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In this paper there are introduced the neptions of distri-
butive and modular sets which generalize the corresponding
notions from the lattice theory. It is shown that both notions
are autodual and that every distributive ordered set is also
modular. Furthermore the notion of a lower homomorphism of an
ordered set is introduced and there are shown relations between
translations and lower homomorphisms of distributive and mo-
dular ordered sets, respectively.

Let S = (S, ¥) be an ordered set (a po-set). If A €5,
then we will denote L(A) = {56 S; x £ a, for all aé€ A} and
U(A) = {yés; a £y, for all aEA}

For A = { ceer oAy, ..} €S we will also write L(A) =

L(ever @5, in)s U(A) = U(enny a5, ...).

n

1. We say that a po-set S is a/ distributive if
(1) VYa,b,ces; L(U(a,b),c) = L(U(L(a,c), L(b,c))),
b/ modular if
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(II) ¥ a,b,c€S; a $ c => L(U(a,b),c) = L(U(a,L(b,c))).

Theorem 1. If S = (S, ¢ ,A,V) is a lattice, then S is

a/ a distributive po-set if and only if it is a distributive
lattice,

b/ a modular po-set if and only if it is a modular lattice.

Proof. Let S be a lattice, a,b€S. Then it is evident that
L(a,b) = L(aAb), U(a,b) = U(avb).

a/ Let a,b,c€S. Then L(U(a,b),c) = L(U(aVvb),c) =
= L((aVb)Ac), L(U(L(a,c), L(b,c))) = L(U(L(aAc),
L(bAc))) = L((aAc)V(bAC)).

Hence it is clear that (I) is satisfied if and only if

¥ a,b,ceS; (avb)Ac = (aAc)v(bAc).

b/ If a,b,c€S, then L(U(a,b),c) = L((avb)Ac),
L(U(a,L(b,c))) = L(U(a,bAc)) = L(aV (bAc)).

Therefore (II) is satisfied if and only if ¥ a,b,cé€S;
a & c => (avb)Ac = av(bAc).

Lemma 2. If S is a distributive po-set, B €S, x,y€S,
then U(L(B, U(x,y))) = U(L(U(L(B,x), L(B,y))))-

Proof. a/ Let wue€U(L(B,U(x,y))), i.e. uv for each v

such that v £b for any beB and v £z for any
z€U(x,y). Thus if be€B, then u v for each
VEL(b,U(x,y)) = L(U(L(b,x), L(b,y))), hence u * v for any
v such that v #w, where w > z for each zé€lL(b,x,y)
Since b is an arbitrary element in B, it is u 2 v for
any v such that v £ s for each s€U(L(B,x), L(B,y)),
therefore wué U(L(U(L(B,x), L(B,y))))., and so

U(L(B,U(x,y))) € U(L(U(L(B,x), L(B,Y))))-

b/ Let u€uU(L(U(L(B,x), L(B,y)))) = U(L(B,x), L(B,y)), i.e.
2y for each v such that v € x,y and v €b for any
b€B. Thus if bég&B, then also u ® v for any v such that
vE€b and v €w for each weU(x,Y). But this means that
u2v for each vé&L(B,U(x,y)), hence UEU(L(B,U(x,y))).
Therefore U(L(U(L(B,x), L(B,y)))) € U(L(B,U(x,y)))-

u
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Theorem 3. If S is a distributive po-set, then it holds
(III) v a,b,ces; U(L(a,b),c) = U(L(U(a,c), U(b,c))).

Proof. By Lemma 2 and by the assumption that the condition
(I) is satisfied in S, we obtain U(L(U(a,c), U(b,c))) =
U(L(u(L(U(a,c),b), L(U(a,c),c)))) = U(L(U(a,c),b),L(c))
u(L(u(L(a,b), L(c,b))), L(c)) = U(L(a,b), L(c,b), L(c))
U(L(a,b), L(c)) = U(L(a,b),c) .

]

Theorem 4. If S is a modular po-set, then it holds
(1V) v a,b,c€S; a * ¢ => U(L(a,b),c) = U(L(a,U(b,c))) .

