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Consider the following differential equation of the fourth
order
yIV(t) + 10[q(t)Y"(t) 1" + 3[3q3(t) + @~ (t)]Y(t) = 0 (1)
with a function q(t)e¢ cz(- oo,+ o2), q(t) > 0 on the interval
I = (-~co,+o0) obtained by iterating the linear homogeneous
differential equation of the second order
y"(t) + q(e)y(t) = O (2)

[for this reason (1) is also called "iterated”].
It is known if [u(t),v(t)] is a basis of all solutions of (2),
then

[W3(0), wBovin), u(ev®(e), v3(n)] (8,)

is a besis of all solutions of (l). As a consequence we see
that if the functions u(t), v(t) are oscillatory in the sense
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of /2/ at (B,) /i.e. there lie infinitely many zeros both to
the left and to the right from every point t€ I/, then all
functions generating the basis (B,) are oscillatory in this
sense also, Moreover: if t,€l is a simple zero of the function
u(t) or v(t), then t, is an n-fold zero of the function u"(t)
or vV'(t), n = 1,2,3,

The differential equation (2) with the oscillatory basis (Bz)
will be called oscillatory, We assume hereafter that all solu-
tions of (2) or (1) are nontrivial, only.

Let t €I be an arbitrary firmly chosen point with u(to) =
= 0, So it simultaneously holds

u’(to) 0, v(t)) #0 (P)

at this point, Then all solutions Y(t) of (1) vanishing at ty
together with the solution u(t) of (2) take the form

Y(1.01,C5,C5) = L et HoviThn) (5)

3
where C,€R, 1 = 1,2,3, Z:j Cf > 0, are arbitrary constants
(parameters). e
We assume throughout all solutions y(t) = clu(t) + czv(t),
cJE R, j=1,2, cf + cg >0 , of (2) to be oscillatory. Then
every solution Y(t) of (1) from the bundle (S) is also oscilla-
tory, whereby Y(t ) = u(t,) since

Y(£,61.€5,C5) = u(t) 2 cu®(epi"i(r)

3
2
for every choice Cie.R ,i=1,2,3, Z;; Ci >0,

For the zeros of an arbitrary solution Y(t) of (1) from (S) we
have )

Theorem 1 (see /3/):

1) If C5 ¢ 0, then all zeros of the solution Y(t) of (1) from
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the bundle (S) coinciding with the zeros of the sclution
u(t) of (2) ere simple

2) 1f C3 =0, C, ¥ 0, then all zeros of the solution Y(t) of
(1) from the bundle (S) coinciding with the zeros of the
solution u(t) of (2) are twofold

3) IfC3=0Cy, =0, C; ¥ 0, then all zeros of the solution
Y(t) of (1) from the bundle (S) coinciding with the zeros
of the solution u(t) of (2) are threefold.

Remarks.

Since the differential equation (1) is of the fourth order, its
solution Y(t) may have threefold zeros at most.

Specifying the conditions (P) as

u(0) = 0, u°(0) = 1
v(0) =1, v'(0) =0, (Py)

then taking account of (2) we successively obtain for

I. Y(t) = Clua(t):

Y(t) = 3c;u3(t)u"(t)

Y*(t) = 3¢, [2u(t)u"3(t) - q(t)u’(1)]

v (1) = 3¢;[20"3(t) - 7q(r)u®(t)u’ (1) - g (t)ui(0)] ,

so that by (P_) we have

Y(0) = Y°(0) = Y*(0) = 0O, Y™ (0) = 6C; ¥ O (s1)

I ¥(t) = Cyu’(t) + Cu(t)v(t):

Y7(t) = 3¢,u2(t)u"(t) + Cyl2u(t)u”(e)v(t) + uZ(tIv (t)]

v=(t) = 3¢, [2u(6)u”3(t) - a(e)ud()] + c,[2u"3()v(t) -

- 3q(t)u?(t)v(t) + 4u(t)u’(t)v(t)]
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Y= (t) = 3¢, [2u"3(t) - 7q(t)u®(t)u’(t) - @ ()u3(1)] +
+ € [eu"2(t)v (t) - 1aq(t)u(t)u’(t)v(t) -

- 79(t)u®(t)v (t) - 39" ()ud(e)v(t)]
so that by (P)) we have

Y(0) = Y'(0) = 0, Y"(0) = 2C, ¥ O, Y™ (0) = 6C, (s5)

