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1. Problem

A differential equation
y"" = Q(t)y, ImQ(t) #oO, (Q)

is investigated, where Q is a continuous and 7'- periodic
complex function on R.- From the Floquet theory (see for
instance [7]) it then follows that there exist independent
solutions u, v of (Q) such that

either

u(e+TT) = Pau(t), v(t+T) = etv(t), ter,

Of@e C (1)
or

u(t+ i) =€.u(t) +v(t), v(t+d) =¢@. v(t),

t€R, €% =1. (2)
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Generally complex numbers Q ,@_1 are called characteristic
(or Floquet’s) multipliers of (Q).

In [2] - [6],[8],[9],[11],[12] the values of the cha-
racteristic multipliers of (q): y ~ = q(t)y, q being a
continuous ﬂr-periodic real function on R, where expressed
by a phase and the (1st kind) central dispersion of (q).

The present article offers a new look at the Floquet
theory of (Q) based on the phase theory point of view.

2. Basic notations, relations and preparatory lemmas

The symbol Cn(R) (EH(R)), where n=0,1,2,... , will
refer to a set of real (complex) functions with continuous
derivatives (on R) up to and including the order n. Trivial
solutions of linear equations will not be considered.

In analogy with [13] a functionv(éaz(R) will be said

y'" = P(t)y, PEC’(R), ImP(t) #0, ' (P)

exactly if there exist independent solutions u, v of this
equation such that

a) u(t) + v3(t) # O for tER,

by o7(t) = - .E———ﬂ__—ﬁ——— for t€R, where w:=uv’ - u’v.
ut(t) + v (t)

u(to)

v(to)

v(ty) # 0, then X is said to be a phase of the basis (u,v)

ind (t cosX(t)
of (P). In such a case u(t) = c Eiﬂj—i—l, v(t) = c =
X (t) QC< (t)

If moreover tgoi(t,) at a point t_€R, where

for t€R, where O # c €C.

A function X is a phase of (P) exactly if it is a
solution (on R) of a nonlinear 3rd order differential
equation

-{o(,t} -k2(t) = P(‘t),

150



w ] 2
where {O(,t} := x ,(t) -3 (o(,(t)) denotes the Schwarzian
2K (1) 4 \X7(t)

derivative of & at the point t.

If A is a phase of (P), then every solution of (P) may
be written either as
sin(cA (t) + Cs)

Vo ()

(3)

€1
or

iV (t)
oy L7700 . . ' (4)
\Io(’(t) :

where 92‘= 1, c1,c2,c3€C, cq # 0 # Cz. The converse is valid,

too: For arbitrary complex numbers Cqs Cps Czs Cy # 0 # Cgs

and a number v, v2 = 1, the functions defined by (3) and (4)

are solutions of (P). Hereby Jag'(t) means a continuous and
single-valued branch of the square root of the function X’(t).

If u is a solution of (P), u(t) # O for t€R, then there
exists a phase X of (P) and a number c€C, c # O, such that
[io( (t)
All ‘the above properties have been presented and proved in

[23].

u(t) = c tER.

Lemma 1. Let & be a phase of (P). Then

(P(6) = -fxt] - ocn) = G (6) - 2L L () -

2 (t)
" 2

=o(t t €R.

2 (t)
7ik (t)

Proof. Setting u(t):= = (# 0) for t€R, then u
o) , -
is a solution of (P). From the equalities -uu— = id” - oo
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rd - rd ‘ 2
and (—{o(,t} - ®2(t)=) P(t) = (-:‘Tg-l) + (:—(S—l) then

there follows the assertion of Lemma 1.

In analogy with [14] a function X will be said to be

(i) xec>(R), X'(t) # 0 for t€R, X(R) = R;

'(ii) for every solution y of '(P) the function i :t)

is again a solution of this equation.

The set of increasing transformators of (P) constitutes
a group L; relative to the composition of functions. We will
+

say that Lp is a plapar_group, if to every (t_,x,)€RXR
there exists exactly one function X€ L; such that X(to) = Xge

A transformator X of (P), X'(t)>O0 for t€R, will be

where ¥ = 1, for every solution y of (P). The set of all
central transformators of (P) constitutes a group relative to
the composition of functions, which we will write as Ls;
c + K
LeCLy  (see [14]). _
Lemma 2. Let X be a phase of (P). Then P is a J -periodic

function exactly if the function & (t+¥ ) is a phase of (P),
too.

Proof. ( =3») Suppose P is a W -periodic function and
set /b(t)::o((t+')7), tE&€R. Then

Y- p2n

- {o(,t+f!7} SR (14T ) =

P(t+X ) = P(t),

so that

_{(/B,t} - A7)

n

P(t), t€R, (5)

152



whence it follows that / is a phase of (P).

(<=) Suppose B (defined analogous to the first part
of the proof) is a phase of (P). Then (5) is true and con-
sequently

_{x,uw} -k 7%(t+T) = P(t), tER.
It follows from this and from the equality -{d,t:}— dfz(t) =
= P(t), t€R, that P(t +%) = P(t) for t€R.

Lemma 3. Let a€R, Re P(t) + a.Im P(t) 2 q(t) for te€R,
where q€C°(R) and (q):y° = q(t)y be not oscillatory (i.e.
any solution of (q) has at most a finite number of zeros on
R). Then any solution of (P) has at most a finite number of
zeros on'R.

Proof. Suppose, there exists a solution z of (P) with
an infinite number of zeros, and o is their cluster point.
Let u be a solution of (q), u(t)>O0 for t 2 b and z(ty) =
= z(ty,) = 0 for b £ ty<ty, z(t) # 0 for t€(ty,t,). Since

(2 ()Z(1))" = P(t)]z()] % + |27 ()] 2,

then

t
2

S {lz’(s)]z + (Re P(s) + i.Im P(s)),z(s)lz} ds = O.
Y

It then follows
N3

t, &
S {\z'(s)‘z + Re p(s)|z(s)]2J ds = 0,
Y
t

2
S In P(s)|z(s)]? ds = O
Y

so that
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2
S “z'(s)_l2 + q(s)lz(s)lz}ds £ o.
t1

Since lz(t)l’2 £ ,z'(t:)l2 for t€ (ty,t,), we obtain
t

2
S { r'z(s) + q(s)rz(s)} ds £ o,
t1

where r(t):=|z(t), t€R. Then, by Lemma 1.3 ([15] p.3), the

solution u has a zero on (t which is a contradiction.

1 t2)
3. Main results
In what follows we will investigate equations of the
type
y'" = 0Q(t)y, QE&T(R), ImQ(t) # 0, Q(t+¥) = Q(t)
for t€R. (Q)
Lemma 4. Thqre exists a phase ® of (Q) such that the

function ik - P is O -periodic exactly if for a solution

u of (Q)
u(t+d ) = @ .u(t), u(t) # 0 for t€R (6)

is valid, where 0 #¢Q € C.

