (9)

x(a)=x(0),x"((#+1)a)=x"(ua),x"(a) =
= x7(0) for allm € (0,1> (10)

are uniformly a priori bounded with their derivatives x“(t)
in (10) and x“(t),x""(t) in (9), then condition (ii) is
fulfilled.

Proof. It can be readily checked that

Tcu'ixw);éo if x(a)#x(0) or x (a)#x’(0) or
x'(((u+1)a);£x'((«a) for allu € (0,1> ,
TowX(0)#0 if x(va)#x(0) or x“(va)#x (0) or x”7(va)#x“ (0)
for all v€ (0,1 .

Therefore assuming a priori estimates as above, these ine-

qualities are satisfied successively, which was to be proved.

Lemma 2. The a priori estimates of Lemma 1 exist, provided
(4g) and (3) with M small enough.

Proof. Denote
f(t,x,y,2) for |x| £
f“(t,x,y,z) =/

f(t,Ssgn x,y,z) for lxl =g R

where S is a suitable constant specified bellow and consider
instead of (1) the equation

X" = £, x,x7,x77) . (11)
Since such a constant F* must exist that ,fx(t,x,y,z)l < g
for all te <b,23> . (x,y,2) € R®, we have also |x“77(t)] £ gX,
Furthermore, since such points ti.tzé <O,Za> exist with
respect to (9), (10) that x“(ty;) = 0 = x""(t,), the following
inequalities are satisfied:
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t .

]x”(t)l £ ISIX"'(S)‘dsl £ 2aF™ (12)
2
t

]x'(t)| £ lS\x"(s)‘dsl £ 42%F" | (13)
1

Condition (40) implies such an RO (cf. (1)) that
f(t,x,y,z)sgn x>0 or f(t,x,y,z)sgn x<£0 holds for ]xl>RO
and t€{0,2a), (y,z)€ R® and consequently x““7(t)>0 or

oo

X (t)<0, from which follows the convexity or concavity of
x“(t) for ‘X(t)l> Rgy» respectively. Hence (9) or (10) cannot
be satisfied in this respect.
Thus min |x(t)] = x(tn) £ R
t€€0,2a) Ix(to)l < R

¢ .

< . P 3%

\X(t)l = \X(to)l +| S\x (s)| ds| £ Ry + 82°F

%o

in some t0€ <0,26> and we get

with respect to (13).

Obviously, the existence of such constants S,F is
guaranteed by (3) that

»

3 L 3
Rg + 8a Tiré‘fs(;t'x'y'Z)l = Rg *+ 8a”F <s ,

and hence we have not only lx(t)l £ S, but also (cf. (12),
(13))

|x“ (o)l + |x“7(t)) £ (1+2a)2aF .

The same is certainly true for solutions x(t) of (1). This
completes the proof.

Theorem 2. There exists a solution of BVP (1), (6), provided
(40) and (3) with M small enough.

Proof - follows immediately from Lemmas 1,2, because condition
(i) of Theorem 1 is satisfied trivially by (4().
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4. Remark. Although the incomplete BVP (1), (5) can be
considered only as a special case of those studied in the
papers [5-7],[12] . [18] and some others (see also the refe-
rences included), our result cannot be deduced from any

obtained there, in general. However, several results are

comparable in certain aspects at least.
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0 JISTE OKRAJOVE GLOZE PRO x°°7 = f(t,x,x",x’

-

)

Souhrn

Uzitim teorie topologieckého stupné zobrazeni jsou nale-
zeny efektivni podminky re$itelnosti tribodové periodické
okrajové ulohy pro obecnou nelinedrni diferencialni rovnici
tretiho radu. Jsou uvedeny dosud dosaZené zakladni vysledky

0 okrajovych ulohach pro studovanou rovnici.
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OB OJHO# KPAEBOM BALAUE JUI x™°7 = flt.x,x",x")

Pespue

Ha ocHoBe Teopuu Tomoxoruueckolt creneHu oToGpaxeHus
noxyueHR sPPexTuBHHE yCJOBMS DPASPEMUMOCTM TPEXTOYEUuHON ne-—
puonmueckoi#t kpeeBoit sajzaum AAs OJHOIrOo HeJauHeitHoro auddepen-
UMesbHOTO yYDaGBHEHMS Tperhero mopajka. [IpelicTaBieHH Takxe
OCHOBHHE pe3yJbTaTH pemeHus KpaeBHX 88jay, ILOCTUTHYTHe B Ha-
croflee BpeMs JNJsf HLAHHOTO yYDPABHEHUSA .
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