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1. Basic definitions and notations

Let a homogeneous Markov process with rewards {X,, ¢+ = 0} describing the
_ evolution of a system in state space I = {1, 2, ..., r} be defined by exit intensities
(), ..o, u(r), 0 < p(j) £ 0, j=1,...,r, and by a stochastic matrix P =
= | p, ) I}, j=1, p(i,i) = O of transition probabilities in the moment of exit.

We constitute a matrix of so called transition intensities M = || (i, j) I} j=1,
where u(i,j) = u(@) p(i, ) for i # j, p(i, i) = —p(i),
J¥i

The system being in state i at time ¢ passes during the infinitesimal interval (¢, ¢ + dt)
into state j with the probability u(i, ;) dz.

Consider a situation, where the development of the process can be influenced
by an action called replacement, sec [2]. Under a replacement of type (i, +j) we
mean the instantaneous shift of the system from state i into state j, The information
of the evolution of the process up to the n-th state change is given by the sequence
of states visited

[y 0ty veveslpmtsin =J 2)
by the corresponding sojourn times
fostis vos buets (3
and by the sequence
803 01y s Oy C))

where 8, = 0if the system was left 7,, without interference and §,, = 1if the passage
from i, into i,., was the result of replacement. For the history of the process up
to the n-th state change we use the notation
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@, = [ig, tos o3 dys 215815 ersbnmts tac iy Bumys in],
and we note the complete history of the process (according to [2])
w = [iO’ to, 50; il’ tl’ 61; ...]-

A replacement policy (see [2]) is a decision for all possible sequences (2) —(4) and
all states j, on how long the system will be left in j without shifting (maximal sojourn
time) and in what state is to be shifted. Since we do not want to exclude the random
choice of these quantities, we identify a replacement policy with a sequence of

functions
F = {"F(t/w,)}, k=12 ..,r;n=0,1,2, ... (5y

where "F(t/w,) is the probability that the maximal sojourn time in i, will be less
than t and that the eventual shift will be into k # i,. We make

Assumption 1. We consider only such replacement policies F where with probabi-
lity 1
a) there exists only a finite number of replacements in every finite interval,

b) there are not two or more replacements in the same moment.

According to the assumption to nearly every w is assigned the trajectory
{Y,;, t = 0}, being not left continuous at time of the transition and not right
continuous at time of the replacement. In what follows we denote by
oo = 0, 04, 0,, ... the moments in which the trajectory is not continuous,

Y, =Y ,t>0;,Y =Y ¥ =Y,,,t20;
E; the mathematical expectation in a process without replacements under the
condition iy, = j,
E[ the mathematical expectation in a replacement process under the replacement
policy F and under the condition iy, = j,
D the set of couples (i, +j) meaning the admissible replacements,
D, = {j:(, +j)e D}.
The reward from the process (see [2]) is defined by the following sets of numbers:
ofi), iel, the reward per a time unit in state i;
r’i,j),i,jelI,  the reward from transition (i,f), we set r(i,i) = 0;
v(i,j),i,jel, the reward from the replacement (i, +/), we set v(i, i) = 0.
A stationary replacement policy f is given by function f(j) defined on a subset
I, « Iand taking valuesin I such that f(j) € D; for je I, f(j) # j. The replacement
policy f is the prescription to realize instantaneously the replacement j — f(j}
whenever the transition in state j € I, occurs. No replacements are made in states
j¢I,.
Let us make yet

Assumption 2.

(i, +j)e D, (j, +k)e D= (i, +k)e D or i = k,
v(i, ) + v(J, k) £ v, k).
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2. The expected discounted reward from the process

Let Ry be the reward from the process up to the time T, in accordance with the
previous definitions

T N
Rr=[o(¥)dt + ¥ [r(Y,,, Y,) + (Y, Yo)loxn S T < opy;y.
[} n=0
The Laplace — Stieltjes transform
R=[e*TdR(T), 4>0
0

is the discounting of the reward, \ is so called discount factor (see [3]).
In the sequel we use the following statement given in [2], page 349, formula (7):
For A > 0 helds

(“(J) + '1') EJR = Q(.’) +k;'u(j, k) [r(j’ k) + EkR]» ] = 1’ 29 s Ty (6)

moreover the expected discounted rewards E;R, j=1,2,...,r are uniquely
determined by (6).

