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1. Iniroduction

Borivka ([4], [5]) and Stan&k ([6]—[8]) investigated a structure of inter-
section of groups of dispersions in two linear second order differential equations,
where at least one of them was oscillatory. The problem of the present paper is to
study this intersection in assuming that at least one of those equations is dis-
conjugate.

2. Basic concepts and lemmas

Throughout we shall concern ourselves with differential equations of the type
YV =4q0y, qeCR), @

only.

A function a € C°(R) is called the (first) phase of (q) if there exist independent
solutions u, v of (q) such that

tga(t) = u(@®)/v(f) for teR — {t; v(?) = 0}.

If a is a phase of (q), then a € C3(R), a'(#) # O for ¢ € R and the coefficient g of (q)
is uniquely determined by the phase o as: g(f) = —{a, t} — a'%(t), t € R, where
{a, 1} 1= &’ ()]’ (D)) — (3/4) (2"(H)/'(£))? denotes the Schwarz derivative of the
function « at the point ¢, .

We indicate by € the set of phases relative to the equation y* = —y. This set
constitutes a group with respect to the composition of functions, whereby ¢ e &
exactly if
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tg E(t) = (all + a, tg t)/(021 + a,, tg t), (1)

for all e R where the expressions on both sides of (1) being meaningful and
det a;j # 0.

Equation (q) is disconjugate if every (nontrivial) solution of this equation has
one zero at most. Every disconjugate equation (q) is either pure disconjugate or
specially disconjugate.

Definition 1 ([2]). Equation (q) is pure disconjugate (specially disconjugate)
exactly if there exists a phase o of (q) such that

lim a(t) =0,  lima(t) = n/2,

T~ t— o
(lim «t) = —=nj2, lim ot) = n/2).
t—= — o0 -0

A function X e C3(R), X'(¢) # 0 for teR is called the complete dispersion
(of the 1st kind) of (q) if X(R) = R and X is a solution (on R) of a third order
nonlinear differential equation

—{X, 1} + X'*.q(X) = q(0).

The function X(¢) := ¢ + =, t€ R, is a complete dispersion of (q) exactly if the
function q is m-periodic. The complete dispersion of (q) is for brevity called the
dispersion of (q).

Let .?‘I(S’q+ ) denote the set of all (increasing) dispersions of (q) constituting
a group under the rule of composition of functions. Then:

(i) X € Z, exactly if the function u(X(t))/\/ | X'(2) | for every solution u of (q) is
again a solution of (q) on R. '

(ii) Let « be a phase of (q) I:= a(R). If Xe.%,, then there exists an ¢ E:
X(t) = o 'ea(s), te R, and vice versa, if a composite function a™'ex is defined
on R for an e€ §,e(I) = I, then Xe £, for X := o e

All the above definitions and properties are given in [2], [3].

Let & = £, be a subgroup of the group &,". Conformably with [4], [5] let
us say that & is a planar group if there exists a unique X € & to every point
{t0, xo) € Rx R, such that X(z,) = x,.

Let (q) be an oscillatory equation. It then follows from [1], [4], [5], [7] that
& < %, is a planar group exactly if there exists a phase « of (q) such that & =
= {a"'(«(t) + a); ae R}.

Lemma 1. Letting €, := {&|(0,n2); €€ €, £(0) = 0, &(n/2) = 7/2}, then ¢ e €,
exactly if
&(t) = arctg (4 tg1), te(0, n/2), V)
with A > 0.
Proof. (=) Let 6 € €. Then & = &|(g,z/2), Where e € €, &(0) = 0, &(n/2) = =n/2.
Let for € be (1) true with det a; ; # 0. Conditions &(0) = 0 and 8(“/2) = 7/2 imply
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a;; =0 and a,, = 0, respectively. Putting A4 := a;2/a,; then it follows from
signg’ =1 that 4 > 0, hence tg&(t) = Atgt, te(0,7n/2), whence (2) follows.