111, ¥(t) = Cud(t) + CuZ(t)v(t) + Chu(t)vi(r) :
Y7(t) = 3cu®(t)u’(r) + Cylau(t)u"(t)v(t) + uB(t)Iv (1)] +
+ C[u(e)vE(e) + 2u(e)v(eIv (1))
Y=(t) = 3¢;[2u(t)u"3(t) = q(t)u®(t)] + Cyr2ud(e)v(r) -
- 3q(t)ud(t)v(t) + du(t)u’(t)v (t)] +
+ Cyl2u(t)v 3(t) = 3q(t)u(e)vE(t) + au”(t)v(t)v’(1)]

v () = 3¢, [20"3(t) - 7q(t)u(t)u’(t) - q ()u3(t)] +

+

l4q(t)u(t)u’(t)v(t) -

c,6u3(t)v (t)

7q(t)ud(t)v (1) = 397 (t)u(t)v(t)] +

+

Cy[6u”(t)v 3(t) - laq(t)u(t)v(t)v (t) -

7a(t)u’(t)v2(t) - 397 (u(t)vi(t)] ,

so that by (Po) we have
Y(0) = 0, Y'(0) = C; # 0, Y"(0) = 2C,, Y™ (0) = 6C; = 7C;q(0)
(s3)

Conditions (°1)‘ (sy) and (s3) may uniquely characterize the
oscillatory bundles I.,, II. and III. relating to (1l).
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All zeros of the oscillatory solution Y(t) of (1) from the
bundle (S), for which Y(to) = u(t, ) in cases 1), 2), 3) from
the foregoing Theorem 1 holds, will be called strongly conjuga=-
te points of the bundle (S) of solutions with a corresponding
multiplicity v = 1, or vV = 2, or V= 3,

Besides the zeros of solution Y(t) of (1) coinciding with the
zeros of the function u{t) there may exist further zeros of
this solution, namely the weakly conjugate points of the bundle
(S) of the solutions Y(t) relative to (l1). About their existen-
ce and multiplicities decide the properties of coefficients
C;€R, i =1,2,3, in the thr§e—perametr1c system of functions

Y*(toclpczlcza) = ; Ciua-i(t)vi-l(t

occuring in the bundle (S).

About the occurence and multiplicities of the weakly con-
jugate points of the bundle (S) of solutions Y(t) relative to
(1) we have (see /3/ again) the following

Theorem 2 : If the bundle (S) of oscillatory solutions
Y(t) relative to (1) has the form

I, Y(t,cl) = Clua(t), c, ¥ 0, then there exist besides the
strongly conjugate points having the multiplicity V= 3,
no other zeros of Y(t) relative to (1).

II. Y(t,C;.C,) = u®(t)[Ciu(t) + Cv(t)] , C, F O, then there
lies between any two neighbouring strongly conjugate
points T, ,T €I, k = 0,%1,%22,... , of the bundle (S) of
solutions Y(t) relative to (1) with multiplicities Y = 2,
exactly one weakly conjugate point of the bundle (S) of
solutions Y(t) with multiplicity u= 1,

IIL. Y(£,C;.C,.C5) = u(t)[C u?(t) + Czu(t)v(t) + cv¥(n)]

C; # O, and
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a)

b)

c)

if Cg - 4ClC3 > 0, then there always lie exactly two
distinct weakly conjugate points, both with multiplici=-
ty 4 = 1, between any two neighbouring strongly conju=-
gate points T, ,T €I, k= 0,%¥1,%+,... , of the bundle
(S) of solutions Y(t) relative to (1) with multiplici~
ties V = 1

if cg - 40103 = 0, then there always lies exactly one
weakly conjugate point with multiplicity # = 2 between
any two neighbouring strongly conjugate points Tyr
Te1 €I, k = 0,21,22,... , of the bundle (S) of solu-
tions Y(t) relative to (1) with multiplicities V = 1

if Cg = 4ClC3 < 0, then the bundle (S) of solutions
Y(t) relative to (1) has no weakly conjugate points =
all its zeros are strongly conjugate with multiplicity
y =1,

For short we denote by yi(t), i =1,2, two arbitrary li-

nearly i
which is
tion u(t
Theorem
lative t

ndependent oscillatory solutions of (2), either of
besides linearly independent of the oscillatory solu-
) of this equation. With respect to the foregoing
2, the bundle (S) of all oscillatory solutions Y(t) re=-
o (1), vanishing together with the function u(t) at an

arbitrary firmly chosen point toe.I may then be written as

I’
II.

