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1. Introduction 

Borflvka ([4], [5]) and StanSk ([6] -[8]) investigated a structure of inter­
section of groups of dispersions in two linear second order differential equations, 
where at least one of them was oscillatory. The problem of the present paper is to 
study this intersection in assuming that at least one of those equations is dis-
conjugate. 

2. Basic concepts and lemmas 

Throughout we shall concern ourselves with differential equations of the type 

y'~q(t)y, qeC°(M), (q) 
only. 

A function a e C°(R) is called the (first) phase of (q) if there exist independent 
solutions u, v of (q) such that 

tg a(t) - u(t)/v(t) for t e R - {t; v(t) = 0}. 

If a is a phase of (q), then a e C3(R), a'(0 # 0 for t e R and the coefficient q of (q) 
is uniquely determined by the phase a as: q(t) = -{a, t} - a'2(t), r e R , where 
{a, t) :== a"W(2a'(')) - (3/4) (a*(t)/a'(t))2 denotes the Schwarz derivative of the 
function a at the point t. 

We indicate by <£ the set of phases relative to the equation y" -= — y. This set 
constitutes a group with respect to the composition of functions, whereby e e S 
exactly if 
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tg e(t) = (alt + a12 tg t)/(a2i + a22 tg t)9 (1) 

for all / e R where the expressions on both sides of (1) being meaningful and 
det atj T£ 0. 

Equation (q) is disconjugate if every (nontrivial) solution of this equation has 
one zero at most. Every disconjugate equation (q) is either pure disconjugate or 
specially disconjugate. 

Definition 1 ([2]). Equation (q) is pure disconjugate (specially disconjugate) 
exactly if there exists a phase a of (q) such that 

lim a(f) = 0, lim a(t) = n/2, 
f~>-ao f-+ao 

( lim a(0 = -71/2, lim a(0 = n/2). 

A function XeC3(R), X'(t) # 0 for teR is called the complete dispersion 
(of the 1st kind) of (q) if X(R) = R and X is a solution (on R) of a third order 
nonlinear differential equation 

~{X,t) + X'2 . q(X) = q(t). 

The function X(t) := t + n, t e R, is a complete dispersion of (q) exactly if the 
function q is 7i-periodic. The complete dispersion of (q) is for brevity called the 
dispersion of (q). 

Let S£q(S£q) denote the set of all (increasing) dispersions of (q) constituting 
a group under the rule of composition of functions. Then: 

(i) XeS£q exactly if the function u(X(t))/\l\ X'(t) \ for every solution u of (q) is 
again a solution of (q) on R. 

(ii) Let a be a phase of (q) I := a(R). If Xe S£q, then there exists an g e 6 : 
X(t) = a~^a(l), t e R, and vice versa, if a composite function a~1ea is defined 
on R for a n e e &,e(I) = I, then Xe S£q for X : = a"^a. 

All the above definitions and properties are given in [2], [3]. 
Let Sf a S?l be a subgroup of the group S£\. Conformably with [4], [5] let 

us say that Sf is a planar group if there exists a unique X e Sf to every point 
(t0, x0) e R x R, such that X(t0) = x0. 

Let (q) be an oscillatory equation. It then follows from [ l ] , [4], [5], [7] that 
Sf cz S£\ is a planar group exactly if there exists a phase a of (q) such that Sf = 
= {a"" 1 ^) + a);aeR}. 

Lemma 1. Letting (^ := {e \i0,n/2)l £ e ©, s(0) = 0, s(n/2) = n/2}, then e e ^ 
exactly if 

s(t) = arctg (A tg t), t e (0, n/2), (2) 
with A > 0. 

Proof. (=>) Let e e ^ . Then B = e |(0.«/2)> where se®, e(0) = 0, e(n/2) = n/2. 
Let for e be (1) true with det atj ?- 0. Conditions ^(0) = 0 and s(n/2) = n/2 imply 
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axl = 0 and a22 = 0, respectively. Putting A := a12/a21 then it follows from 
sign e' = 1 that A > 0, hence tg B(t) = A tg t, t e (0, TT/2), whence (2) follows. 