Proof. ( ==)) Suppose there exists a phase K of (Q)
"
such that the function i’ - =% is W -periodic. If we set

2
(ix(t)
u(t):= _'—(T)_ (# 0), téR, then u is a solution of (Q) and
N
u’ .- )

1]
X
Y - i’ - = (:=p),

so that UT is a W -periodic function. Further u(t) = u(0).
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t
-E’XP(‘&I p(s)ds) which yields
)

w
u(t+ ) = Q .u(t), where @ = exp(S p(s)ds).
)

({==) Let (6) hold for a solution u of (Q), where
0 ;éQe C. Since u(t) # O for t€&€R, there exists a phasex

¢i% (t)
of (Q) and a c&.C such that u(t) = c

—— . On account
) Yo () .

of the fact that UT is a % -periodic function and 'UT =

n

. "
20;, it is clear that il - >k

with a period W .

= i\ -

- is also a function

Remark 1. If (6) holds for a solution u of (Q), where
0 # ? € C, then Q is a characteristic multiplier of (Q).

Remark 2. 1f A is a phase of (P) and ipp” - %.. is a
7 -periodic function, then the coefficient P of (P) is also

a W-periodic function, as it readily follows from Lemma 1.

Remark 3. In the terminology of transformators equation

(P) t+7 € L; exactly if P is a ¥ -periodic function.

Corollary 1. Suppose there exists a phase o« of (Q) such

that iX ~ - — is a /M -periodic function. Then

2
Ix’(0) exp {1(0((5.‘) -0((0))J, Yo' (5 exp{i(o((O) -u(ﬁ)l
o (W) < (0)
are characteristic multipliers of (Q).

Proof. It follows from Remark 2 that the coefficient Q

of (Q) is a W -periodic function. Besides we obtain from the
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>
proof ( ==)) of Lemma 4 and Remark 1 that exp( Sp(s)ds)
o

w
M

exp(- |p(s)ds), where p:= ik’ - ?O(—' , are characteristic.
5 =%
multipliers of (Q). From this and from the equality

Sp(s)ds = i(A(F) - & (0)) + 1n V(o)
° VDL'(T:')

follows the assertion of Corollary 1.

immediately

Lemma 5. Suppose there exists a phase KA of (Q) such

that 1" (t) - 53:-:,—(%-} (=:p(t), t€R) is a ¥ -periodic

function. Then for a phase /5 of (Q)
. . ﬂll t
i (t) - ———(—)-' = p(t) for t€R (7)
b 204 (t)

is fulfilled exactly if there exist k, k1€C, ke2i°((t) £ 1
for t€&€R such that

B(t) = «(t) + 2 1n(1-ke®™*(T)) 4 K, ter. (8)

Proof. ( ==)) Suppose 5 is such a phase of (Q) that

K" () B ()

= i o’ - t = 1 ‘ - t € R.
(p(t)=) 1 (1) 7 (1) ifB7(r) 267 () t€R (9)
Then from Theorem 4 [13] there follows the equality A (t) =

=c [_o((t)],

. 1
c (z) =

(cq cos z + Co sin 2)2 + (c_7> CO0s z + Cy sin z)2
(10)

for all z€C, where (c; cos z + c, sin z)2 + (cg cos z +

2
+ <':4 sin 222 #0 and'c1'°2'C3'°4€C" cyCq - c1f4 = 1. Then
bty = ()] (1), A () = o T ()] (1) +

+ C‘E;((t)] . #"(t) and on substituting in (9) we get
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L : ot (03]
i=i.c E{ (t)] - é%:rcz(%ﬂ)-

All solutions of the above equation are of the form c"{gg (t)]:
1

T 1ke 2i%(t)

, where k €C is an arbitrary number such that

Kke21%(t) # 1 for t €R. There is an infinite number of such k
and if we proceed in the same manner as in [13] we may prove
the Lebesque measure (the complex number is taken as a point
in Gauss plane) of the set of such numbers k is equals to
infinity. Here ¢"(z) has the form (10)., In the case of k # 1
, ; - = = 1T =
it sufflces to put ¢y = 0, ¢, = \{7“:?' Cy _ﬁ-k, cy =
ik X . -

= = === while in

v 1-k

‘ ) I - )
the case of k = 1 we put ¢y = 5=y Cp = 0, Gy = i -5,
e

Cy = E Hence ﬂ'(t) = *(t)

1-k e

and integrating the latter

equality from O to t gives

t
Aty = o) + (r;ﬂg%%?gy = A(0) + «K(t) +
- e
o]

2i%(0)y _

+

5 in(a-ke®™ (M)~ o(0) - & 1n(1-ke

i 21X ( t
K (t) + ;— In(l-ke i=( )) + Ky,

where kl = /3(0) - o (0) - % ln(l_ezi“\\)))‘

(<===) Suppose (3 is the Ffunction defined by (8), where

K, klé c, 1<62j‘d‘(t’ # 1 for t€R. By a direct computation it may

be verified that (3 is a phase of (Q) and (7) is trus.

Lemma 6. Let all solutions of (Q) not be J -periodic or
#-halfperiodic and let there exist a phase « of (Q) such
13

. ot -84 . ~ s
that the furction ixX™ - Eyor (=:py) is W -periocdic. Then
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there exists at most one X -periodic function Por Py # Po.
ﬁ"
237

such that p, = i3~ for a phase (A of (Q).

Proof. Following Remark 2, it suffices to prove that
the Riccati equation

u” + u® = (t) (11)
has at most two different J -periodic. solutions (defined on
R) under the assumption that all solutions of (Q) are not
'Jnv—periodic or % -halfperiodic. First, the function Py is a
&’ -periodic solution of (11). We assume that there exist
further two W% -periodic solutions Pos Pz of (11), py # P
Py # P3s Pp # pz. Integreting the equalities

(p3 = pz)' (p3 - Pl)’

Pz = P2 Pz = Py TP P

(Py = P3) " _ (Py = Py)

Py - Px b, - Py 1 P
(P - Py)"
—_—Pz"Pl = - Pz - Py

from O to W yields

T ¥
f(pl(t)-pz(t))dt = 2im¥, f(pl(t)-ps(t))dt = 2in¥,
o o
a
(P (t)+pg(t))dt = 2irF,
o

where m, n, s are integers, whence
o8 7

)
gpl(t)dt=i(n+r)’ﬁ' , {pz(t)dt=i(n+r-2m))~ R Sp3(t)dt§i(r._r‘l)')" .
o ) o i o
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_ 1(t) y5(t) ,
Since py(t) = VIT?T , p2(t) = VET?T , where Yq1 Y, Bre suitable

independent solutions of (Q), y,(t) # O, y,(t) # O for t€&R,

t
there exist ky, k,€C such that y;(t) = kjexp( g p;(s)ds),
o
i =1,2, t€R. Naturally, then
t O
vi(te M=k exp( py(s)ds)exp( [ py(s)ds) = (<1)™ Ty (0)
o o

(i=1,2, t€R), hence all solutions of (Q) are ¥ -periodic or
7 -halfperiodic, which is a contradiction.