Y(t) = cul(r)
Y(t) = cu®(t)y, (1)

III. a) Y(t) = Cu(t)y;(t)y,y(t)

b) Y(t) = Cu(t)yZ(t)
c) Y(tr) = Cu(t)[yf(t) + yg(t)j .

where C&R - {0} is an arbitrary constant.
Let us next denote by To =t T1 > To two neighbouring strong-
ly conjugate points of the bundle (S) of solutions Y(t) rela-

tive to

(1). It then holds for the position of the weakly
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conjugate points of the bundle (S), i.e. of the zeros of
functions yi(t), i =1,2, on the open interval (To‘Tl) that

3 3
ad I,: To < Tl

. 1 2
ad I1.: 21 < ey < 31y

1 1

1 1 1 1 1 1
ad III.: 8) T o< "t < ", < Ty or T < 7ty <7t < Ty

b) lTo < %y 4171

o) oz
where u(To) = u(Tl) =0, y;(t;) =0,1=1,2, with the superi=

or dindex Y €{1,2§ on the left at the respective zero of soluti-
ons Y(t) of (1) refers to its multiplicity,

The accompanying points of solutions Y(t) relative to the
differential equation (1)

Definitdon:Bya accompanying point of the solution
Y(t) relative to (1) we mean the zero of the derivative Yo(t)
of this solution,

From the assumption that every oscillatory solution y(t) rela-
tive to (2) is continuously differentiable it follows that every
(oscillatory) function of the basis (34) relative to (1) is
also continuously differentiable and consequently so also is
every oscillatory solution Y(t) of this equaticn from the
bundle (S). This evidently implies that the accompanying points
of an arbitrary oscillatory solution Y(t) relative to (1) from
the bundle (S) having the form I,, II. and III. from Theorem 2,
exist,
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Theorem 3: Let t € I be an arbitrary firmly chosen point,

wherein the oscillatory solution Y(t) relative to (1) from the
bundle (S) vanishes together with the solution u(t) of the os=-
cillatory differential equation (2).

Let T; be the first (neighbouring) strongly conjugate point of
the bundle (S) of oscillatory solutions Y(t) relative to (1)
lying on the right from the point t, = To’

I.

II1.

III.

Let Y(t) = Cua(t), where C€ R - {0}, Then, there exist
exactly three distinct accompanying points on the closed
interval <T°.T1). Especially there exists on the open in-
terval (T,,T;) exactly one simple accompanying point and
two additional distinct twofold accompanying points one of
which coincides with the point To and the other coincides
with the point Tl'

Let Y(t) = Cu®(t)y;(t), where CER - {O}. Then, there exist

exactly four distinct accompanying points on the closed in=-

terva].(To,T1>. Especially there exist on the open inter=-
val (To,Tl) exactly two distinct simple accompanying points
and two additional distinct simple accompanying points,

one of which coincides with the point T, and the other co-

incides with the point Tl'

a) Let Y(t) = Cu(t)y;(t)yy(t), where CER - {0]. Then,
there exist exactly three distinct simple accompanying
points on the open interval (To'Tl)' from which no one
coincides with the zeros ty.to,tg # ts, of the functions
y;(t), i = 1,2, ly1ng in the open interval (To‘Tl)‘

b) Let Y(t) = Cu(t)yl(t), where CER - {0]. Then, there
exist exactly three distinct simple accompanying points
on the open interval (To'Tl)' the middle of which coin-
cides with the twofold zero tl of the function yl(t).

c) Let Y(t) = Cu(t)[yl(t) + yz(t)]; where Ce R ={0}. Then,
there exists at least one accompanying point on the
open interval (T°,T1). If besides yla(t) + y (t) <
< q(t)[yl(t) + yz(t)], then there exists exactly
one simple accompanying point,
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Proof., In I,, II. and III, instead of bundles there will
be considered solutions Y(t) relative to (1) only and this
without introducing arbitrary multiplicative constant C<R {Oi.

Ad I,

Ad.II.