(<=) Let A > 0 and the function e be defined by (2). Then tge(t) == A tg t for 
t e (0, n/2). Let e(t) = e(t) for t 6 (0, n/2) and tg e(0 = Atgt throughout where 
the function tg t is defined and e G C°(R). Then e e ffi, sign e' = 1, e(0) = 0, 
s(n/2) — n/2, hence e e ^ . 

Lemma 2. Le/ (q) be pure disconjugate equation where its phase a satisfies 

lim a(f) = 0, lim a(f) = n/2. (3) 
f~*-00 & f-*-oo 

Then 
<e\ = {a-^arc tg^tga^)) ) ; A > 0}. 

Proof. Let (3) be valid for a phase a of the pure disconjugate equation (q) 
and (Si be defined like in Lemma 2. Then £?\ == a" 1 ®^ := {a-1ea; eGC^} 
and the assertion follows from Lemma 1. 

Corollary 1. Let (q) be a pure disconjugate equation. Then S£\ is a planar group. 
Proof. Let a be a phase of (q) satisfying (3) and (t0, x0) e R x R. With reference 

to Lemma 1 it suffices to show the existence of exactly one number A > 0: 
a~*(arctg(A tga(f0))) = xQ. It becomes evident that only positive solution of the 
last equation is the number A : = (tg a(x0))/(tg a(t0)). 

Example 1. Let k > 0. The equation 

f = k2y (4) 

has independent solutions ekt, e~kt, hence the function ot(t) := arctg (e2kt), teR 
is its phase. On account of the fact that (3) is valid for a, we see that equation (4) 
is pure disconjugate, further, a-1(r) = (l/2k) In (tg t) for te(0,n/2), and so for 
A > 0 we have a_1(arctg (A tg a(t))) = (1/2/k) In (Ae2kt) = (In A)/2k + t, whence, 
with respect to Lemma 2, J£\2 = {t + c; c e R}. 

Lemma 3. Letting ©2 = (e| (_7r/2j7l/2); e e (£, e( -xc/2) = —TI/2, e(7i/2) = n/2} 
yields s e (£2 exactly if 

s(t) = arctg (A tg t + B), t e (-n/2, n/2), (5) 

where A > 0, B are numbers. 
Proof. (=>) Let s e (£2, whereupon e(0 = e(f) for t e (-n/2, n/2), with e e (£, 

e(-7r/2) = -TT/2, e(7c/2) = 7c/2. Since tge(/) = ( a u + «12tg0/(«2i + ^22 tg 0, 
where det a0- ?-= 0, the conditions s( — n/2) = —TI/2, e(7r/2) = n/2 imply a22 = 0. 
a12/a21 > 0. Putting A := a12/a21, B := axl/a2l, then tge(t) = A tg t + B, 
which shows that (5) is valid. 

(<=) Let s be defined by (5), where A > 0, B are numbers. Then signs' = 1, 
tgs(t) = Atgt + B. Thus there exists an ee(£: s(-n/2) = -TT/2, e(;i/2) = rc/2 
and e(t) = s(t) for te(-n/2, n/2), whence as a necessary consequence, ee(£2 . 
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Lemma 4. Let (q) be a specially disconjugate equation with a being its phase 
which satisfies 

lim a(0 = -n/2, lima(0 = rc/2. (6) 
f-> — oo f-+oo 

^«+ = {oT^arctg (A tg a(0 + B)); A(> 0), B e R}. (7) 

Proof. Let a be a phase of the specially disconjugate equation (q) satisfying (6) 
and (&2 be defined like in Lemma 3. Then S£\ = a" 1 ®^ := {a^ea; ge6 2 } . 
The assertion immediately follows from Lemma 3. 

Lemma 5. Let (q) be a specially disconjugate equation with a being its phase which 
satisfies (6). Then Sf is a planar subgroup of the group S£* exactly if 

Sf = {a"x(arctg (tg a(t) + b)); b e R}. (8) 

Proof. (=>) Let Sf be a planar subgroup of the group ~SP* and Al9 A2, Bx> 
B2eR,0 < Ax < A2. Putting Xt(t) : = a^a rc tg (At tg a(0 + Bt)), t e R, t = 1,2, 
then, by Lemma AX{^S£^, Xx ^ X2 and there exists one and only one t0 e 
e(-~n/2, n/2): Xx(t0) — X2(t0). Consequently, Xi?X2 do not simultaneously 
belong into Sf. Since idR e Sf, we see that (8) holds. 