(<=) Let 4 > 0 and the function & be defined by (2). Then tge(f) = Atgt for
te (0, /2). Let &(t) = &(t) for t € (0, n/2) and tge(f) = Atgt throughout where
the function tg¢ is defined and ee C°(R). Then ¢€ €, signe’ =1, &0) = 0,
&(nf2) = m/2, hence ¢ € €.

Lemma 2. Let (q) be pure disconjugate equation where its phase o satisfies

lim oft) = 0, lim o(t) = 7/2. 3)
t—+—o0 “ t=c0

Then
Ly = {a (arctg (4 tg (1))); A > 0}.

Proof. Let (3) be valid for a phase « of the pure disconjugate equation (q)
and €, be defined like in Lemma 2. Then &, = a 'Ga := {a"'en; € E,}
and the assertion follows from Lemma 1.

Corollary 1. Let (q) be a pure disconjugate equation. Then &£, is a planar group.

Proof. Let a be a phase of (q) satisfying (3) and (¢4, Xo) € R x R. With reference
to Lemma 1 it suffices to show the existence of exactly one number 4 > 0:
o™ arctg (4 tg aty))) = x,. It becomes evident that only positive solution of the
last equation is the number A4 := (tg a(x,))/(tg a(ty))-

Example 1. Let k > 0. The equation
" = k*y 4)

has independent solutions ¢*', e™*, hence the function «(f) := arctg (e**), te R
is its phase. On account of the fact that (3) is valid for a, we see that equation (4)
is pure disconjugate, further, a~1(f) = (1/2k) In (tg ¢) for t e (0, n/2), and so for
A > 0 we have o~ Y(arctg (4 tg a(r))) = (1/2k) In (4e**") = (In A)/2k + t, whence,
with respect to Lemma 2, %}, = {t + ¢; ce R}.

Lemma 3. Letting €, = {&] /2,025 €€€, &( -7/2) = —n/2, &(n/2) = n/2}
yields ¢ € €, exactly if

&) = arctg (Atgt + B), te(—n/2,n/2), ®)

where A > 0, B are numbers.

Proof. (=) Let & € €,, whereupon &(¢) = &(t) for t € (—n/2, n/2), with ¢ € €,
e(—n/2) = —n/2, e(nf2) = nf2. Since tge(t) = (ay, + a;2tg /(@ + a,,tgt),
where det a;; # 0, the conditions &(—=/2) = —7/2, ¢(r/2) = n/2 imply a,, = 0.
ayz/ayy > 0. Putting A4 := ay,/a,y, B:= a, /a,,, then tge(t) = Atgt + B,
which shows that (5) is valid.

(<=) Let & be defined by (5), where A > 0, B are numbers. Then signé&’ = 1,
tg&(r) = Atgt + B. Thus there exists an ¢ €: ¢(—n/2) = —n/2, &(n/2) = n/2
and e(f) = &) for t e (—=n/2, =n/2), whence as a necessary consequence, & € €,.
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Lemma 4. Let (qQ) be a specially disconjugate equation with o being its phase
which satisfies

lim o(f) = —n/2,  lima(t) = n/2. 6)
Then ’
£y = {a"Yarctg (A tg a(t) + B)); A(> 0), Be R}. )

Proof. Let « be a phase of the specially disconjugate equation (q) satisfying (6)
and €, be defined like in Lemma 3. Then %] = a7 'G,0 := {a™'ax; 2 G,}.
The assertion immediately follows from Lemma 3.

Lemma 5. Let (q) be a specially disconjugate equation with « being its phase which
satisfies (6). Then & is a planar subgroup of the group .S,’; exactly if

& = {a"(arctg (tg a(t) + b)); beR}. (8)

Proof. (=) Let & be a planar subgroup of the group 3’; and 4,, 4,, B,
B,eR,0 < 4, < A4,.Putting X(t) := a ™ Yarctg (4;tg a(t) + B)),teR,i=1,2,
then, by Lemma 4Xie.§€q+ , Xy # X, and there exists one and only one ¢, €
€(—mn/2, 7/2): X, (ty) = X,(to). Consequently, X;, X, do not simultaneously
belong into &. Since idg € &, we see that (8) holds.