Remark 4. 1In assuming that all solutions of (Q) are
7 -periodic or W-halfperiodic, the Riccati equation (11) has

infinitely many 7#-periodic solutions. All these solutions

.

are of form X?%%%, where y is a solution of (Q), y(t) # O for
t €R (see Example 1), Here the main difference is in the
number of periodic solutions of the Riccati equation in a
real case, when even there the equation has at most two

T -periodic solution (see [101).

Example 1. The Riccati equation

. 2

u + U = -4 + 166Bit

has ¥ -periodic solutions, say

4it t

u = -2i + 4ie cotg(e41 +c),

with c € C being an arbitrary number such that sin(e4it+c)f0
for t €R. This condition is fulfilled for ¢ = ¢; + ic, such
that (ci+k’ﬁ')2 + cg # 1 for all integer k.

It becomes obvious that the investigation of ¥-perio-
dicity of the function io - E%if' where oX is a phase of
(Q), is essential. The remain part of this text is deviden
into three cases:
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Case 1 - there exists a phase ol of (Q) such that its deri-
o .
vative is a } -periodic function (and then the
O‘H

function ik” - -
2w

, too, is 7’-periodic);

Cast¢ 2 -~ there exists such a phase o of (Q) that its de-

rivative ¢.” is not a 7 -periodic function and
¥

A o . p L s )
iot’ = 5w is a 5 ~pericdic function;
Case 3 - there exists no such phase o of (Q) that i’ -
ot ~ — )
- == is a % -periodic function.
~

Case 1

Theorem 1. Suppcse ¢ is a characteristic multiplier of
(Q), lgié 1. Then, there exist independent solutions u, v of
(Q), u(t)v(t) # O for t€R satisfying (1) exactly if there
exists a phuse ot of (Q), k,, k,€R, 0 % ky & (lesign ky)T7,
ky # 27, ks, 2 0 and an integer n such that

o (t+T) =l (L) + (kl-x-Zn’?{‘) + ik,, tER, (12)

et (t)

Preof. ( =>) Let ¢ be a characteristic multiplier of
(Q), let = 1 and u, v be independent solutions of (Q) satisfy-
ing (1), u{t)v(t) # 0 for t&R. Setting U:= %_ (u+v), V:=
r= % {v-u) \,'i}ds that U,V are independent so]:utions of (Q)
and Uz(t) + VE(t) # O for t&R. Let oL be a phase of the
basis (U,V) of (Q). Then theré exists a c&C, ¢ # 0O, such that

in (1)
U(t) = o 2l v(t) = ¢ esX(E) teRr

¥

Vol (1) Vol (1) (13)
(see EB])“ Since
¢ SA02LE) L 1iiityav(t)), © E-‘lsu_;ié;uf—l = Hv(ty-u(t)),
Yex () 2 o (1) 2

teR (14)



then

2
C 1, -1 2 i, -1
= =@ .u(t) + @ T.v(t)) - =( v(t) -
(e 4 € il
2 c2
- @ .u(t)? = u(r)v(r) = -
of (t)
Naturally, then o (t+T) = o (t) and therefore for an a€C
we get
ol(t+W ) = ob (t) + a, tER. (15)

s

Let V= wmi%%éiﬁi . Evidently, v is either equel to 1 or
ol (t)

equal to -1, From the definition of U,V and from (1), (13) -~
(15 it follows from one side

ve EXB i ®(t)+a)

Vo?(t)

V(t+ T ) + 1i.U(t+F)

and from the other side

V(ts ) + Q.U(t+ ) = %(Q"l.v(t) - @ Lu(t)) +

+

-%( ¢.u(t) + @ v(n)) = 107t v(t) =

=gt V() + 1.u(0)) = ot BRLRLI)
ol (t)
L ogeia Lo . e 1ol a,
Thus § = Ve and if a = as+ia, is f@! = e¢°2 = 1, whence

a, % 0. Next let ay = k1+2dF , where 0 $ k1< 2% and n is an

integer. Setting ky:=a, (¥ 0), we get from (15) formula (12)
and @ = D.exp(-i(ky+2n¥) = ky) = ¥ .exp(ky-iky).

It remains to prove that in case of a2, = 0, i.e. where
lql = 1, the number k; may be chosen to that O £ ky R

in case of % < k1< 2% we consider the phsse f:= -0t in
place of the phase ¢ of (Q). Then it follows from (15)
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Alt) - a= A(t) - k, - 2n& =
A(t) + (27 - ky) - 2(n+1)¥

A(t+T)

and in place of the integer n in (12) we put the integer
-(n+1) and in place of the number k, we put 27" - k,.
Evidently 0< 2% - ky < .

({(==) Let & be a phase of (Q), k,,k, €R, 0 £ k, £

= (1+sign k)%, k 2%, k, 8 0 and n be an integer such
2 1 2 9

that (12) is true. Let V= —"(_:L_V—-—'i—ﬁl and set (\'7 1= v.exp(kz-
< (t)
—ikg), U(t):= SEOXCE) yepy.o €08 () yrp)ia —iu(t) +
! Ve (%) < (1)

+ V(t), v(t):= iU(t) + Vv(t) for t E&R.

Then lglg 1, u, v are independent solutions of (Q), u(t)v(t) =
= u3(t) + V(1) # O,

u(t+ ) = cosA(t+h ) _ i sind (t+ 7)) _oexp(-ik(t+W)) _
. Vo('(t+ ) vOf(t+’il") Vo[(t+77)

- cosX(t) _ sinek(t) | _ . ,
¢ [ s e

—~ . ~ . ~
V(t+T) = cosf((t-rll ), i s1n:><(t:/: ) - exg‘fo&(ua ) _
V“(t+7) v\x(t+l~) Vo((t+?')

-1 {cos X(t) ., isi_"S_(L).] “ov(t), ter,
S ho?(t) Vo () S

and Q. Q_l are characterjistic multipliers of (Q).