(<=) If Sf is defined by (8), then with respect to Lemma 4 Sf <=. S£* and it can 
be easily verified that Sf is a planar group. 

Corollary 2. Lel (q) &e a specially disconjugate equation having a n-periodic 
coefficient q and Sf be a planar subgroup of the group S£q and X0(t) : = t + n9 

t e R. Then X0 e Sf. 
Proof. The function X0 is the dispersion of (q) and therefore X0eif^. Let 

X0^Sf and a be a phase of (q) satisfying (6). From Lemmas 4 and 5 follows then 
the existence a positive number A # 1 and a number B: a~ ^arctg (A tg a(0 + B)) = 
= t + n for 16 R. Putting p(0 : = a"" 1(SiTctg t), t e R, yields from the last equality 
that p(At + B) = p(0 + n, t e R. If we put t : = -B/(A - 1) in the last equality, 
we obtain p( — B/(A - 1)) = p(-B/(A - 1)) + n, which leads to a contradiction. 

Remark 1. It follows from Corollary 1 and Lemma 5 that every disconjugate 
equation (q) has exactly one planar group of increasing dispesions. 

Example 2. Equation 
y" = 0 (9) 

has independent solutions 1 and t, and the function a(0 : = arctg t, t e R, is clearly 
its phase. The phase a satisfyies (6), hence equation (9) is specially disconjugate. 
It follows from Lemma 4 that S£0 = {At + B; A(> 0), BeR} and from Lemma 5 
and Remark 1 we find that Sf : = {/ + C; C e R} is the only one planar sub­
group of the group Sf£. 
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3. Main results 

Theorem 1. Let (p), (q) be pure disconjugate equations. Further, let a phase a 
of (q) and a phase P of (p) satisfy 

lim a(t) = lim p(t) = 0, lim a(0 - lim p(t) = TT/2. (10) 
f-+-oo f-»-co f-+ao .-»oo 

p(t) = arctg (C(tg a(/))*), r eR, (11) 

witA k, C being positive number. 
Proof. (=>) Let (10) hold for phases a and P of the pure disconjugate equations 

(q) and (p), respectively. Let J^* = JS?+. Then, with respect to Lemma 2, there 
exists to every positive number B a positive number A = A(B): 

a-^arctg (A tg a(/))) = jTx(arctg (B tg p(t)))9 t e R. (12) 

Putting s(t) : = tg (a^""1 (arctg t)))9 t e (0, oo), yields s e C3(R), s(t) > 0, s'(i) > 0 
for t e (0, oo). On making use of the function s enables us to write (12) as 

As(t) = s(Bt)9 t e (0, a)), (13) 

whence it follows that the function A = A(B) has a continuous derivative on 
(0, oo). Differentiating (13) first with respect to the variable t and then with respect 
to the parameter B we gQt 

As'(t) = Bs'(Bt), 

A's(t) = ts'(Bi)9 

whereupon 
(BA'(B))IA(B) = (ts'(t))/s(t), t9Be (0, oo). 

Then there necessarily exists a k > 0: 

s'(t)ls(t) = k/t, t e (0, oo), 

hence s(t) = Ctk
9 where C > 0. According tg(a(/T3 (arctg 0)) = C** whence (11) 

immediately follows. 
(<=) Let (10) and (11) hold for phases a and P relative to equations (q) and (p), 

respectively, with k > 0, C > 0. Then P"\t) = a~x(arctg (\/(l/C)tgt)) for te 
e (0, n/2) and for B > 0 we obtain 

P~1(arctg(BtgP(t))) = a - V c t g C B ^ t g a W ) ) -
= a-x(arctg(A.tga(0)), 

where A := B1/fc. From this and from Lemma 2 it follows that J^+ = ^ + . 