(<) If & is defined by (8), then with respect to Lemma 4 & < .S,P; and it can
be easily verified that & is a planar group.

Corollary 2. Let (q) be a specially disconjugate equation having a mn-periodic
coefficient q and & be a planar subgroup of the group £ and Xo(t) :=t + =,
teR. Then X, € &.

Proof. The function X, is the dispersion of (q) and therefore X, e &, . Let
X, ¢ & and o be a phase of (q) satisfying (6). From Lemmas 4 and 5 follows then
the existence a positive number 4 # 1and a number B: o~ *(arctg (4 tga(?) + B)) =
=t + = for t € R. Putting p(f) := o~ (arctg ¢), ¢ € R, yields from the last equality
that p(4t + B) = p(f) + =, teR. If we put ¢ := —B/(4 — 1) in the last equality,
we obtain p(—B/(4 — 1)) = p(—B/(4 — 1)) + =, which leads to a contradiction.

Remark 1. It follows from Corollary 1 and Lemma 5 that every disconjugate
equation (q) has exactly one planar group of increasing dispesions.

Example 2. Equation
y'=0 - ©)

has independent solutions 1 and ¢, and the function a(f) := arctg #, ¢t € R, is clearly
its phase. The phase a satisfyies (6), hence equation (9) is specially disconjugate.
It follows from Lemma 4 that &5 = {4t + B; A(> 0), B € R} and from Lemma 5
and Remark 1 we find that & := {t + C; Ce R} is the only one planar sub-
group of the group #¢.
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3. Main results

Theorem 1. Let (D), (Q) be pure disconjugate equations. Further, let a phase o
of (Q) and a phase P of (D) satisfy

lima(t) = lim f() =0,  lima(t) = lim (1) = 7/2. (10)
- — o0 [ Sndind ] t— o t—> o0
Then £, = £; exactly if
B = arctg (C(tg a(r))"),  t€eR, an

with k, C being positive number.

Proof. (=) Let (10) hold for phases « and B of the pure disconjugate equations
(q) and (p), respectively. Let 2;’ = .‘5; . Then, with respect to Lemma 2, there
exists to every positive number B a positive number 4 = A(B):

a” arctg (4 tg a(r))) = B~ (arctg (Btg (), teR. (12)

Putting s(¢) := tg (u(f~(arctg 1)), ¢ € (0, ), yields s € C3(R), s(r) > 0, s'(t) > O
for ¢ € (0, ©). On making use of the function s enables us to write (12) as

As(t) = s(Bt),  te(0, ), (13)

whence it follows that the function 4 = A(B) has a continuous derivative on
(0, o). Differentiating (13) first with respect to the variable ¢ and then with respect
to the parameter B we get

As'(t) = Bs'(BY),

A's(t) = ts'(BY),
whereupon

(BA'(B))/A(B) = (t5'(1))[s(), ¢, Be(0, ).
Then there necessarily exists a k > 0:
s'(0)/s(r) = kft,  te(0, ),
hence s(f) = Ct*, where C > 0. According tg («(8~'(arctg #))) = Ct* whence (11)
immediately follows.
(<=) Let (10) and (11) hold for phases « and  relative to equations (q) and (p),

respectively, with k& > 0, C > 0. Then B~(f) = a~!(arctg (%/(1/C) tg 1)) for e
€(0, n/2) and for B > 0 we obtain

B~ (arctg (Btg (1)) = o™ (arctg (B* tg a())) =
= o~ !(arctg (4 tg a(?))),

where 4 1= B'* From this and from Lemma 2 it follows that £} = £7.

Example 3. Let £ > 0 and (p) be a pure disconjugate equation. Then the func-
tion () := arctg (e2*), t € R, is a phase of equation (4). Let k; > 0, C > 0 and
B(r) := arctg (C(tg «(1)**), t € R. Then B(z) = arctg (Ce*) with s := 2kk, and so
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tg f(1) = Ce*'. Then —{tg (1), t} = s*/2. Thus, with respect to Theorem 1, £} =
= Sf; is satisfies for a pure disconjugate equation (p) exactly if p(¢) = const (> 0).