("X

Corollary 2. Let &£ be a phase of (Q). All solutions of
(Q) are 7 -periodic or 7°-halfperiodic exactly if

A(t+%) = X (t) + kT, te€R, . (16)

where k = 2n + %(1—8) or k = 2n + é—(l +€), n€Z and € =
o (t+T
s ——v%l (=1 for t¢R).
x(t)

162



Proof. (==)) Suppose all solutions of (Q) are 7 -pe-
i (t)  gmiek (1)

e
Vo (1) o (1)

riodic or % -halfperiodic. The functions

are independent solutions of (Q) and

el (t+7) i ()

=V
@’(um Jg(t) (47)
e i (1) . emiot (1)  ier,

Yol (£+77) Vo< (£)

where 92 = 1, Here all solutions for ¥v=1 ( Vv = -1) are
% -periodic ( ¥ -halfperiodic). On multiplying out both sides
of (17) we get X (t+7) = o”(t), thus for any a€C we have

A(t+7) = «x(t) + a for t&R. Then from (17) there follows
. . L4 ns
et® = ve , e = ve , with £=M.Ifa=a1+ia

Vo< (t) 2

we have a, = 0, for VE = 1 we get cos a, = 1 and for v€ = -1
we get cos a; = -1. In this way a; = (2n + %(1 -£))n for
Y =1 and al=(2n+%(1 +€))% for V= -1, where n is an

appropriate integer.
({==) Suppose o< is a phase of (Q) satisfying (16),
. . L (t+ ) 1
where n is an integer, €= and k = 2n + 5(1-8 )(k

Vo< (t)

2n + 1(1 £)). Let us put u(t) ei“(t) v(t) e_i“(t)
= 2n =(1+ . u i= » 1= S———
2 (1) Vo (1)

for téR. Then u, v are independent solutions of (Q).
u(t)v(t) # 0, u(t+T) = u(t), v(t+T) = v(t) (u(t+a) =

= ~u(t), v(t+7) = -v(t)), t€R. It immediately follows from
this that all solutions of (Q) are % -periodic ( #¥-halfperi-
odic). '

Remark 5. In the terminology of central transformators

of (Q) all solutions of (Q) are # -periodic or % -halfperiodic
exactly if t+%” is a central transformator of (Q).
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Remark 6. If all solutions of (Q) are % -periodic or
% -halfperiodic, then the value of the number k in Corollary
2 will generally depend on the choice of the phase of (Q) -
as it becomes apparent from Example 1 [14],

In the following theorem we present certain sufficient
conditions for the derivative ¢t of a phase ot of (Q) to be

i -periodic.

Theorem 2. Suppose there exists a number a &R such that
Re Q(t) + a.Im Q(t) 2 q(t) for t€&R, where q€ CO(R) and
y"" = q(t)y is a nonoscillatory equation. Then one of the

following two mutualy excluding situations arises:

(i) there exist independent solutions of (Q) Ouch that
u(t)v(t) # 0 for t€R and (1) holds, where %) #1;

(ii) there exist independent solutions u, v of (Q) such
that v(t) # O for t&€R and (2) holds.

Proof. From Lemma 3 there follows that every solution of
(Q) has at most a finite number of zeros. Consequently, every
solution u of (Q) satisfying the equality u(t+4") = ©.ult)
on R, where 0 # & C, has no zeros on R, i.e. u(t) # O for
tER. Especially from this there follows that all solutions
of (Q) cannot be J -periodic or #-~halfperiodic. The statement
of the Theorem readily follows from the results of the Floquet

theory.

Lemma_7. Suppose all solutions of (Q) are not ¥ -periodic

or 7 -halfperiodic. Let «, /3 be such phases of (Q) that

H(t) + a , t€R, (18)

Hi

L (t+F )

i

Ale+F = A(ey + b,  teR, . (19)

where a, b&C. Then either a = b (in this case X (t) - & (0) =
= A(t) - /A(0) for t€R) or a = ~-b (in this case o (t) -
- (0) = ~[A(t) ~ A (0)] for tER).
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Proof. We may assume without loss of generality &« (0) =
= /5 (0). In the contrary case we assume instead of phases (t) and
/3 (t), the phases & (t) - X (0) and A (t) - A (0), respective-
ly. By Corollary 2 the numbers a,b cannot be equal to an in-
tegral multiple of ¥ . Next, from Theorem 4 [13] there follows
the existence of k1'k2'k3'k4éc' k:‘_k4 - k2k3 # 0 such that

(kokg = kyk,) (1)
(kgcosex (t) + kzsir\o((t))2 + (k3coso(~(t) + k4sino((t)2.

Ao =

t€R. (20)
Placing t instead of t+J in (20) then from (18) and (19) we
obtain
AT(t) =
B (kokg = kqkg) x (t)

) (kycos(x(t)+a)+k,sin(x(t)+a) )2+(k3cos(o((t)+a) )+k4sin(o((t)+a))2'

t€R. (21)

Since a is not equal to a integral multiple of % , there
follows from (20) and (21) that (k;cose< (t) + kysinw (t))2 +
(kscoso((t) + k4$in°4(1:))2 is a constant function on R, thus
/3'(t) = c.®(t), where c €C is an appropriate number, c # O.
From the equality (Q(t)=) -{o(,t} - o('z(t) = -{ﬂ,t} - /5'2(t)
we obtain ¢ = 1. If ¢ = 1, then A7(t) = «“(t) and therefore
A(t) = x(t) for t €R and a = b. If ¢ = -1, then AT(t) =

= -&(t) and therefore A(t) = -x(t) for t€R and a = -b,

Corollary 3. Let all solutions of (Q) not be Jj -periodic
or % -halfperiodic. If for any phase K of (Q) relation (1Z)
holds, where 0 % ky £ (1+sign k2)‘$", ky # 2%, ky 2 0, then
the value of the integer n in this formula does not depend on
the choice of the phase X of (Q) and it is defined uniquely
by (Q).
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roof. Suppose «, /5 are the phases of (Q) such that

K(te ) = ol (t) + (ky+2n@) + ik

5+ tER,

A(t+a) = fA(t) + (sl+2m/:"’) + is, , te&R,

. ~ £ . ~
k, £ (1+sign k)7, 0 £ 5, £ (L+sign O N

[N

where O
£ 27 # Sq k2 2 o, 52?-0 and m, n are integers. By Lemma 6
there is either o« (t) - < (0) = A (t) - (3(0) or X (t) -

-0t (0) = =[a(t) -3 (0)]. If (1) -~ x(0) = fA(tr) - A(0),
then ky = s;, ky = s, and m = n. If X (t) - = (0) = -[B(t) -
-p (O)]-,'then ky + 2n7’+ ik, = -(sq + 2m7"+ is,), whence

k2 = -s, and} from the assumptions to k2, s, we obtain k2 =

= s, = 0. Then by Theorem 1,@] = 1, where SD is one of the

characteristic multipliers of (Q). Then, however, O # ki #
AU # s, # 0, because in the contrary case (by Corollary 2)

all solutions of (Q) would be jv-periodic or X -halfperiodic.
Hence k,,s; € (0,7 ), whence we get 0<ky + 55 < 2% . From the
other side it holds k:L + 8y = -2(m + n)% , which is a contra-

diction.