Example 3. Let k > 0 and (p) be a pure disconjugate equation. Then the func­
tion a(t) : = arctg (e2kt), t e R, is a phase of equation (4). Let kx > 0, C > 0 and 
j8(0 : = arctg (C(tg a(0)fci)5

 t e R- Then j8(0 = arctg (Ce5*) with s : = 2fcfei and so 
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tg p(t) = Ce5'. Then -{tg p(t), t) = s2/2. Thus, with respect to Theorem 1, jSf£ = 
= oSf+ is satisfies for a pure disconjugate equation (p) exactly ifp(f) = const (> 0). 

Theorem 2. Let (q) be a pure disconjugate equation and a be its phase satisfying (3). 
Let (p) be an oscillatory equation. Then J£P+ c= j£?+ exactly if the function 

p(t) = kln(tga(t))9 feR, (14) 

with k > 0, is dra increasing phase of (p). 
Proof. Let if+ c j£? + . j ^ + is a planar group by Corollary 1 and there exists 

a phase px of (p), sign p[ = 1: 

K = {Pll(Pi(t) + a);aeR}. 

It follows from Lemma 2 that there exist to A > 0 a unique number d = a(A) > 0: 

a '^arctg (A tg a(t))) = p^1(P1(t) + <0, ' e R. (15) 

Setting s(t) := jg1(a~1(arctg /)), fe(Q, oo), yields seC3(0, oo), s'(t) > 0 for t e 
e(0, co). On making use of s enables us to write (15) as 

s(At) = s(t) + a, t e (0, co). (16) 

From this it follows that the function a = a(A) has a continuous derivative on 
(0, oo). Differentiating (16) first with respect to the variable t and then with respect 
to the parameter A gives 

As'(At) = s'(t), 
ts'(At) = a'(A), 

whence 
ts'(0 = Aa'(A), t,Ae (0, oo). 

So there exists a k > 0: f$'(0 = k and we have s(t) = fcln t + C, where C e R 
Then ^(a^farctg *)) = fc In * + C and pt(t) = fc In (tg a(f)) + C. Setting 0(f) : = 
:= px(t) — C, t e R, then j? is an increasing phase of (p) and (14) holds. 

Conversely, let p be defined by (14) with k > 0 being a phase of (p). Since 
P(R) = R, we can see that (q) is an oscillatory equation. Next we have 

P~i(t) = a-^arctge^) , t e R5 

and for a e R 

/ T W O + *) = a"1(arctg«(1/*)(* ln(^)+fl))) = 
= a_1(arctg(Atga(t))), 

where A := ealk. This implies JS?+ = {P~\p(t) + c ) ; c e R } c ^ + . 

Example 4. Let (p) be an oscillatory equation and «Sf+2 c JS?+ with ifc > 0. 
It follows from Example 1 that the function a(0 : = arctg e2k\ t e R, is a phase 
of equation (4) satisfying (3). And then there exists by Theorem 2afcj > 0 such 
that the function pt(t) : = kt In (tg a(0), t e R, is a phase of (p). Since &(*) = 
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= kt In (tg (arctg e2kt)) = 2kkxt = Xt, where X := 2kkx(> 0), we get p(t) = 
- -{Pi> *) - Pi2® = ~;t2- Suppose that k2 > 0 and J?2(0 : = ^ ln (tg a(0> 
(= 2kk20, teR. Then - { 0 2 , t) - j32

2(0 = -4k 2 k i , whence, with respect to 
Theorem 2, $£# c if* for an oscillatory equation (p) exactly ifp(0 = const (< 0). 

Remark 2. It follows from Examples 3 and 4 that equations y" = Xy, X ^ 0, 
have a planar group of dispersions $f = {f + c; c e R} in common. 

Theorem 3. Le* (p), (q) be specially disconjugate equations with $f p and Sfq being 
planar subgroups of the groups $£* and $fq, respectively. 
Then $fp = Sfq exactly ifp = q. 

Proof. Suppose that $fp = $fr Let a and fi be respectively phases of (q) and (p) 
satisfying 

lim a(0 = lim /?(*) = -rc/2, lim a(0 = 11m jS(0 • fl/2. 
r-> —oo r-*-oo f-*oo i->oo 

It then follows from Lemma 5 that there exists to every number A a unique 
number B = B(A) such that 

a"x(arctg (tg a(0 + -4)) = jT 1 (arctg (tg p(t) + B)), t e R. (16) 

Setting s(t) := tg (p(a~l (arctg 0)), teR, gives seC3(R), s'(0 > 0 for teR and 
(16) may be written as 

s(t + A) = s(0 + B, teR. (17) 

From this we get B e C3(R) and differentiating (17) first with respect to the variable t 
and then with respect to the parameter A gives 

s'(t + A) = s'(0, 
s'(t + A) + B'(A). 