Since Y(t) = ua(t), the function Y“(t) = 3u2(t)u’(t)
vanishes on the closed interval ('To.Tl) together with
the function u(t) at both boundary points TO,T1 of this
interval and this with multiplicity M= 2, In addition
to both these zeros there exists exactly one zero of the
function u”(t) in the open interval (ToeTy) with multi-
plicity /4= 1, Hence, there lie exactly three distinct
zeros of the function Y (t) on the closed 1nferv51
(ToeTyoe

Since Y(t) = uz(t)yl(t), the function Y°(t) =

= u(t)[2u"(t)y () + u(t)yi(t)]. As the function y,(t)
is an arbitrary solution of (2) linearly independent of
the solution u(t) of the same equation, then the simple
zero t; of the function yl(t) lies on the open interval
(To.Tl), because - by Sturm”s theorem - all zeros of two
oscillatory linearly independent solutions of the same
2nd order differential equation mutually separate.

Thus the derivative Y“(t) vanishes on the closed inter=-
val<{T,,T;) at both neighbouring zeros T,,T; of the
function u(t) with multiplicity Yy = 1 on the one side,
and vanishes both on the open interval (To.tl) and on
the open interval (tl,Tl) at the points with multipli~
city #.= 1 on the other side., This fact follows from
Rolle’s theorem applied to the function Y(t), which is
continuous on either of the closed intervals ("l'o.t1 )
{tl,Tl) and differentiable on both open intervals
(Tyety)s (t3.T;), whereby Y(T ) = Y(t;) = Y(T;) = 0.

Denote by Y (t) = u(t)F(t), where
F(t) = 2u”(t)y;(t) + u(t)y (t) .
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To prove the existence of exactly one simple zero of the
function F(t) on the open interval (To.tl), let us pro=-
ceed from the equation

2u”(t)y;(t) + u(t)yj(t) = 0.
Since for all te¢ (To,tl) it holds u(t)yl(t) ¥ 0, we may
write

u(:)yl(t)['z ue) , xi(8) ] =0.

u(t) Yl(t)

For the first derivative f (t) of the function

f(t) = 2 2;1&1 + xi‘ﬁl
u(t)  yy(t)

we have
£°(t) = 2 u (tlu(tl - 0’2(41 Yl(t)Yl(t) - Yl (t)
u (t) ) Yl(t)

which may be written with respect to (2) as

2 2
-2 9(t)u (t) «u3(e) _a(t)yy(t) + yy(t)
u?(e) %183

f7(t) =

Hence, in assuming that q(t) > O on the interval

I= (-~-00, +eo), we see that f°(t) < O on the open in-
terval (To,tl). The function f(t) is thus decreasing

on the interval (To.tl), whereby

lim f(t) = + o= and lim f(t) = ==°
+ -
t—?To . t~qt1

(because both | lim y_{(t) (v‘pand|1im U'(t)<oo)'
Ty, (1) lb»ti u(t)
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Thus there existe exactly one zero of the function f(t)
with multiplicity #’= 1 on the open interval (To,tl).
Likewise we could prove the existence of exactly one
simple zero of the function F(t) also on the open inter-
val (tl,Tl). Hence there exist exactly four distinct ze-
ros of the function Y°(t) on the closed interval (TO,T1>.

Ad III, 8) Since Y(t) = u(t)y;(t)yp(t), then
YO(t) = uT(t)y(t)y,(t) + u(t)yg(t)yy(t) + u(t)y (t)ys(t).

It holds for the simple zeros tl'tzé(Tb'Tl)' t ] to,
of the functions y;(t), y,(t) - of two linearly indepen-
dent solutions relative to (2) - that either ty £ t,
or t, < t; . Let us consider only the first case regar-
ding the mutual position of the points t;,t, (for

ty Lty we would proceed entirely analogous). These two
points separate the closed interval <TB'T1> into three
closed intervals (T .t; ) . {ty.ty >4 {t5, T3> . The
function Y(t) is on each of them continuous, it is dif-
ferentiable on the open intervals (To.tl), (tl,tz).
(tz,Tl), whereby

Y(To) = Y(tl) = Y(tz) = Y(Tl) =0,

So, by Rolle’s theorem there exists at least by one ze-

ro of the function Y (t) on every open interval (To,tl),
(tl,tz), (t2,T1).

To prove the existence of exactly one simple zero of the
function Y“(t) on the open interval (Ty.t3), let us pro-
ceed from the equation

U (t)y (t)yo(t) + u(t)yi(t)y () + u(t)y;(thys(t) = o.