Theorem 3. Suppose ™ be a phase of (Q) and

X(t+T) = o&(t) + a, t €R, (22)
where O # a €C. Then a function (% is a phase of (Q,),

A(t+7) = A (t) +a, tER (23)

and
Voo (te 7Y - ) (= 1y, (24)
Vo< (1) Vo (6)

exactly if

c(t) ~
pL) = K+ d 5 oi7(8) _-(s)ds, teR, (25)
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where k €C, T€C?(R), c€C3(R), T (t+F") = T(t) + 4nF (n€2),
c(t+¥%) = c(t) +7 , c’(t)>0 for t€R and

;v‘
(#) d = a[fef’(”x'(s)ds -
o

Proof. ({(==) Let k, d, c, T satisfy the assumptions
of Theorem 3 and the function /b be defined by formula (25).

Then
c(t t)+2’

c
pAleed) = k + d L eit(s)o[(s)ds +d 3‘ eit(s)o((s)ds =
c(t)

ﬂ(t) + a,

. OV
since the function el('(t)o('(t) is 7 -periodic and
W

d sei"(s)oL'(s)ds = a. NextA €T(R) and f37(t) =
(-]
v
= del"(c(t))(p((c(t))‘ # 0 for teR. Thus /3 is a phase of any
(Q)- We denote f« (t) (f/,l(t)) a continuous single-valued
branch of the argument of the function o’(/3”) on R. Then for

an integer m there is fou! (t+%) = fyi(t) + 2m¥% . From the
equality p~ = delT(c)(o((c))' ‘there follows the existence of an

integer j such that
far(t) =T(c(t)) + for (c(t)) + 2j% + Arg d,

whence we get

f/y(t*?) =T(c(t)+a) + foct(C(t)+) + 2j¥ + Arg d

T(c(t)) + fa(c(t)) + 2(j+m+2n)% + Arg d

fe(t) + 2(me2n)f

i.e. (24) is true, whereby

Vo((t+)7) - Vﬂ’(t+)’?) - (-1)"
Yo (1) 353 '
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(=) Let [} be a phase of (Ql) satisfying (23), where
0O # a€C. We put

t t
A(t):= glo('(s)'ds, B(t):= S|/5’(s)]ds, t €R.
o [¢]

Then A, B are increasing functions on R, A,BGCS(R). Because
of [ (t+7)| = |7 ()], Ip7(t+T)| = |p7(t)] we have

A(t+T) = A(t) + a;, B(t+¥) = B(t) + by, tE€R,

a
where a; = A(7) >0, b, = B(#)>0. Setting C(t):= ﬁ- B(t),
c(t)::.A"l(C(t)), t €R, yields

C(t+% ) = C(t) + a;, tER,

and c(t+7)'= A_l(C(t) + al) = A'l(C(t)) +3 = c(t) +% ,
sign ¢’ = 1, ¢c(0) = O. t
From the equality C(t) = A(c(t)) it follows that glﬁ'(s)lds =
b c(t) [¢)
1 . I
= - 5 Io( (s)lds whence
ay )

b
M‘(t)l = % ¢’ (1) | (e(en)] t €R. (26)

1
. a, '
(x(c(t))) 1
P(t+T) = P(t), € C2(R).. Let fy denote a continuous and
single-valued branch of the argument of the function ¢ and
t(,, f/s' be defined analogous to the proof ((<==) above. Then
for some integers k, j there holds

. b
Let us put P (t):= —A-LU—— , t€R. Then l'(’(t)l =

fp(t) = fu(t) - fu(c(t)) + 2j7,
fa(te+ ) = fu(t) + 2k0, N

and from (24) there follows the existence of an integer n:

far(t+7) - f/,.(t) = fo(t+F) - T.(t) + 4n¥.
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Furthermore
fp(t+F) = B (t407) - fa(c(t)+7) + 237 = fp(t) +
+ Ee(t+F) = fe(t) + 4nT - fu(c(t)) - 2kT" +

+ 2§ = f(t) - fele(t)) + 255 + ank =

n

f([(t) + 4n¥ .

Therefore there exist an integer n and a function T ,'l'écz(R),
T(t+F) =T(t) + 4n¥ such that thg function @ may be written

as @(t) = deu(c(t)), where d:= E% . From the definition of
functions ¢, 7 and from (26) we obtain A(t) = dei?(c(t)).

(«(c(t))) . Integrating the last equality from O to t we get
t .
A(t) = B(0) + dfelb(c(s))ot’(c(s))c'(s)ds =/1(0) +
o
o(t)
+d f eﬂ’(s)o{(s)ds.
0

From this and from (23) it follows

c(t) .
A(0) + d j. e”(s)o('(s)ds +a =
)
c(t)+i .
= A(0) +d 5 ew(s)o((s)ds
o »
and consequently
c(t)+5;".~ v -
a=d j e“(s)o{(s)ds = dfel‘(s),,[(s)ds.
o o

¥
If we put d:= a[(ei‘(s)og'(s)ds] 1 and k:=
o

169



v

:=/§(o) + dj ei"(s)o('(s)ds, then the phase /4 may be written
c(0)

in the form of (25).

Remark 7. Let all solutions of (Q) not to be j“-periodic
or @-halfperiodic. It follows from Corollary 3 that a phase
o of (Q), for which (12) holds - where O £ ky ¢ (1+sign I<2)5:V,
k1 # 2, k2 2 0 and n is an integer - is uniquely determined
up to an additive constant.