We confine our study of discounted reward from the replacement process to the
stationary replacement policies f only.

Let us denote for simplicity EfR = O ().

If je I, then (6) takes the form

w() + M) 0,3) = o(j) + nG fG)) [vU, fG) + O,(F())]
which being modified to include u(j) = oo,
0:(j) = v, f()) + @,(())).
If j ¢ I; then from (6)
Q) + 2 04() = (i) +k;u(j, i) [r(s k) + ©4(k)].

J
We have thus established a system of equations for determining the expected
discounted reward from the process under the stationary replacement policy f:

v, () + O,(f()) — ©,() =0, jely, M
o) + k;_#(i, k) [r(, k) + @4k) — ©,(j)] = 20,() =0,  j¢ ;.

Theorem 1

System of equations (T) has exactly one solution ©(j),j =1, ..., r.
Proof: For simplicity let us assume I, = {1, ...,j — 1}, 1 <j = r. The matrix
of system (7) has then the form
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-1 0. O in any row only one unit,
0 -—-1.. 0 the other elements zeros
0 0.. —1i
M* —_— -1
H(r, 1) ll(”aj - 1) I’l(r’.]) ,u(r’ r) - A
AB
C|D

For finding the value of det M* we add for every i = 1, ...,j — 1 the i-th column
to the f(i)-th column. We obtain

A0
det M* = det C D*
where
dj; —\ ... d,
D* = ................. s
d; d, —\

dkkéo’dklgoyk*lsk9l=j9j+ 1,...,"; de=0-

As the only nonnegative characteristic number of the quasistochastic matrix
(see [4], page 181) is A = 0, it holds det D* # 0 for A > 0. Thus det M* =
= det A. det D* # 0 and the matrix M* is of full rank.

Let us introduce the maximal expected discounted reward (see [3], page 24)

6(j) = max {0,G)},  jel.

The stationary replacement policy f is called optimal, if
6()j) = 0;(j), jel
The maximal reward will be characterized by the following thecrem, in whose

proof Howard’s iteration procedure for finding 6(j), j €1, and the responsive
optimal stationary replacement policy will be described (see [17).

Theorem 2

The maximal reward O(j) is the unique solution of the following equation
max {v(j, k) + é(k) — @(j),keDj;
0) + X kG D [rG. ) + B(k) — OG)] - 0()} =0, jeL (@)
J
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If f is such a stationary replacement policy that the maximum in the compound

brackets is achieved for j e I; by the expression v(J, ) + 6Uf() — 6()) and for

j ¢ I; by the expression o(j) + Y. u(j, k) [r(j, k) + (k) — 6(j)] — AMB(j), then f
k%j

is the optimal stationary replacement policy.

Proof:

We prove first the existence of the solution of system (8) by Howard’s iteration
procedure. Chosing an arbitrary stationary replacement policy f, we succesively
determine the stationary replacement policies f;, ..., f,, ... as follows:

a) we solve the system of equations (to simplify the notation we write @, (j) =
= 0,(}))

VO, L)) + @,(A(D)) — 0,() =0, jel,, ®
ei) + X uG. O [r0, k) + 0,00 = O,()] ~ 40,() = 0. j#1y,,

by Theorem 1 @,(j),j € I are determined by the system uniquely;
b) for all jeI we succesively determine
max {v(j, k) + 0,(k) — @,(j), ke D;

The policy fy+; is determined as follows:
if the maximum for a fixed j € I is reached by the expression

e(d) +k; G, B [r(, k) + 0,(k) — @,())] — 20,(j),
we choose ’
Jjé I .05
in the contrary, if the maximum is obtained by the expression
v(j, k) + 9,k) — 0,()) for some k € D;,
we choose
JjE If,,+1’ fn+1(]) = k;

here the choice of k = f,(j) is preferred.

¢c) If the policy f,+; does not posses the property required by Assumption 1,
namely that f,,.(j) ¢ I,,,, for all jel, , we change it to the policy f,,, as
follows:
in such states je I,,, where f,.1(j) e I, ,, we take fo 1 1(j) = fos1(fa+1())), in the
remaining states we have f,1(j) = f,+.(j). We now show the correctness of the
procedure in c).