Since for all t€ (T ,t;) we have u(t)y;(t)y,(t) # 0, we
may write
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. y1(t) yo(t)
u 1 2

For the lst derivative g (t) of the function

o(t) = ul(s) y1(t) . yo(t)

u(t) y(t) ya(t)
it holds .
" _ 42 yi(t)y () = y1°(t)
g(t) = u"(tlu(t) - u “(t) + 1
ué(t) va(t)

L Ya(0)ya(n) - y32(t)
vg(t)

which with respect to (2) may be written as

g°(t) = - Q(t)uz(t%>+ u3(t) _ a(t)y3(t) + yi3(t) _
u©(t) Y?it)

a(t)ya(r) + yz2(r)

2 o

Yz(t)
Thus, in assuming that q(t) > 0 on the interval I = (-o<,
+o2), it holds g“(t)< O on the open interval (Tyety)e The
function g(t) is decreasing on the interval (To,tl).whereby

lim g(t) = +oo and lim g(t) = =oo
t-Tg t-t]
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(because |[lim yi(t) . |1im Yé(t) ,
4Ty, (1) =Ty (1) <L o=
lim .E:‘El lim Yé{fl - e

t-t] u(t) < = t-t] y,(t)

Consequently there exists exactly one zero of the function
g(t) with multiplicity = 1 on the open interval (To'tl)‘
Completely analogous we could prove the existence of exactly
one simple zero of the function g(t) both on the open interval
(tl,tz) and on the open interval (t2,T1).

Hence there lie exactly three distinct zeros of the function
Y“(t) with multiplicity /##= 1 on the open interval (TgeTy)
mutually separating with the zeros tyety of the functions
y;(t) and y,(t).

b) Since Y(t) = u(t)yf(t). then

Y7(r) = y () [u )y () + 2u(t)yj(t)] .

It is readily seen that the function Y°(t) vanishes together
with the function yl(t) at its zero t;¢ (To.Tl) and this with
multiplicity 4 = 1., The point t divides the closed interval
<T0'T1> into two closed intervals (To,tl » and { t.7; > o The
function Y(t) is continuous on either of them and is differen-
tiable on the respective open intervals (To,tl). (tl,Tl).
whereby

Y(T,) = Y(t;) =Y(T;) =0.

By Rolle’s theorem there lies at least by one zero of the
function Y°(t) on any of the open intervals (To,tl), (tl.Tl).
Denote now Y“(t) = y,(t)H(t), where

H(t) = u’(t)y (t) + 2u(t)yj(t) .
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To prove the existence of exactly one simple zero of the
function H(t) on the open interval (To,tl). let us proceed
from the equation

u(t)y;(t) + 2u(t)yi(t) = 0.,

Since it holds for all te (To,tl) that u(t)yl(t) # O, we may
write

. (t
u(t)yl(t)[ uft). , 2 vile) } =0 .
u(t) Yl(t)

For the 1st derivative h°(t) of the function

h(t) = Y58 2 y1(t)
u(t) yl(t)
it holds
- .2
h(t) = H:l&l&i%l.;_ﬂfzft! .2 yi(t)y (r) =y (¢) ,
u©(t) Y%(t)

which with respect to (2) may be written as

2 2
he(e) = - QLA ¢ uBy ) OO vy

u?(t) G

Thus, in assuming that q(t) > O on the interval I = (=<,
+o<), it holds h’(t) < O on the open interval (To.tl). Conse-
quently, the function h(t) is decreasing on the interval
(To,tl), whereby

lim h(t) = + oo and lim h(t) = =<2
TS t>t]
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(because both (lim vi(t) and [lim u”(t
tsT;_YT(—t;<DO t-,ti:(—i‘)‘)'(” ).

Hence, there exists exactly one zero of the function H(t)
with multiplicity &= 1 on the open interval (To,tl). In ana-
logy to the preceding case could be proved the existence of
exactly one simple zero of the function H(t) on the open in=-
terval (tl,Tl), too.

Consequently there exist exactly three distinct zeros of the
function Y“(t) with multiplicity #/= 1 on the open interval
(To'Tl)' whereby the middle of them always coincides with the
zero t; of the function yl(t).