Theorem 2. Let (q) be a pure disconjugate equation and o be its phase satisfying (3).
Let (p) be an oscillatory equation. Then £; < .5,”; exactly if the function

B(t) = kIn (tg a(1)), teR, (14)
with k > 0, is an increasing phase of (p).
Proof. Let &, = &, . %, is a planar group by Corollary 1 and there exists
a phase f; of (p), sign f; =1
. = {B7'By(®) + @); aeR}.
It follows from Lemma 2 that there exist to 4 > 0 a unique number a = a(4) > 0:
a” Narctg (A tg (D)) = B (B + @), teR. (15)

Setting s(f) := B;(a"!(arctg #)), te (0, 00), yields s C3(0, 00), s'(z) > 0 for t€
€ (0, o). On making use of s enables us to write (15) as

s(4t) = s(t) + a, t € (0, 00). (16)
From this it follows that the function a = a(4) has a continuous derivative on

(0, o). Differentiating (16) first with respect to the variable ¢ and then with respect
to the parameter 4 gives

It

As'(Af) = 5'(b),
ts'(Af) = a'(A),
whence
ts'(t) = Aa'(A), t, A € (0, ).

So there exists a k > 0: ts'(f) = k and we have s(f) = klnt + C, where Ce R
Then B,(a"(arctgt)) = klnt + Cand B,(f) = kIn (tg «(£)) + C. Setting p(¢) : =
1= B,(#) — C, teR, then B is an increasing phase of (p) and (14) holds.

Conversely, let f be defined by (14) with k > 0 being a phase of (p). Since
P(R) = R, we can see that (q) is an oscillatory equation. Next we have

B~1(t) = o~ Y(arctg e'"), teR,
and foraeR
[)’—l(ﬁ(t) + 11) = ochl(al‘ctg e(l/k)(kln(tqa(t)+a))) —
= o !(arctg (4 tg a(?))),
where A4 := ¢**. This implies &, = {~'(B(t) + ¢); ce R} < zr.

Example 4. Let (p) be an oscillatory equation and %), < .Sf* with k > 0.
It follows from Example 1 that the function a(f) : = arctg 2k, ze R, is a phase
of equation (4) satisfying (3). And then there exists by Theorem 2 a k . > 0 such
that the function B(?) := k, In (tg a(¢)), t € R, is a phase of (p). Since (1) =
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= k, In (tg (arctg e**")) = 2kk,t = At, where 1 := 2kk,(>0), we get p(t) =
= —{B,,1} — Bi%(t) = — 2. Suppose that k, > 0 and B,(t) := k, In (tg «(t))
(= 2kk,t), teR. Then —{B,, 1} — B(t) = —4k*k3, whence, with respect to
Theorem 2, %}, < £, for an oscillatory equation (p) exactly if p(f) = const (< 0).

Remark 2. It follows from Examples 3 and 4 that equations y" = 4y, 1 # 0,
have a planar group of dispersions & = {t + ¢; ¢ € R} in common.

Theorem 3. Let (p), (q) be specially disconjugate equations with &, and &, being
planar subgroups of the groups & ; and & ; , respectively.
Then &, = &, exactly if p = q.
Proof. Suppose that &, = &,. Let a and § be respectively phases of (q) and (p)
satisfying
lim «(t) = lim (t) = —n/2, lim a(t) = lim B(t) = =/2.
t— 00

t= — o0 t= — t—+
It then follows from Lemma 5 that there exists to every number 4 a unique
number B = B(A) such that
a” Y(arctg (tg a(f) + A)) = f~(arctg (tg B(f) + B)), teR. (16)
Setting s(?) := tg (B(a"(arctg 1)), te R, gives s C3*(R), s'(f) > 0 for teR and
(16) may be written as
st + A) = s(t) + B, teR. an
From this we get B € C3(R) and differentiating (17) first with respect to the variable ¢
and then with respect to the parameter A gives
st + A) = s,
§'(t + A) + B'(A).