Thus B'(A) = s'(t) and s'(0 = k for t e R with k > 0. This yields s(0 = kt + c, 
where ceR. From the definition of the function s we obtain /?(/) = arctg (k tg a(0 + 
+ c) and a calculation shows that /? is a phase of (q). Therefore p = tf. 

Contrawise the proof becomes evident. 

Theorem 4. Let (p) be a pure disconjugate equation and (q) be a specially dis­
conjugate equation. Let $fq be a planar subgroup of the group SPq. Let a and ft be 
phases of(q) and (p) satisfying (6) and lim /?(t) — 0, lim p(t) = n/2, respectively. 
Then JS?+ = 5% exaet/j ?f f-*"°° r"*°° 

j8(0 = arctg (ce*tga(,)), teR, (18) 

wtYA e, k being positive constants. 
Proof. (=>) Suppose that $ep = $fr It then follows from Lemmas 2 and 5 

that there exists to every number A a unique positive number B = B(A): 

oTHarctg ( t g a(t) + A)) = /T'(arctg (5 tg /*(/))), * e R. (19) 
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Setting s(t) := tgCSfa-^arctg 0)), * e R > &en se C3(R), s(t) > 0, s'(0 > 0 for 
t e R and (19) may be written as 

s(t + A) = Bs(t)9 *eR, (20) 

from which we find that B e C3(R) and differentiating (20) first with respect to the 
variable t and then with respect to the parameter A gives 

sf(t + A) = B(A)s'(0? 

s'(t + A) = B'(A) s(t). 

Then B'(A)/B(A) = s'(t)/s(t) and thus s'(t)/s(t) = it, t e R, with fc being a positive 
number. From this we get s(t) = cek\ where c is a positive number and we see 
that (18) is valid. 

(<=) Suppose that (18) is valid for phases a, $, with c, fc being positive numbers. 

Then jT *(*) = a"1 farctg f—• In (— tg t Jj J for r e (0, TT/2) and for B > 0 

j8"1(arctg(BtgiS(0)) = cTM arctgf-i(lnB + fctga(i))Jj = 

= a-^arctgftga^) + ^ ) , 

where A := (in B)/fc. From this and from Lemma 5 we get 5£q = ,9%. 

Theorem 5. Let (q) £e a special disconjugate equation and (p) be an oscillatory 
equation. Let a be a phase of (q) satisfying (6) and Sfq be a planar subgroup of the 
group gq. Then Sfq cz g+ exactly if 

/ » ( / ) : - * tga (0 , ^ R , (21) 

(where k is a positive number) is an increasing phase of (p). 
Proof. (=>) Suppose that &>q c= £*. Then there exists an increasing phase j?A 

of (p): &>q = {PiX(Pi(t) + a); aeR}. It then follows from Lemma 5 that there 
exists to every number A a unique number B = J?(,4) 

a'Harctg (tg <x(t) + A)) = PTx(Px(t) + £), t e R. (22) 

Setting s(0 : = ^(cT^arctg *)), t e R, then s e C3(R), s'(t) > 0 for t e R and (22) 
may be written as 

s[t + A) « s(0 + 5(4), t, A[ e R, (23) 

whence as a necessary consequence _# € C3(R). Differentiating (23) first with respect 
to the variable t and then with respect to the parameter A yields 

s'(t + A) = s'(t), 

s'(t + A) « £'(,4), 

which establishes the existence of fc > 0: s'(0 *• fe. Thug for an a e R we have 
s(t) m kt + a, t e R. Then ^ ( a ^ a r c t g t)) = fct + a, whence jg-X*) « k tg a(0 + 
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+ a. Setting /?(*) : = Px(t) - a, t e R, then )3 is an increasing phase of (p) having 
the form (21). 