Suppose that f,(j) ¢ I, for all je I, and that the policy f,+, was constructed
in the above described way. Let

Jelp s fox1() =kel,,, , furi(k) =K' (10)

By the construction of the replacement policy £, , this implies that
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vk, k') + 0,(k") — @,(k) 20,
and therefore by Assumption 2
V(js k) + 0,(k) — 0,()) £ v(j, k) + v(k, k') + ©,(k") — 6,()) =
S v, k) + O,k — 0,0)).
The equality must hold here, because the expression
v(j, k) + 0,(k) = 0,())
is maximal (replacement j — k under the policy f,+, in the state j) from all ex-

pressions v(j, i) + ©@,(i) — ©@,(j), i € D;. We are thus led to the conclusion that &’
is equivalent to k for state j, moreover

wk, k') + O,(k") — ©,(k) = 0. (11)

We can prove (by contradiction) that also keI, , k' = f,(k). Therefore there
cannot occur the situation

f;|+1(]) =k, j;|+1(k) = k', f;H—l(k’) = k",
then it would be also

[l =K', fulk) = k",

which however contradicts the assumption on the replacement policy f,. It suffices
therefore to change the constructed policy f,+; in the way described in c).
For thus constructed replacement policy then

VU fos (D)) + Oufae i) = O} 20, jel, . (12)
(i) +k;li(i, k) [rG, k) + ©,(k) = 0,()] = 40,(j) 20,  j¢1L,,,.
J

By Theorem 1
Vi, for1U)) + @i i(fos1()) — @uss() =0,  jel, . (13)
Q(]) +k§:#(}’ k) [r(j9 k) + 6n+1(k) - @ﬂ+1(j)] - A@n-*l(j) = 0’ J¢ Ifn+1'
Subtracting (12) from (13) we obtain
@n+1(ﬁl+1(j/‘) - @n(f;l+l(])) - @n+1(j) + @,,(]) é 0, jeIf,,.H’ (14)
,;,“U’ k) [0n+1(k) — O,(k) — 0,41() + €D = X(O,4,() — ©,()) £0,j¢ 1, .
For j ¢ I, ,, we obtain from (14)

[6,0) = @0s s (DI G2+ T (j: 1) £ X, 1, k) (k) ~ ©,41(K),

whence after some modification

. S < _H0) i
0:0) = 0:1() = 751 3 20 I [6,(0) - 6r14(K)]
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it means by using the notation

_ _HD
cmi&tfl{i+#(j)}

we have for j ¢ I,
0,()) = Ons1(j) = ¢ max {B,(k) = O,41(k)}. (15
ke.

Relation (15) is valid also for je I, ,, since for these j by the first row in (14)
@n(]) - @n+1(j) = @n(f;a+1(])) - @n+l(f;l+l(j))’

and Assumption 1 yields f,+,()) ¢ Z;,.,,-
Thus, from (15) we have

max {0.) = 0D} =S¢ max {0.(k) = 0,41(k)}-

The last inequality may be satisfied by 0 < ¢ < 1 if and only if

@n(j) - @n-\‘-l(j) = Os jeI’
i.e.if
0,(j) £ 0441(j), Jjel

The sequence ©,(j) is nondecreasing if » is increasing. As the set of the stationary
replacement policies is finite, there exists m such that

On(j) = One1(j),  Jjel
Using (9) and constructing the policy f. +1 in the above way we obtainforje I, .
max {v(j, k) + 0,(k) — 0,(j), ke Dj;
o(j) + k;j#(j, k) [r(j, k) + On(k) — 0,()] ~ 460,(j)} =

= V(J, fu+1(0)) + Oulfns1() — Ox(j) =
= Vs fae 1)) + Ops1(fns 1)) = Omsy(j) = 0.

For j ¢ I, ., we have
max {v(j, k) + 0,(k) — 0,(j), keDy;
o) +,2;,-”(j’ k) [r(j, k) + Ou(k) = 0,(N] = 20,())} =
= () + kg,jﬂ(j, k) [r(js k) + Opn(k) — On(j)] — 20,(j) =
=0()) + k;j/t(j, k) [r(, k) + Oms1(k) = Opss()] — A0p41() = 0.