Thus B'(4) = s'(¢) and s'(¢) = k for ¢t e R with k > 0. This yields s(£) = kt + ¢,

where ¢ € R. From the definition of the function s we obtain B(?) = arctg (ktga(r) +

+ ¢) and a calculation shows that B is a phase of (¢). Therefore p = q.
Contrawise the proof becomes evident.

Theorem 4. Let (p) be a pure disconjugate equation and (q) be a specially dis-
conjugate equation. Let &, be a planar subgroup of the group ..?; . Let a and B be
phases of (q) and (p) satisfying (6) and lim B(:) = 0, lim () = =/2, respectively.
Then ¥, = &, exactly if oo =

B(1) = arctg (c &*8*®),  reR, (18)

with ¢, k being positive constants.
Proof. (=) Suppose that &, = &,. It then follows from Lemmas 2 and 5
that there exists to every number 4 a unique positive number B = B(A):

a”arctg (tg a(t) + A)) = f~(arctg (Btg f(1))), teR. (19)
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Setting s(t) 1= tg (ﬂ(a‘l(arctg t))), teR, then se€ CS(R), s(®) > 0, S'(t) > 0 for
t € R and (19) may be written as

s(t + A) = Bs(1), teR, (20)
from which we find that B e C3(R) and differentiating (20) first with respect to the
variable ¢ and then with respect to the parameter A gives

s'(t + A) = B(4) s'(0),

s'(t + A) = B'(A) s(z).
Then B'(A)/B(A) = s'(t)/s(t) and thus s'(¢)/s(t) = k, t € R, with k being a positive
number. From this we get s(f) = ce*’, where c is a positive number and we see

that (18) is valid.
(<=) Suppose that (18) is valid for phases a, 8, with ¢, k being positive numbers.

Then B~1(f) = o™t (arctg (-,i—ln (% tg t))) for t € (0, n/2) and for B > 0

B~ Y(arctg (Btg (1)) = a~* (arctg (—llc— (InB + ktg a(t)))) =
= a " Y(arctg (tg a(t) + A),
where A := (In B)/k. From this and from Lemma 5 we get 55’; =,

Theorem 5. Let (qQ) be a special disconjugate equation and (p) be an oscillatory
equation. Let o be a phase of (q) satisfying (6) and &, be a planar subgroup of the
group L. Then &, = & exactly if

B@) 1= ktg alp), teR, 20
(where k is a positive number) is an increasing phase of (p).

Proof. (=) Suppose that &, = .?;. Then there exists an increasing phase f,
of (p): &, = {B7'(B1(?) + a); a e R}. It then follows from Lemma 5 that there
exists to every number 4 a unique number B = B(A4)

o~ !(arctg (tg af) + 4)) = By (Bi() + B), teR (22)

Setting s(f) : = (¢~ (arctg 1)), t € R, then se C3(R), s'(t) > 0 for r € R and (22)
may be written as
s(t + A) = s(t) + B(4), t,AeR, (23)

whence as a necessary consequence B € C3(R). Differentiating (23) first with respect
to the variable ¢t and then with respect to the parameter 4 yields

st + A) = 5'(),
s'(t + A) = B'(A4),

which establishes the existence of k > 0: s'(f) = k. Thus for an ae R we have
$(f) = kt + a, t e R. Then B,(a~!(arctg #)) = kt + a, whence B,(¢) = k tga(t) +
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+ a. Setting B(?) := Bi(t) — a, te R, then B is an increasing phase of (p) having
the form (21).

(<=) Let the function g defined by (21) with k being a positive number, be an
increasing phase of (p). Since S(R) = R, we see that (p) is an oscillatory equation.
Next we have B~(¢) = a~(arctg (t/k)) and for Be R

B~'(B(t) + B) = o™ '(arctg (tg a(t) + 4)),
where A := B[k, whence as a necessary consequence of Lemma 5 &, < .%”: .