Remark 7 justifies us to the following

Definition 1. Let all solutions of (Q) not be ¥ -periodic
or J'-halfperiodic, n being an integer, and vZ = 1. We say
that the pair of numbers (n,v) (it this order) is a signi-
ficant pair of numbers of (Q) if there exists a phase X of
(Q) such that (12) holds, where 0 £ kl £ (1+sign kz)fl",
ky #27, ky 2 0and v= J2LT) (o Vo(048) o gy

o« (0) o (1)

Theorem 4. Let (n,V ) be the significant pair of numbers
of (Q) and X be such a phase of (Q) that (12) holds, where

~

0 % kg £ (1+ sign k)P, kg # 27, k, 20, v= L)
V" (0)

Then (n,”) is the significant pair of numbers of (Ql) and the

equations (Q) and (Qq) have equal characteristic multipliers

exactly if

2,2iT(c(t))

Q (1) = Q(e(t))e 3(t) - fe, e} w(x(o(t))) P(1-d )+

‘2 'I‘
C t [Jv‘ X (c(t ) -2
+ -——(—)-4 2i%{c(t)) ;,-E-C-(Ltg-)l - 21%c(t)) - T 3(e(en] .

téR (27)

where T €C?(R), c€C3(R), T (t+F) = T(t) + 4n¥ (n€Z),
c(t+¥) = c(t) +% , c’(t)> 0 for t€R and
¥
d = ( geir(s)o('(s)ds)‘l.(kl + AnW 4 iky) .
o
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Proof. (==)) Let (n,Y) be significant numbers of (Q,)
and let the equations (Q) and (Q;) have equal characteristic
multipliers. From Theorem 1, Corollary 3 and from its proof

then there follows the existence of such a phase /3 of (Q,)
that

fle+¥) = B () + (kg + 2n¥ ) + ik,, t€R,

s,
and v = -—ﬂJLl . By Theorem 3 naturally ()(t) = h +

)
c(t)

+ d g eir(s)b((s)ds, where h&€C and d, c, T satisfying
0
the assumptions stated in the Theorem. From the equality
Q(t) = - {ﬂ,t} - {5'2(1:) we get with some modification the
form of (27) for the coefficient Q, of (Qq)-
(¢==) Let the function Q; be defined by (27), where
d, ¢, T satisfy the assumptions of the Theorem. A direct cal-
c(t)
culation shows that the function f (t):= d S ei°(s)°{(s)ds,
0
t€R, is a phase of (Qq). By Theorem 3 there hold (23) and
(24), thus from Theorem 1 it follows that (n,Y) is the signi-

ficant pair of numbers of (Q) and (Q,) and both equations
have equal characteristic multipliers.

Corollary 4. Suppose the group of increasing transfor-
mators La of (Q) is planar. Then there exist independent so-
lutions u, v of (Q), u(t)v(t) # O for t€R satisfying (1).

Proof By Corollary 1 [14] there exists a function
YeC (R), Y(R) =R, Y'(t)>0 for t€R and a number c€C,
2¢C - R such that the function «(t):= c.Y(t) for t€R,
is a phase of (Q). Let ¢ = ¢y + ic,. Then cq¢s # 0 and it
follows from the equality —{o( t} o('z(t) Q(t) that
-2¢,¢,Y"?(t) = Im Q(t), hence Y'(t) =v || ZELALE) for ter,
chc2
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where v2 = 1. Naturally, then Y~ and thus also o’ are
¥ -periodic functions and from Theorem 1 there immediately
follows the assertion of the Corollary.

Remark 8. If there exist a function Y€ C3(R), Y(R) = R,
Y'(t))O for t€R and a number ce€C, czec - R such that the
function « (t):= c.Y is a phase of (Q), i.e. the group of
increasing transformators of (Q) is planar (see Corollary 1
[14]), then it follows from Corollary 1 that

-

Y'(0) ) o~y Y (%) : _
Y ) ex_p[lc(Y():) Y(O))] . Y7 (0) exp [1C(Y(O) Y(T))]

are characteristic multipliers of (Q).

Case 2

Theorem 5. There exist independent solutions u, v of (Q)
such that u(t) # O for t€R, v has a zero at a point of R
satisfying (1) exactly if there exist a phase & of (Q), an

integer n, and x€ R so that «“(t) is not.,a J# -periodic

"
function, the function iol”(t) —g—o_((—z—%? is ¥ -periodic and

L (x+7) = & (x) + ni . -

Proof. ( >) Suppose there exist independent solutions

u, v of (Q) for which (1) holds, u(t) # O for t&€R, v having

a zero on R. Then, by Lemma 4, there exists a phase o¢ of (Q)
="

2’

of the fact that v has a zero on R, then by Theorem 1, the

such that function ioct ” - is J -periodic and on acconnt

function «” is not J-periodic. It next follows from Theorem

8 and Theorem 5 [13] that there exist numbers €4, czé c,
sin(¢(t)+cy,)

Yo (1)
= 0. Then it follows from (1) that v(x+% ) = v(x) = O i.e.
that ot (x) = -c

C4 # 0: v(t) = cq for t€R. For an x€R let v(x) =

there exist such integers Ny, Ny >t Ny
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X (x+7 ) = =c, + n,T , whence o« (x+¥) = o¢ (X) + n¥ ,

2 2
n(:= n, - ng) being an integer.
(& ) Suppose there exists a phase oCof (Q) such that
-
ol is not @-periodic, the function ix’ - = is % -periodic

2 A
and there exist an integer n and an x€ R: X (x+ ¥ ) =X(x) + nli.
From Lemma 4 there then follows the existence of a solution
u of (Q), u(t) # O for t€R, satisfying (6), where O #¢@ € C.

sin(X(t)-o(x)) for t€R, then v is a solution
Yo (1)

of (Q), v(x) = 0. Thus u, v are independent solutions of (Q)

sin(x(x+¥)-ok(x)) _ sin nW
ch'(x+ ) Yo" ( x+%)

= v(x+%) = 0 and thus v(t+%) =T.v(t) for tgR, where Tg C

is a suitable number, 'r # 0. From the Floquet theory we have
I f-l

If we put v(t):

and v(x+%) = = 0. Therefore v(x) =

[ = . We see that the solutions u, v of (Q) satisfy (1).

Remark 9. If there exist such independent solutions u, v
of (Q) that u(t) # O for t€R, v having a zero on R and (1)
is valid, then the Riccati equation (11) has exactly one

% -periodic solution.

Corollary 5. Let o be such a phase of (Q) that & is

*

not a ¥ -periodic function, ix’ - o is a ¥ -periodic

function and for an x€ R we have & (x+ %) = X (x) + n¥ ,
n being an integer. Then

(-1)" ___1___1V°<><J , (-1)" = P
Vog (x) oK (X+7 )
are the values of the characteristic multipliers of (Q).

Proof. From Corollary 1 and from its proof we find that

x+¥ x+0 .
. oK
exp(J p(s)ds),exp(—J p(s)ds), where p:= iX ~ - o are
¥ X
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the characteristic multipliers of (Q). Since
x+ 5 *
.S' p(s)ds = i[o((x+5T) -o&(x)] - %[lno((x+57) -
X

Vot ” (x

- lnﬂ'(x)] = inJ + 1n

o (x+J7)
then
X+ rj— v
exp( J' p(s)ds) = (-1)" X (x)
. A (x+W )
2

where Y° = 1.