2roof. If a ®* ¢, then by (II) it is L(U(c,b),a) =
L(U(c,L(b,a))) . By this we obtain U(L(U(c,b),a)) =
U(c,L(b,a)), therefore (IV) is satisfied.

n oo

Lemma 5. If S is a modular po-set, B €S, x,y€S,
BSL(x), then it holds U(L(x,U(B,y))) = U(B,L(x,Yy)).

Proof. a/ Let ueU(L(x,U(B,y))). Then u ® v for any v
such that v £ x and v €w, where w is an arbitrary
element such that w * y and we€U(B). Hence if b is an
arbitrary element in B, then u * v. for each ve&L(x,U(b,y)),
thus ue€uU(L(x,U(b,y))). Since b % x, we obtain from (II)
that ueuU(L(U(b,L(x,Y)))) = U(b,L(x,y)), therefore
u€U(B,L(x,y)), and this means that U(L(x,U(B,y))) €

€ U(B,L(x,Y)).

b/ Let ué€U(B,L(x,y)). Then it is evident that
u€u(b,L(x,y)) for each beB. If be&B, then by the
assumption it is b ¥ x and hence U(b,L(x,y)) =

= U(L(U(b,L(x,y)))) = U(L(U(b,y),x)). Thus for any beB

it is u ® v for an arbitrary v such that v € x and

v €w for any w with the property w2 b, wZy .
Therefore u ®v for any v such that v € x and v ¢ w
for each weuU(B,y), thus ue&U(L(x,U(B,y)). But this means

that U(B,L(x,y)) $ U(L(x,U(B,y)).

Theorem 6. If S a modular po-set, then
(V) Y a,b,c€S; U(L(a,U(L(a,b),c))) = U(L(a,b),L(a,c)) .
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Proof. By Lemma 5 we obtain U(L(a,b), L(a,c)) = U(L(U(L(a,b),
L(a,c)))) = u(L(y(L(a,b),c),a)) = U(L(a,U(L(a,b),c)))

Theorem 7. If S is a modular po-set, then
(vi) Vv a,b,ce€s; L(U(a,L(U(a,b),c))) = L(U(a,b); U(a,c))

Proof. The assertion follows from Theorem 4 in the way dual
to the proof of Theorem 6.

Theorem 8. Any distributive po-set is modular.

Proof. Let S be a distributive po-set, a,b,c€S, a €c .

Then L(U(a,b),c) = L(U(L(a,c), L(b,c))) = L(U(L(a),
L(b,c))) = L(U(a,L(b,c))), therefore S is modular.

Theorem 9. a/ If S is a modular po-set, then for any
a,b,ceS such that a £b, U(a,c) = U(b,c) and L(a,c) =
= L(b,c) imply a = b .

b/ If S is a distributive po-set, then for any a,b,ce€s,
U(a,c) = U(b,c) and L(a,c) = L(b,c) imply a = b .

Proof. a/ Let S be a modular po-set, a,b,c€S, a <b
and let U(a,c) = U(b,c), L(a,c) = L(b,c) . Then L(b) =

= L(b,uU(b,c)) = L(b,U(a,c)) L(u(a,L(b,c))) = L(U(a,L(a,c))) =
= L(U(a)) = L(a) , hence a = b.

b/ Let S be a distributive po-set, a,b,c€S . If U(a,c)
u(b,c), L(a,c) = L(b,c), then L(a) = L(a,U(a,c)) =
L(a,U(b,c)) = L(U(L(a,b), L(a,c))) = L(U(L(a,b), L(b,c)))
L(U(a,c),b) L(u(b,c),b) = L(b), therefore a = b .

it
]
n

[}
n

Example 1. Let us consider the po-set S = {O,a,b,c,d,l}
which is determined by the following diagram (Fig. 1):
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Fige 1

We shall show that S is a distributive po-set. First, let
x,y€S. Then LgU(x,y),0) = fo} = L(U(L(x,0), L(y,0))),
L(U(0,x),Y) L(x,y) = L(U(L(O,y), L(x,¥Y))). L(U(x,y),1) =