Example 5. The function a(f) := arctgt, t € R, is a phase of the specially dis-
conjugate equation (9) satisfying (6). & = {t + a; a e R} is a planar subgroup
of the group Z¢. Let k > 0 and B(¢t) := ktga(t) (= kt), t e R. It then follows
from Theorem 5 that & < 3: , where (p) in an oscillatory equation exactly if
pl) := —k?, teR, where k is a positive number.

Example 6. Equation
= 2t~ 1 )
(1 +¢%)?

has a phase a(f) := arctg (¢ + £3/3), t € R, satisfying (6), hence it is specially dis-
3 — 3 e ————
conjugate. Since «~1(f) = \/%tgt+ \/%tgzt +1+ \/-32— tgt — \/—z—tgzt +1,

t € (—n/2, n/2), we see that by Lemma 5 & :=
3

3 £ 9 3 2

= —_ —_— B —_ —_
{\/2 <l+ 3+ )+\/4(t+ 3 +B)+1+
3 3
3 1 9 t3 2
+\/—2~(f+?+3) \/——4—<t+—§~+B) +1;BeR}

is a planar subgroup of the group of dispersions of equation (24). Following Theo-
rem4 & = &£, , where (p) is a pure disconjugate equation exactly if (1) :=
:= arctg (ce*¢**/¥), teR, with ¢ >0, k > 0, is a phase of (p). Following

Theorem 5 & < %, where (r) is an oscillatory equation exactly if y(t) :=
:= k(t + t3/3), t € R, is an increasing phase of (r).

(24)
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SPOLECNE ROSTOUCI DISPERSE JISTYCH LINEARNICH
DIFERENCIALNICH ROVNIC DRUHEHO RADU

Souhrn

Funkce X € C3R), X'(t) > 0 pro t€ R, se nazyva (Gplnd) rostouci disperse rovnice (q): ¢” =
= q(t) y, g € C°(R), jestlize X(R) = R a X je ieSenim rovnice
—{X, 1} + X'? qX) = q(t),
kde {X, 1} = X"()RX'®)) — (3/4) (X"(1)(X’(1))%. MnoZina rostoucich dispersi rovnice (q) tvofi
vzhledem k operaci skladani funkci grupu #£F. Necht (q) je diskonjugovana rovnice. Pak z¥
je nejvySe dvouparametrickd spojita grupa. UZitim teorie fazi pro linearni diferencidlni rovnice
druhého fadu jsou v praci uvedeny vSechny rovnice typu (p): y” = p(t) y, p € C°(R), které jsou
bud diskonjugované, anebo oscilatorické a pro které plati £F < 7.

COBMECTHBIE BO3PACTAOIINE JUCHEPCHN
HEKOTOPBIX JIUHENHBIX JTUOOEPEHIINAJBHBIX
YPABHEHHUU BTOPOTIO NMNOPALKA

Pe3ziome

Dyuwxmsa X € C3(R), X'(1) > 0 mns ¢ €R, raspmBaeTcs Bo3pacTaromeil (OJMHOMN) AwcHepuei
ypasuenus (q) : ¥ = q(t)y, g € C°(R), ecrt X(R) = R u pelueHueM ypaBHEHUs

—{X, 11+ X% . q(X) = q(),

rae {X, t}= a"’(t)/2x'(2)) - (3/4) (" (2)/2’(¢))?. MHOXECTBO BO3PACTAIOIIMX AUCIEPCHIl ypaBHE-
Hus (q) SIBNACTCS] OTHOCHTENBHO OIePaLMy ClIoKeHus dyHKumit rpynmoit &7 . TycTs (q) ypasHeRue
6e3 cormsvkennrix Touek. Torna £} mauGonee mByxuapameTpuyeckas HenpepsBHas rpynna. C mo-
MOUIBIO TEOpHH (a3 JMHEHHBIX JNGODEPEHIMANLHEIX YpaBHEHMM 2-0r0 NOPAAKA NPHBOAWTCH
B paboTe Bce ypasHeHus tHna (p) : y” = p(t)y, p € C°(R), koTopbie uiHk 63 COHPSKEHHBIX TOYEK
W KONeGIIONMeCs: ¥ st KOTOPbIX MMeeT mecto LF < L} .
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