Remark 10. The result of Corollary 5 may be proved also

in other way. If we put (3(t):= o (t) - o&(x), v(t):= sinfi(e)
' Ya (t)

t€R, then (3is a phase of (Q) and v is a solution of this
equation, v(x) = v(x+% ) = O. Hence, the equality v(t+7 ) =
= Q-l.v(t) holds for t €R, where ?‘1 is one of the characte-
ristic multipliers of (Q). By differentiating the equality

sinA(t+¥) _ S°~1 Lrﬁb:_(_g_)_ and setting now in the resulting
L (t+h) V(g (t)

equality x instead of t, we obtain (with some modification)
the equality —irL)—(-i)- cos A(x+ ) =¢—1 _(5___55_1_ cos[&(x) ,
Vo (x 1) Jr7x)
whence ? = (-1)" —-—(——L——W , thus (—1)n °(' X and
P(x+3 ) x (x+7)

‘[“. o
(-1)” ;'(—'(ii)'—l are the characteristic multipliers of (Q).
Vol (x)

Remark 11. Let a phase K of (Q) satisfy the assumptions
"

27
there follows that then for every phase 3 of (Q) for which

1/5’_2_/;._:=p, we have b (x+3) = f (x) + n¥ .

-,

of Corollary 5. Let further p:= io¢ - . From Lemma 5
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Theorem 6. There exist independent solutions u, v of (Q),
v(t) # 0 for t€ R for which (2) is valid exactly if the
function

o(t) = % ln[P(t) - %{—t] , t€R (28)

is a phase of (Q), where O # a€C, PéE?’(R) is a ¥ -periodic
2

function, P(t) # g-i—gi, P(t) # 2—?} s JiP'(t+’F’) ¥ .._f:=
aw a’x ak

= @ \iP7(t) + %E— for té€R.
0

Proof. (==>) Let (2) hold, where u, v‘are independent
solutions of (Q), v(t) # O for t€ R. Then there exists such
a phase o of (Q) that

i(t)
v(t) = E——:—- ' t €R.
V«(ﬂ
t
Every solution of (Q) may be written as y(t) = v(t)[a g czis +
o0 vi(s)
+ b|, where a,b €C. An easy calculation shows that the
function u satisfies (2) exactly if
t
u(t) = v(t)|a S gs + b] '
v7(s)
o
_y-’
t+h
where b €C is an arbitrary constant and ag S gs =1 (with
. vE(s)
t+ &
respect to the 7J-periodicity of v2 we see that gs = a
' : v (s)
t

constant). Then
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~
) T+ M

+
1 ds . -2ix (s)
= = SD o (s)e ds =

- _1_ég_ [e-zix(tn’) _ e-Zin((t)]

]

hence
e—210((t+')7) = e-2i%(t) _ 2iag .

From the latter equality then follows the existence of a such
a ¥ -periodic function PE Es(R), P(t) # —2—;—?, PT(t) # g%-)TL

J a
-2i0(t)

for t€ R that the function e may be written as

e 2iM(t) P(t) - 210t for teR,

aw
whence X (t) = % In(P(t) - —z—i—%;). From the last relation and
a

Qi%(t)

from the equality v(t) = = (with some modification) we
Qx(t)

obtain

v(t) = G ———-—VE————- for t &R, where 0‘2 = 1.

s L4 2
\}1P (t) + a_%’_

It the follows from the assumption v(t+% ) = ?.v(t) that

\IiP'(t+3’) +i—§'_=§]ﬂ>'(t) +% for t €R.

({(==) Let the function X defined by (28) be a phase of

(Q) where the function P and the number a satisfy the assumpt-
iw(t)
e

- Vo (t)
v(t) = G m , V(t+Y) = ¢ .v(t) for t&R, where
a~

t
3
0‘2 = 1. Let us put further u(t):= v(t)[a g ds

) VB(s)

ions of the Theorem. Putting v(t):= yields v(t) # O,

+
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+ 1—28- e'zj"‘(o)] for t&R. Then u is a solution of (Q) and
. 2 ¢t
—2ix(t) _ Oa V2 P(8) + 55
- 2

u(t) = %22 v(t)e Consequently

Jip'(m a5
axn

u(t+57) =@ .u(t) + v(t). So, we have proved that there exist
independent solutions u, v of (Q), v(t) # O for t€&R, sa-
tisfying (2).

Corollary 6. There exist independent solutions u, v of
(Q), v(t) # 0 for t€ R, for which (2) is valid exactly if

_ 1 P"(t) ;/ PU(t) 2 £
Q(t) = 2070 B T35 (r)- 2% or t€R
a®

21
a®

where 0 # a€C, PéEz'(R) is a M-periodic function, P(t) #

2igt - 2i p° 2e \/—2—
;‘aT'P(t)f—;%_'\le(t+T)+a’)T ?1P(t)+-;9177

for t€R.

Proof. This immediately follows from the preceding
Theorem and from the fact that &« is a phase of (Q‘) exactly
if it is a solution (on R) the equation Q(t) = —{o(,t} -
- 2(t).

Example 2. Consider the equation &

Q2it g _ GRit
it. 2

(1 + 2e2%T)

e o 4 )

~ . 2it
The functions v(t) = 3 = and u(t) = L
V1 s 2ot W v 2ot

are its independ solutions for which v(t+% ) = v(t), u(t+%) =
= u(t) + v(t) for téR.
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Case 3

Theorem 7. An equation (Q) has independent solutions u,
v satisfying

u(t+) =q@ .u(t), v(t+¥) = g).v(t), t €R, ?2 £ 1, (29)

where u, v have zeros on R exactly if there exists such a
phase & of (Q) that o is not a J'-periodic function and

N + nzfr

A(ty) = n T, A(ty) = =5

?
(30)
d(ty + ) = kW, o(t, +) =

where t1,t2€ [O,’S’ Yo tg t, and kl' k2, Ny, Ny are’integers.
- \’ Tt +y) - Vo( (t))
In this case-(-1)K1™M ¥ -1 (-1)k1 M 1

\'o('(tl) ' \}o((tiwr)

- oK (tp+ W) - vo('(t )
(or also (-1)K2™M2 2 L (ke L2y are
o (ty) (T )
the characteristic multipliers of (Q).
Proof. ( ==>) Let there exist independent solutions u, v

of (Q) satisfying (29), both having zeros on R. Without loss
of generality we may assume u2(t) + vz(t) # 0 for té R, From
(29) there follows that u, v have zeros on [O,fﬁ' ). Suppose

now u(t,) = v(t,) = O, where t;, t,€ [0,%), t; # t,. Letsk

be a phase of the basis (u,v) of (Q). Then u(t) = ¢ ii—mt—)-,

cosX(t i“'(t)

v(t) = c = for t€R, where ceC, c # 0. Since
\Joa(t) ‘

u(ty+%) = u(ty) = 0, v(t,+T) = v(t,) = 0, we have
A(ty+ )

n

~ ~ ¥ [
kK T, R(ty) = n T, K (tytT ) = 5 + k¥

o

*(ty) = + nz’ﬁ' , where n,, n,, k;, k, are integers. With



respect to Qz # 1, it follows from Corollary 2 that x” is not

a ¥-periodic function.