= L(U(x,y)) = L(U(L(x,1), L(y,1))), L(U(L,x),y) = L(y) =

= L(U(L(1,y), L(x,¥))), L(U(x,x),y) = L(x,y) = L{U(L(x.Y),
L(x,y))), L(U(x,y),Xx) = L(x) = L(U(L(x,x), L(y,x))). Now we
shall verify that (I) is satisfied for the remaining triples
of elements in S, too: L(U(a,b),c) = L(U(a,b),d) = {a,b,oj =
= L(U(L(a,c), L(b,c))) = LIU(L(a,d), L(b,d))), L(U(a,c),b) =
= L(U(a,d),b) = {0,b} = L(U(L(a,b), L(c,b))) = L(U(L(a,b),
L(d,b))), L(U(a,c),d) = L(U(a,d),c) = L(U{b,c),d) = L(U(b,d),
c) = {a,b,0} = L(U(L(a,d), L(c,d))) = L(U(L(a,c), L(d,c))) =
L(u(L(b,d), L(c,d))) = L(U(L(b,c), L(d,c))), L(U(b,c),a)
L(u(b,d),a) = {0,a} = L(U(L(b,a), L(c,a))) = L(U(L(b,a),
L(d,a))), L(U(c,d),a) = {0,a} = L(U(L(c,a), L(d,a))),
L(U(c,d),b) = {0,b} = L(U(L(c,b), L(d,b))). Therefore s is
a distributive po-set which is not a lattice.

n
n

Example 2. Let T = {p,a,b,c,d,e,lj be the po-set which is
determined by the following diagram (Fig. 2):
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Fig. 2

Let x,y,z€T . Then 0 %y and L(U(O,x),y) = L(x,y) =

= L(U(O,L(x,y))), x ¥ 1 and L(U(x,y),1) = L(U(x,y)) =

= L(U(x,L(y,1))). If x £y £ z , then L(U(x,y),2) = L(y) = '
= L(U(x,L(y,2))), if y £ x %z, then L(U(x,y),2z) = L(x) =
= L(U(x,L(y,2))), if x £z, x %y, then L(U(x,y),2z) =

= L(y,z) = L(U(x,L(y,z))). Finally, it is L(U(a,b),c) =

= L(U(a,b),d) = L(U(a,b),e) = {0,a,b} = L(U(a,L(b,c)))
= L(U(a,L(b,d))) = L(U(a,L(b,e))). This means that T is a
modular po-set which is not a lattice. Moreover T 1is not a
distributive po-set because L(U(c,d),e) = {O,a,b,e} , but
L(U(L{c,e), L(d,e))) = {0,a,b}

2. In [1] , there is introduced the notion of a translation
on a po-set. In this paper we shall use the dual notation.

If S 1is a po-set, then a mapping Y : S — S is called
a translation on S if V¥ a,b&S; p(U(a,b)) = U(Y(a),b).
It holds that every translation is a closure operated on S.

We shall also introduce the following notion: If S is
a po-set, then a mapping p: S =S is called a lower homo-
morphism of the po-set S if V a,b€S; U((F(L(a,b))) =
= U(L(@ (a), P(b))). G.Szész proved (in [2]) that a lattice
is distributive if and only if each its translation is a meet
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homomorphism, and that a lattice is modular if and only if
for each its translation (P and for each its elements a,x,
where ¢ (a) = a, it is p(anx) =$0(a)/\$0(x). In this paper
we shall prove that any distributive or modular po-set,
respectively, satisfies a similar condition in connection to
lower homomorphisms.

Theorem 10. If S 1is a lattice, ?: S -+ S a mapping, then(f
is a meet homomorphism if and only if it is a lower homo-
morphism.

Proof. a/ Let V a,b€s; y(a/\b) = plan $(b). Then

@ (L(anb)) $ L(p (aAb)), hence U(@(L(a,b))) =

= U(@ (L(aAb))) 2 U(L(@(aAb))) = U(@P(aAb)) =
=U(g(a)ap (b)) = U(L(@(a), @ (b))), therefore U(L(¢@ (a),
?(b))) € U(@(L(a,b))) . Conversely, let x€ U(sp(L(a,b))) =
U(?(L(a/\b))), i.e. x 2 @ (y) for each vy £ aAb . Let
zE€L(@(a), @(b)) = L(P(a)A @ (b)) = L(P (aAb)) . Since