(<=) Let the function ft defined by (21) with fc being a positive number, be an 
increasing phase of (p). Since /?(R) = R, we see that (p) is an oscillatory equation. 
Next we have p~%(t) = <x~ * (arctg (f/fc)) and for Be R 

P~l(P(t) + B) - a-^arctgCtgaW + A)), 

where .A : = B/k, whence as a necessary consequence of Lemma 5 $fq cz &+, 

Example 5. The function a(t) : = arctg t, t e R, is a phase of the specially dis-
conjugate equation (9) satisfying (6). $f : = {t + a\ a e R} is a planar subgroup 
of the group J2?+. Let fc > 0 and j3(0 : = fc tg <x(t) (= fct), * e R. It then follows 
from Theorem 5 that $f <ZL $e*, where (p) in an oscillatory equation exactly if 
p(t) : = — fc2, teR, where fc is a positive number. 

Example 6. Equation 
It2 — 1 f = _ĵ f L y (24) 

' (1 + t2)2 y K } 

has a phase a(0 : = arctg (t + /3/3), ? e R, satisfying (6), hence it is specially dis-

conjugate. Since a"x(t) - y]y tg * + /— tg2 t + 1 + ^ y tg t - /^- tg2 f + 1, 

t e (-n/2, n/2)9 we see that by Lemma 5 $P : = 

f/łK+вWтK+вJ + 1 + 

+ УłK^WтK*')'*1""} 
is a planar subgroup of the group of dispersions of equation (24). Following Theo­
rem 4 $f = if+, where (p) is a pure disconjugate equation exactly if p(t) : = 
: = arctg (ce*( f+'3/3)), teR, with c > 0, fc > 0, is a phase of (p). Following 
Theorem 5 y c i ? + , where (r) is an oscillatory equation exactly if y(t) : = 
: = k(t + *3/3), f e R, is an increasing phase of (r). 
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SPOLEČNÉ ROSTOUCÍ DISPERSE JISTÝCH LINEÁRNÍCH 
DIFERENCIÁLNÍCH ROVNIC DRUHÉHO ŘÁDU 

Souhrn 

Funkce Xe C3(R), X'(t) > 0 pro t e R, se nazývá (úplná) rostoucí disperse rovnice (q): q" = 
— q(t) y> q £ C°(R), jestliže X(R) = R a I j e řešením rovnice 

-{X,t} + X'1 q(X) = q(t\ 

kde {X, t} = X,,ř(t)((2XXt)) - (3/4) (X"(t)(X'(t))2. Množina rostoucích dispersí rovnice (q) tvoří 
vzhledem k operaci skládání funkcí grupu &f. Nechť (q) je diskonjugovaná rovnice. Pak SČ+ 
je nejvýše dvouparametrická spojitá grupa. Užitím teorie fází pro lineární diferenciální rovnice 
druhého řádu jsou v práci uvedeny všechny rovnice typu (p): y" — p(t) y, p e C°(R), které jsou 
buď diskonjugované, anebo oscilatorické a pro které platí JšPjJ" c: -šfj, 

СОВМЕСТНЫЕ ВОЗРАСТАЮЩИЕ ДИСПЕРСИИ 
НЕКОТОРЫХ Л И Н Е Й Н Ы Х Д И Ф Ф Е Р Е Н Ц И А Л Ь Н Ы Х 

УРАВНЕНИЙ ВТОРОГО ПОРЯДКА 

Резюме 

Функция ХеС3(11), Х'(1) > 0 для *еК, называется возрастающей (полной) дисперсией 
уравнения (^) : у" — ^(()у, ^ е С°(К), если Х(К) = Е и решением уравнения 

-{X, !}+Х'2.д(Х)=д(0, 

где {X, (} = а'"(1)/(2а'(1)) — (3/4) (<х"(01х'(0)2- Множество возрастающих дисперсий уравне­
ния (^) является относительно операции сложения функций группой У%. Пусть (ц) уравнение 
без сонпяженных точек. Тогда №% наиболее двухпараметрическая непрерывная группа. С по­
мощью теории фаз линейных дифференциальных уравнений 2-ого порядка приводится 
в работе все уравнения типа (р) : у" = р(()у, Р е С°(К), которые или без сонряженных точек 
или колеблющиеся и для которых имеет место ^^ а Ы?Х . 
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