We can see that @(j) = 0,(j), jel, is a solution of equation (8). We verify now
that (8) determines @(j) uniquely.
Let @()), j € I, be another solution of equation (8), i.e. let
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max {v(j, k) + @) — 6{)), ke Dj; (16)
oU) + X u(ir K[, k) + (k) = OG)] - 20} =0, jel.
Let f be the replacement policy defined by Theorem 2. Then
v(, J() + 6(f() — 6() =0, jel;, a7
e) + 3 1. ) IrG, b + 6(k) — (D] = 26() =0, j¢Ij.
J
According to (16)
vO,fGN + (/) — BG) 20,  jelp, (18)
eU) + X ki, ) [r: k) + Ok) = OU)] = 20() 0, jéIf.
J

Subtracting (17) from (18) we obtain

64 — (7)) — B() + () 20, jek. (19)
h;_#(j, k) [O(k) — 6(k) — B() + 6(j)] — MO(j) — B()) <0,  j¢ I
J

For simplicity we write @(j) — 6(j) = w(j), j € I, and obtain for j ¢ Iy from the
second equation of (19)

W) 2 2D 5 5, (k) 2 d min (wk),

= A+ () i
where ,
) }
d = min{——=—=—1.
il {/1 + u(Jj)

The relation
w(j) 2 d min {w(k)}
kel
is valid for all j e I with respect to (19) and to Assumption 1. This yields

min {w(j)} = d min {w(k)}.
jel kel
Since 0 < d < 1, this inequality may hold only if min {w(j)} 2 0, i.e. if
JeI

wij) = 6() - 6() 20, jel,
it is .
0(j) z 6(j), Jjel
Analogous may be proved that @(j) < 6()), j € I, therefrom
o) = 6(j), Jjel
It still remains to verify that the policy fis an optimal stationary one.
Theorem 1 tells us that the system

104



vO, fG) + 0U/())) — @) =0, el (20)
e(j) +k;u(j, kY [r(s k) + (k) — ()] — 20(i) =0,  j¢lp,

determines @4(j), j € I, uniquely. Comparing (20) and (19) we obtain @3(j) =
= 0(j),jel
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OCEKAVANY DISKONTOVANY VYNOS Z MARKOVOVA
PROCESU S VYNOSY A OBNOVAMI

Souhrn

UvaZuje se Markoviiv proces s vynosy a obnovami popsany v lanku [2]. Je odvozena sou-
stava rovnic pro urlovani ofekavaného diskontovaného vynosu z procesu (viz [3]) pfi uZiti
stacionarni strategie obnovy. Maximdlni ofekdvany diskontovany vynos je charakterizovin
vétou 2, v jejimZ diikaze je popsdna Howardova itera¢ni metoda (viz [1]) nachdzeni maximalniho
vynosu a metoda urovani odpovidajici optimalni staciorsrni strategie.

OJKUJAEMBIN JOXOJ C NEPEOIEHKOM
U3 MAPKOBCKOTO IIPOIIECCA C JOXOIAMH
A BOCCTAHOBJEHHAMH

Pesiome

B pabGore paccMoTpen npouecc MapkoBa C BOCCTAHOBIIEHMSIMM M JOXOHAaMM OIIPEIESICHHBIH
B [2]. Haiinena cucrema ypaBHEHVIT I ONPEACICHHS OXUAACMOTO HOXOMA C NMEPEOLICHKOM (CMOT-
pu [3]) ppu uMCHONB30BaHMM CTAMOBAPHOM CTPATCTMH BOCCTAHOBICHUS. MakKCHMAaTbHblh OXH-
IaeMblii IOXOJ, C NEPEOLCHKOM XapaKTepu3yeTCss TEOPEMOM 2, B J10Ka3aTeNbCTBE KOTOPOM OIMMCaH
UTepalioHHbiM MeToA XoBapa I/ HaXOKICHHST MAKCHMAJIBHOIO [OXOJAa M HAXOXIEHUS OTBEeva-
IOWER ONTHMAILHON CTAIlMOHAPHOM CTPATETHH.
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