@ (aAb) € x, it is now z € x, hence x€U(L(¢g (a), @ (b)),
therefore U(?(L(a,b))) 9U(L(9@(a),$ﬂ(b))) .

b/ Let V a,bes; U(?’(L(a,b))) = U(L(¢(a),¢(b))). First
let us show that is an isotonic mapping. Let us suppose
that a £ b. Then U(@ (L(a))) = U(@(L(a,b))) = u(L(@(a),
P(b))) = U(L(@(a) Ap(b))) = U(P(a)Ag(b)), hence

@(L(a)) S L(P(a)ag(b)), thus ¥ (a)eL(@(a)ap(b)), and
this means that (f) (a) % ?(b) .

Now we shall show that Sﬂ is a meet homomorphism. It is
U(P (aAb)) 2 U((L(a,b))) = U(L(@ (a), P(b))) = U(L(@P (a)A
A@ (D)) = U(g (a)Ag(b)), hence @(and) £@(a)agp(b).
Conversely, let y€U((p (aAb)) . Since ? is an isotonic
mapping, it is y *@(x) for each x& L(a,b), hence
Y€ U(P (L(a,b))), thus U(@(aAb)) € U(g(L(a,b))) =
= U((F(a)/\(f(b)), and so y(a/\b) > (f(a)/\ ?(b) .

Lemma 11, If is a translation on a po-set S, xE€S,

p$8BC S,then¢(U(x,B)) = U(x,sp(B)) .
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Proof. a/ Let ng(U(x,B)), i.e. z = so(zl), where
zy 2 x and zy ¥ p for each b€B. Let b&B. Then

z, €U(x,b) and hence ze (U(x,b)) = U(x, ¢(b)). But this
means that z€U(x, ¢(B)), thus @ (U(x,B)) € U(x,?(B)).

b/ Let wé&U(x,@(B)), i.e. w2 x and w * @(b) for each

bé&B. Let b€&B. Then weu(x,?(b)) = ?(U(x,b)), hence
w =?(w1), where w, *x, W = b. Thus w,€U(x,B), i.e.
w&@ (U(x,B)), and therefore U(x, ¢ (B)) ‘:';o(u(x,s)) .

Lemma 12, If is a translation on a distributive po-set S,
x,y€S, P # B S, thenU(L(x,y),B) = U(L(U(x,B), U(y,B))) .

2 b for each b€B. Let begB. Then zeU(L(x,y),b) =

U(L(U(x,b). U(y,b))), thus z *w for each we&L(U(x,b),
U(y,b)). Therefore z > w for any w € a, where a€uU(x,b),
a€U(y,b). This means that z *w for each weL(U(x,B),
U(y,B)), hence ze€U(L(U(x,B), U(y,B))). Therefore
U(L(x,y),B) € U(L(U(x,B), U(y,B))).
b/ If beB, then U(x,b) 2 U(x,B), U(y,b) ® U(y,B), thus
U(L(U(x,b), U(y,b))) 2 U(L(U(x,B), U(y,B))). Let
z€U(L(Y(x,B), U(y,B))), i.e., by the latter, z€U(L(U(x,b),
U(y,b))) = U(L(x,y),b) for each beB. Therefore
zeUu(L(x,y),B), and this means that U(L(U(x,B), U(y,B))) €
S u(L(x,y),B).

Proof. a/ Let z€U(L(x,y),B). Hence z<&U(L(x,y)) and
z

Theorem 13, If S is a distributive l-directed po-set, then any
translation on S is a lower homomorphism of S .

Proof. Let ¢ be a translation on S, a,bé&s . Then by Lemmas
11 and 12 it is U(L(@(a), @(b))) = U(L(@(U(a)),

@(U(b)))) = U(L(@ (U(a,L(a,b))), P(U(b,L(a,b))))) =

= U(L(U(a, @(L(a,b))), U(b,@(L(a,b))))) = U(L(a,b),

@ (L(a,b))) = U(P (L(a,b))) . :

