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1. Recently an increasing attention has been paid to the
study of the Lotka-Volterra system [1], namely

-

u’ = Au(l-v), vi= - 0 v(l-u),

where A R are control parameters. As is well-known such
a system can be transformed by means of u=exp x, v=exp y to

the form

x" = - g(y), y = h(x)

with g(y) = A(exp y - 1), h(x) = @ (exp x - 1). Therefore
-f(y) should be

especially in case, when h(x)= -f(x), g(y)

of interest in view of

x(t) y(t)
y f(s)ds + f f(s)ds = const.
x(0) y{0)
being the corresponding first integral, If the same hamilto-
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nian system is considered under some small external forcing
moreover, namely

. .

x" = f(y) + pp(t), vy = - f(x) + Va(r), (1)

where /V, N are the positive small parameters, then the na-
tural question appears with respect to the solutions
[x(t),y(t)] € (1), having the property

Lim [Ix(€)l - |y(€)l] = O, (2)
t-»oo

called here as an asymptotic symmetry: "are these solutions
also stable in the sense of Lagrange?", i.e.

lim sup [lx(t)l + [y(t)l](w. (3)
ty =

In the following text we give an affirmative answer to
this problem, assuming

f(u)sgn u = g for |ul 2R (4)
or

f(u)sgn u <=8 for [u] 2R, (47)
where ((, R are suitable positive constants and f(u) is an
everywhere continuous function as well as those of p(t), q(t).

Replacing (4) or (4°) by the restriction on the bounded
and oscillatory function f(u) = -f(x), we will furthermore
show the solvability of our problem for the equation

x" = f(x) + Ya(t), (5)

originated from (1) in the special case of (2), namely
x(t) = -y(t).

~ Hence let the prescribed assumptions hold throughout all
the following text.




lim sup max Dx(t)[,[y(t)” =00 =)1im inf min Dx(t)(,[y(t)[]éR,
¢ > o= t >oe

Proof. We employ the Yoshizawa’'s technique [2, p.SQ]
consisting of the construction of a Liapunov function V(Xx,vy)
defined on R2, which satisfies the following conditions:

(1) lim V(x,y) = o=,
([x]+1y[)»ee

(ii) ]RO>0, (§O>o... (le+‘yl)>RO:...\(/;§x,y)./= -J‘o,

where

Vi1)(xiy) = Lin iUg{[V(X(tut).y(t+4t))—V(x(t),y(c))](n)‘lf(l)

and therefore ensures the uniform-ultimate boundedness of all
solutions of (1).

Hence let us define

X

y
V(x,y):= g f(s)ds +I f(s)ds + fw(x,y),
0 6]

where W(x,y):= ya(R(X) - XX—R(Y).

Z tiresecenceess for |zl4R
xR(Z):=

RSN Z ceoenve ... for |zl 2R

and &€ be a suitable real, which magnitude will be specified
later.

Since for (x,y) € R it is

wix,y)| € R [ixt + tyl] (6)

(%Y

and since (4) or (4°) surely implies such # 0 that

lim inf l F(x) l > 1

[x| %< ¢ Rx
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or

lim [F(x)] - [ERxll = o=, (7)
[X[->oe
X
where F(x):= 'rf(s)ds,
o]

the relation (i) follows immediately from (6), (7), provided

(<1l

Now let us fix & in the foregoing way and estimate
V('l)(x,y) from (ii):

V1) (xay) = AR(E)E(X) + Va(E)F(y) + EWly (x,y),

where
R[F(y)-f(x)] +R[va(t)+ ap(t)].eiviveviiix 2 R, y £ R
~RE(X)+F(X)x=F(y)y-r+R ¥V g(t).e.eiieennnns x 2 R,lyl4 R
-R[f(Y)+f(X)]+R[?/up(t)+ Va(t) eeennnnnnn Xx 2R,y 2R
“RE(Y)+F(y)y=F(X)X+r=RAP(t)eeneencnanns x| 4R, y 2 R
Wi1)= R{F(x)=F(y)]-R[mp(t)+ va(t)]eeeerrneenns x £ -R, y 2 R
RE(X)=F(y)y+fF(X)X=r-R v g(t)eeieeeeeesass x £-R, y 2 R
RIFOO+F(Y)] +R[ap(t)= va(t)] cunennnnn. x £ R, y £-R
RF(y)+F(y)y=F(X)X+r+R Mp(t)eeueseeoenss IxI £ R, y £-R
and ro= /}\,p(t)y + Ya(t)x .
Letting
lp(t)l ¢ :P, lq(t)! & :Q for all t, © o (8)

we obtain with respect to (4) (the case (4°) can be verified
in an analogous way) for positive £ that

a) Ixl2R, |yl2R:

V{z)(x:y) |
B g r [ieeol+ ] +peto) [= + [ 2L+ fyaceix

x R +1EL ) ¢ -rool (R-p ) ~FEODIR =y

+ /b\_PR + YV 0OR,
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while for negative ¢ that

b) [xI2R, |yl 4R:

v/ (x,y)
o £ - o [0 (R BEEL v ixva(e) 1+ 1F(y)] x

x Cyts | 2L o p(e)yl+ [a(oR] £ - [F(x)x 1+

+ [f(x)[(R+l,u%]) +[xVQ[+If(y)|(R+l\)%() +Y QR+ 4PR,

c) [x]<R, lyl2R:

V{ )(X'Y)
1!2’! . 'lf(Y)Y!"‘ff(Y)l(RﬂvSi{i)-l) +ly ap(O)]+ 1) [ 5
"(lx'*‘/”wlhIVQ(t)XI+l/up(t)Rlé.lf(y)y(+{f(y),x

x (R +Iv%—1) +lypPl+lf () [(R +]p %I) + Y QR + PR,

It is evident that (ii) will be satisfied separately for a)

or b) or c), provided [€] < §/R and M+ YV are small enough.
Thus according to Yoshizawa’'s theorem the assertion of our

corollary is implied immediately.

3. 1In this part we shall discuss the special case of (1)

(x:=-y), namely (5) under the restriction that f(x) is bounded

and oscillatory with isolated roots in the following sense:
for each argument x they may be found such numbers /31 > Xl >
>x >d_y > 1, that

f( t\'l) < O:f(ﬂl) > 0,f( 0<...1) < O'f(//‘(-l) > 0.

If the uniqueness condition is satisfied, then evidently, all

the solutions of the equation resulting from (5) for V¥ = O,
namely

x"+ f(x) = O

are bounded, which cannot be said about (5), if V # O.
It will be very useful to be concerned still with the

equation
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x*+ (-1)%c (x-d) = (-1)fkd, + Va(t) -f, (x) (k-integer),
(9)

where c, > O,dk> 0,d are constants and f, (x) is such a conti-
nuous function for all x that

f(x) = fL(x) + fN(x), (10)

L0 = (<)% o (x=d)-kdy  (F(x) = f,(x)) in xedxg_y xhs
(11)

that there always exists just one point X, € (Xp_;,X}) with

fL(x ) = fy(x) = o. (12)

f(x):=sin x

(fL(x):=(-1)k(x—k77), T(i;llfN(xH = ( g- 1), xe{- % + k¥, - g +

+ (k+1)T D, ;k = k% ; k-integer).

vyQ + Fk

min{d(x;_l,zk), d(xﬁ,?k)] > . (14)

Ck

where F, := max f, (x) , holding for k = 0,%2,%4 (cf. also
*
xc(xk_l,xﬁ>

of _(5).

P r oo f. Let us assume on the contrary that x(t) is
such a divergent solution of (5) that

lim sup x(t) =eo=
t—2 oo

(the case, when x(t) tends to "-c=" may be performed just in
the same way).
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Then there must exist the last point Tla 0 with X(Tl) =
= xi_l and the first point T, 2 T, wi:h x(T,) = XE' where k-is
even. It is clear that x(t) & (x;_l,xk > (T £ t £7T,) can be
represented by

t
x(t)=Cexp((-1)**tc t)+ £exp((—1)k+1ck(t—’l‘) J[vace) -, (x(7))]dT +
d
k
k
+ ck

with a constant C.
However, as for t 2 O and k-even the following estimation

holds:

-c t YQ + F d
k k k
lX(t)lﬁlCe l+l—c-—l+lk-6—l ,
k k
where F, : = max lfN(X)[, the existence of the point T, is

» »
xe(xk_l,xk>
impossible with respect to (14), a contradiction. This comple-

tes the proof.

<
N
N
\'d
<
(@)
+
T
~
n
Lo
=
N
N
1
[N
1=
10
1
-
1=h
<
N
[N
N
(@]

Proof. - follows immediately from the preceding two
corollaries.

It can be seen from the proof of Corollary 1 that the
first part of the assertion of our Theorem can be introduced

bounded.
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SOUHRN
Symetrie v jistém jednoduSe perturbovaném Hamiltonové systému

Jan Andres

V poznamce je zkoumana otédzka, zda pro reSeni systému (1)
(té&sn& svazaného s rovnicemi Lotky-Volterry) s vlastnosti (2)
vzdy plati (3), a to i v pripadé dostatec¢né malych spojitych
vngjdich poruch. Jsou nalezeny postadujici podminky, zarucuji-
ci pozitivni odpovéd na dany problém.

PE3IOME
CuMMeTpus B OJHOI mpocTo BO3MyNeHHO# cucreme FaMusbpTOHE

AH Aurpgpec

B saMeTke MByuseTcs BOINpoOC, ecan cBojicTBo (2) mpuHaiie-
mamee pemeruam cucrems (1) (TecHo cBsseHHO# ¢ ypaBHEHMAMH
ﬂOTKM—BOﬂbTeppE) BJreueT Bcerza sa coboli Toxe (8) , 8 Jaxe
B cJyuae IOCTATOYHO MAJHX HENpPEepPHBHHX BHEMHMX BO3MYUeHMIt.
HaexolsiTcs AOCTATOYHHE YCJOBMS, rapaHTupybmue IOJOXMTEeJbHHI
OTBeT Ha JaHHyD npobJeMy.
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