Let us remark that this case III., b) of the bundle Y(t) - and
the zeros of its derivative Y (t) - is dual to the case II.
of the bundle Y(t) of solutions relative to equation (1).

c) Since Y(t) = u(t) [ y3(t) + y3(t)], then
Yo(r) = uT () [y3(e) + y3(0)] + 2u(t) [y (t)yi(e) +
+ ya(t)yy(t)] .
Let us proceed from the equation
u ()[y3(t) + y3(6)] + 2u(e)[y(t)y () + y(t)y5(t)] = o.

Since it holds for all t¢ (To'Tl) that u(t)[yf(t) +
+ yg(t)] # 0, we may write

RCT y(t)yg(t) + y2(t)yé(t)]- .

u(t) y2(t) + y3(t)

u(e) [y3(t) + y§<t)][

For the lst derivative p“(t) of the function

o(t) = UAE) 2 y1(t)yi(t) + yy(t)yy(t)
u(t) y3(e) + y3(0)
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it holds

. -u' u -u‘zt
P (t) -JJJ:%%};—--J—1 +

2 y12(t) + y52(t) + yi(t)yj(r) + ya(tdy3(e)
+ —— —————
yf(t) + vg(:)

\ [yl(t)yi(t) + ¥, (t)y5(t) ]2

y3(t) + y3(0)

which with respect to (2) may be written as

pT(t) = - AL wi(e) s u?(e

u©(t)

* ’2
s { a0 [y2(6) + y3(6)] - [v32(e) + vy (e

va(e) + ya(t)

£ d rl 2
. [ y1(E)yi(r) + yp(t)yp(t) ] i .
v2(t) + y3(e)

1f yi2(t) + y;2(t) < a(t) [y3(t) + y2(r)] . where a(t) > O,

then p“(t) < 0 on the open interval (T,.T1)e This implies that

the function p(t) is decreasing on the interval (T ,T;).
whereby

lim p(t) = + o= , lim p(t) = ==°

t*T; t#TI
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o2 2 .
L Dy« y5(e) ] )
(because both | lim —— < o and
2
EﬁwT; vy + y3(n)
2 2 .
L [yile) + ya(t) ]
A LB R i
—
BT VI -y < ).
4

Consequently, there exists exactly one zarc of the funciion

p{t} [ and so also the function Y“'(t} lon the opsn interval

(Vg.Ty) with multiplicity h=1,
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SOUHRN

]

PROBvVODNT BODY KESENT JISTE DIFERENCIALNT ROVNICE
4,RADU

vLADIMIR vLEEK

Préce navazuje na pfedchozi autorovy vysledky dosazZené
pri vySetifovédni nulovych bodl oscilatorickych FeSeni itero-
vané diferencidlni rovnice 4, édu,

V préaci jsou studovédny nulové body derivaci redeni se za=-
mérenim na rozloZeni a nésobnosti prdivodnich bod@ v Souvise
losti s polohou nulovych bodd FeSeni uvaZované diferencialni
rovnice,
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PE3OME

COTPOBOJMTEJBHHE TOUKY PEWEHMA OJHOI'O AV$SEPEHLMANBLHOIO
YPABHEHMA 4-TI'0 TIOPAOKA

BIAIVMUP BJIYEK

Pa6oTa Mcxomur u8 pesyaAbTaTOB, AOCTUIHYTHX 8BTOPOM B
NpenuAymeM MUCCIeLOBAHMD HYJIEeBHX TOUYeK KojeOapmuxcs pemeHui
UTEepUPOBAHHOTO aupdepeHUMANBHOr'O YpaBHeHMs 4-r0 NOpAAKa.

B pafoTe M3yyawTcs HYJEeBHe TOYKM NPOUBBOAHHNX 3TUX pelle-

HUk Cc yyeToM passoxXeHMS M KPATHOCTHM CONDOBOIMUTEJbHHX TOUYEK B CBS3M
C NMOJOXeHMeM HYJeBHX TOYeK pemeHuit paccmarpuBaemoro aupdepeH=-
LNaNbHOTO YP&BHEHUS .

Author”s address:

RNDr. Vladimir vléek, CSc.

katedra matematické analyzy

a numerické matematiky prfirodo=-
védecké fakulty Univerzity
Palackého

Gottwaldova 15
771 46 Olomouc, CSSR

AUPO, Fac.r.nat.85, Mathematica XXV, (1986)

- 115 =



		webmaster@dml.cz
	2012-05-03T19:48:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