Lemma 14. If S is a modular po-set, x,y€S, B €S, then
U(L(u(x,B), U(y,B))) = U(L(U(B,L(U(B,x),Y)))) -
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Proof. a/ Let =zeu(L(U(x,B), U(y,B))). Then zeU(L(U(x,b),
U(y,b))) for each b€&B. Thus if b&B, then z =v for
any v such that v £ s for each se€U(b,w), where w is
an arbitrary element in L(y,a), for each a€U(b,x). Since
these relations are satisfied for an arbitrary element b&€B,
it is we€lL(a,y) for each ae€eU(B,x); thus we€L(U(B,x),y).
Hence s€U(L(U(B,x),y),b) for each be€B, therefore

s€ uU(L(U(B,x),y),B). This means that vé&L(U(B,L(U(B,x),Yy))),
and so z€U(L(U(B,L(U(B,x),y)))). Therefore U(L(U(x,B),
U(y.B))) € U(L(U(B,L(U(B,x),Y)))) .

b/ If b€B, then U(L(U(B,L(J(B,x),y)))) § U(L(U(b,L(U(b,x),
y)))) and L(U(B,x),y) 2 L(U(b.x),y), thus it is
U(L(U(B,L(U(B,x ,¥)))) € U(L(U(2,L(U(b,x),y)))). Let now

z €U(L(U(B,L(B,x),y)))), be&B . Then =z&U(L(U(b,L(U(b,x),
y)))) = u(L(uU(x,b), U(y,b))), :.e. z=v for any v £ w,
where w is an arbitrary elemeut in U(x,y,b). Since b is
an arbitrary element in B, z * v for each vé&L(U(x,B),
u(y,B)), and so z €U(L(U(x,E). U(y,B))). But this means that

U(L(U(B,L(U(B,x),y)))) € U(L(L(-,B), U(Y,B))) .

Theorem 15. If S is a moduler po-set, @ a translation on S,
then for each aé€$S such that P(a) = a and for each bes

it is U(@(L(b,a)) = U(L(P (k). @ (a)))

Proof. By Lemma 14, we obtain f -om the assumption that
UL(P(b), g (a))) = U(L(U(b. ¢ (-(bsa))), U(a, @ (L(b,a))) =
= U(L(U(@(L(b,a)), L(U(P(L(>,2)}),a),b)))) = U(L(U(P (L(b,a)),
LU(@ (L(b,a)), @ (a)).b)))) = J(L(U(@ (L(b,a)), L(b,a)))) =
= U(L(U(@(L(b,a)))) = U(P(L(b,a)))
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TRANSLACE DISTRIBUTIVNICH A MODULARNICH USPORADANYCH
MNOZIN

Souhrn

V &lénku jsou zavedeny pojmy distributivnich a moduléar-
nich usporadanych mnoZin, které jsou zobecnénim odpovidajicich
pojmé& z teorie svazl a jsou dokazany jejich zdakladni vlast-
nosti. ‘

V dalsim jsou zavedeny dolni homomorfismy usporadanych
mnozin, které zobecnuji homomorfismy polosvaz@. Je dokazéano,
Z2e libovolna translace distributivni usporadané mnoZiny je
dolnim homomorfismem. Analogicky vysledek plati také pro mo-
dularni usroradané mnoZiny.

NEPEHOCH MCTPUMBYTMBHHX ¥ MOLYJSPHHX
YIIOPAJIOYEHHHX MHOEECTB

Peabme

B craTre BBeNEHH NOHATUS IUCTPUGYTHMBHHX M MOILYJS PHHX
ynopaZoueHHHNX MHOXECTB, KOTOpDHe fBASDTCA 000OmMEeHMEM COOT-
BEeTCTBYNNUX MOHATUNA M3 TeOpUM DEmeTOK ¥ NOKABSE8HH UX OCHOB~-
HHe cBolicrBa.

B naxrHeltmem onpeliexsinwTcs HUXHME roMoMOpdusMH ynopsho-
YeHHHX MHOXECTB, KOTOpHe 0606manT roMoMopdusMH noJaypemeToK.
lloxasano, uyTo JK60H# mepeHoc AMCTPUSYTUBHOrO YNOPALOUYEHHO-
ro MHOXeCTBa SBJSEeTCS HUMEHUM roMoMoppusmom. AHanorumueckuit
pesyJabTaT uMMeeT MeCTO TOXe IJAS MOAYJSpPHHX YNOpSAoYeHHHX
MHOXECTB,
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