(¢==) Let there exist such a phase o of (Q) that o¢ *
is not a JF-periodic function and (30) is valid, where t,,
t2€ [0,57 ), ty # t, with Ny, Ny, k1, k2 being integers.

Setting u(t):= SE0ELL) ()= S98XLL) (tcR), then u, v
¢ (1) o (t)

are independent solutions of (Q), u(tl) = u(t1+77) = 0,
v(ty,) = v(t2+57) = 0. Thus (29) holds for aQ€ C,Q # O and
since &” is not a ¥ -periodic function, then - by Corollary
2 - we get 92 # 1. Writing now t, and t; for t in the

equations

sinod (t+W) _ q; sin %(t) cosol (t+¥) _ -1 cos™X(t)

Wem VR Ye(om S Yo
té€ R,

respectively, we obtain

K.-n \’o(’(tz) o{(tl‘";r)

ks -n
= (-1)27"2 —— ((-1)%1"1 - =0 ),
Q ek(t2+ﬂ’) o((tl) ?
(t (t+ T
thus (-1)%2""2 ——;iL—Z-)—-, (-1)%2""2 —-1‘5—1‘;-—) (or also
Yok (1,47 ) x(ty) ,
‘, “(t (W
(_1)k1-n1 _.25.'.(_—'1:)—— , (_1)k1-—n1 d'( 1) ) are the cha-
Vog(tl»«b‘f) ok (ty)
racteristic multipliers of (Q). &

Theorem 8. Suppose & is a phase of (Q). This equation
has independent solutions u, v satisfying (2), where v has a
zero on R exactly if & is not a JF-periodic function and
oL(t+T) = &K (t;) + kT, (-1)% [ (t,+7) =€p’oc(t1), where
t, € [0,57' ), k being an integer.

Proof. (==)) Let (Q) have independent solutions u, v
satisfying (2) where v has a zero on R. It follows from (2)
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that there may be assumed without any loss on generality

v(ty) = 0 for t,€ [0,9). If we put s (t)i= o (t) - < (t,)

for t€R, then 4 is a phase of (Q), /8 (ty) =0 and v(t) =

= C M for t€ R, where O # c€&€C. Since v(t1+’J?') = 0,
A (1)

we have /b (tg+7)

B(t+T) - A (%)

k7%, k being an integer, hence

K (ty+T) -0 (ty) = k¥ .
sin(E(t+¥) - x(ty))

vof.'(n-ﬁ‘)
sin(x(t)-«(t,)
= - V = and inserting t; in place of t in the
oK (t)

resulting equality, we obtain (—1)k o(‘(t1+ ) =g) Ve((tl).
Since it follows from (2) that uevery solution of (Q) is not

a § -periodic or ?-halfperiodic, then by Corollary 2, &
is not a ¥ -periodic function, too.

n

Differentiating the equality

({&==) Let o¢ not to be a ¥ -periodic function and
o (ty+T) = A(ty) + kT, (-1)k ch'(t1+’ji’) =q¢o{(t1), where
ty € ‘-_O,Ui'), k being an integer, and 92 = 1, Without any loss

on generality there may be assumed o{ (t;) = O. Putting v(t):=

- sin"* L) for t€R, then v is a solution of (Q),
o (1)

V(tl) = v(t1+‘1,v) = 0, thus v(t+@") = ’Zv.v(t) for t¢R,
where T ¢ C is an appropriate number and from the equality
(-1) VE(t,+ %) = q)yz(tl)there follows = T = 1. since
A" is not a J’-periodic function, it follows from Corollary
2 that every solution of (Q) is not % -periodic or G half-
periodic. Consequently it follows for (Q) from the Floquet
theory that there exist such a solution u of (Q) that u, v
are independent solutions of this equation and (2) holds.

Remark 12, If the assumptions of Theorem 7 or of Theorem
8 are satisfied, then there do not exist any %-periodic so-
lutions of the Riccati equation (11).
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FLOQUETOVA TEORIE DIFERENCIALNICH ROVNIC y“’ = Q(t)y
S KOMPLEXNfM KOEFICIENTEM REALNE PROMENNE.

Souhrn

Je vysetfovana diferencidlni rovnice
y"" = Q(t)y, Q(t+¥) = Q(t), Im Q(t) # 0 pro t€R, (Q)

kde Q je spojitéd komplexni funkce na R. Z Floquetovy teorie
plyne, Ze ke kazdé rovnici (Q) lze prirfadit ¢isla ¢, @— ,
kterd se nazyvaji charakteristické multiplikatory rovnice (Q).
Tato &isla jsow dGlezitd prfi vySetfovani kvalitativnich vlast-
nosti redeni rovnice (Q). V praci je dan novy pohled na Flo-
quetovu teorii rovnic typu (Q) z hlediska teorie fazi. Zejmé-
na je dokazano, jak lze hodnoty charakteristickych multipli-
kadtord vyjadrit pomoci néjaké faze rovnice (Q).

TEOPUSl ®JIOKE IMPPEPEHIMAJEHHX YPABHEHM
C HOMMJEKCHHM KOJ3&VMIIMEHTOM BELECTBEHHOJ IIEPEMEHHON

Peapue -

Msyuaercs nunpbepeHLuaspHoe ypaBHEeHMuE

vy’ = Q(t)y, Q(t+%) = Q(t), Im Q(t) § O, tER, (Q)
rie Q HenpepHBHas KoMnJaekcHas ¢yHkuus Ha R . s Teopun
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®noKe CIEAyeT, YTO K KAKKOMYy YDOBHEHMD (Q) NpUCOeEIMHADT-
cs umucaa f , p' , KOTOpHE HABHBADTCS XapakTepucTHuecKue
MyJbTUNJIMKATODH ypaBHeHMS (Q). OTHM uucIe BeXHHe Npu uC-
cIefOBEHMM KBAIMTETUBHHX CBOJiCTB pemeHuit ypemReHMs (Q).

B sToit pafoTe npuBOAMTCH HOBHIt Barasn Ha Teopun dao-
Ke ypeBHeHult Tume (Q) c Touku 3peHus Teopuu ¢pes. B ocobeH-
HOCTHM JOKEOSHBEBETCS KaK 3HAUEHMS X8PAKTEepUMCTUK MYJbLTUNJIUKA-
TOpPOB ypaBHEHMS (Q) HMPeACTEBMTL C NOMOWLBPD HEeKOTOpok dasu
ypeBHeHMs (Q).
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