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1. Introduction

The distribution of zeros in solutions of a differential equation

V' =qt)y, qeC%R), (@

may be described through the basic central dispersion ¢ of (q). O. Boriivka proved
in [3] the function @(t) — ¢, ¢'(¢), ¢"(t) and ¢"(¢) to be n-periodic provided the
coefficient ¢ of (q) is a n-periodic function. In [6] the function ¢(r) — ¢ was proved
to be almost periodic if the coefficient ¢ of (q) is an almost periodic function. The
present pader demontrates

Theorem 1. Let ¢ be the basic central dispersion of an oscillatory equation (q)
with an almost periodic coefficient q. Then also

en,  i=1,2,3,
are almost periodic functions.

2. Basic concepts and lemmas

A equation (q) is called oscillatory if +oco are the cluster points of the roots
relative to every nontrivial solution of this equation. All equation of the type (q)
considered below are assumed to be oscillatory. The trivial solution of (q) will
not be considered.

A function o € C°(R) is called (first) phase of (q) if there exist its independent
solutions u, v such that

tga(t) = u(t)/v(r) for te R — {t;v(t) = 0}.

45



Every phase a of (q) possesses the folloving properties:
«eC*R); a«R)=R; o()#0 for reR.

Let « be a phase of (q) and put (1) := a~*[a(t) + = sign «'], t € R. The function ¢
is called the basic (first kind) central dispersion of (q) and we have

¢ € C3(R); o) > t, 't)>0 for teR,
(see [2], [3D.

Let us recall at this point that a function fe C°(R) is called almost periodic
(see e.g. [5]), if there exists to every & > 0 a positive number L(= L(g)), such that
there exists at least one number 1, on every interval {x, x + L) (x € R), for which

|fit+17)—f@)| <e for teR.
Lemma 1. Let g, € C°(R) and lim q,(t) = q(t) uniformly on R. Then there exist

phases o, and « of (q,) and (q), respectively, such that sign a) = signa’ = 1 and

lim (1) = a(1), i=0,1,2,3,

n—+ o

uniformly on every compact interval.
Proof. Let u,, v, be solutions of (q,) and u, v be solutions of (q): u,(0) = u(0) =
= l,’.(O) = U'(O) =0, u"'(O) = u’(}O) = U"(O) = u(0) = 1. Let us put
Bu(t) 1= 1/(@Z(t) + v2(1)),  P(1) := 1)@WP(1) + v*(1)), teR,
Since lim u®(t) = u®(r), lim o9(t) = v(1), (i = 0, 1, 2), uniformly on every
n—w n-= o0

compact interval (see [4], Theorem 2.4.) then

lim g(1) = (1),  i=0,1,2,

uniformly on every compact interval. Let us put
t t
a, () := [ Bs)ds, a(t):= [B(s)ds, teR.
0 0
Then o, is a phase of (q,) and « is a phase of (q) (see [2]) possessing the properties
presented in Lemma 1.
Remark 1. Lemma | has been proved in [6] in a special case with i ~ 0, 1.
Lemma 2. Let g, € CO(R) and lim qn(t) = (](t) uniforrn[y on R. Let (P(,,) and ¢
be the basic central dispersions of (q,) and (q), respectively. Then
lim () (1) = 001),  i=0,1,2,3,

n- oo

uniformly on every compact interval.
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Proof. The case with i = 0 has been proved in [6]. Let «, be a phase of (q,)
and o be a phase of (q) possessing the properties stated in Lemma 1. By differentiat-
ing the equalitues

an[(p(n)(t)] = an(t) + , d[(P(t)] = d(l) + m,
we obtain
[ Pm(D] Py t) = #(1), &[] @'(t) = ¢ (D),
whence
O T (O T 0
Llowm®]  oTe]
From (1) immediately follows the assertion of the Lemma for i = 1. With the

properties of o, and «, and by differentiating (1), we become the assertion of the
Lemma for i = 2, 3.

(PE")(t) - (Pl(t) =

Lemma 3. Let ¢ be the basic central dispersion of (q) with an almost periodic
coefficient q. Then the composite function q[@(t)] is also almost periodic.

Proof. Let {#,} be an arbitrary sequence of numbers. According to our assump-
tion, the function ¢ is almost periodic and by [6] such also is the functiond(f) :=
= ¢(t) — t, t € R. Thus, we may choose from {t,} a subsequence —denoted again
by {t,} —such that lim g(¢ + t,) = p(¢), lim d(z + t,) = s(t) uniformly on R. We

n—oo n-+oo

will show that
lim g[o(t + t,)] = plt + s(1)] uniformly on R. 2)

n—*oo
Let ¢ > 0 be an arbitrary number. Since ¢ is uniformly continuous on R, there
€
2
| 4x | < 6. Let N be such a positive integer whereby for everyn = N: | q(t + t,) —

exists a d(= §(e)) > 0, such that | g(x + 4x) — g(x) | < =, x e R, for every 4x,

— p(t) | <-§—, |d( +t,) —s(t)| <6, teR. Then for n 2 N and reR

I glo( + )] — plt + s(O] | =1 q[t + 1, + dt + )] — p[t + s(D] | <
S g+t +di+1)] — qit+1,+sO) | + | gt +1,+s()] — plt+s)] | <

<1~:+s_8
2 2 "

We see that (2) holds. It follows from the continuity of g and from Bohr — Bochner’s
theorem (cf. [5]) that the function g[¢(¢)] is almost periodic.

Lemma 4. Let ¢ be the basic central dispersion of (q) with an almost periodic
coefficient q. Then there exist positive numbers k, K, such that

k<Zot)—t<LK, teR.
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Proof. With respect to Lemma 3 ([6]) it suffices to prove only the inequality
k< o(t) — ¢ for teR,

where k > 0 is a constant. Assume, there exists a {t,} : lim [¢(z,) — t,] = 0. For
n— oo
definiteness let, for example, lim7, = o0. Let u, be solutions of (q): u,(z,) = 0,

n— o

u,(t,) = 1. According to our assumption, ¢ is almost periodic function, which
enables us to choose from {q(t + t,)} a subsequence {q(¢ + #,)} such that
lim g(t + t,,) = p(t) uniformly on R. Put v, (t) := u, (¢t + t,) for t € R. Then v,,

k—

is a solution if the equation y” = q(t + 1,,) y,7,(0) = 0,0,(0) = Landlim o{(r) =

= v{O(¢) uniformly on every compact interval, (i = 0, 1), v being a solution of (p),
v(0) = 0, v'(0) = 1. Since v,[o(t,) — t,] =0, there exists a number 7, €
€(0, o(1,,) — t,): vn (1) =0. Because of lim 7, = 0 necessarily v'(0) = lim v, (t,) =

K0 ko

= 0, which is a contradiction.

Lemma 5. Let ¢ be the basic central dispersion of (q) with an almost periodic
coefficient q. Then there exist positive numbers a, b, c, such that

as@(t)<h  teR, (3)
| ()| £ «, teR; i=2,3. 4)
Proof. Let t, € R and u be a solution of (q): u(ty) = 0, u'(t,) = 1. Then
@'(to) = 1/u"[@(to)], (%)
(cf. [2]). Assume (3) not valid. As an example, let lim sup ¢'(t) = 0. Then there
t— o0

exists {t,}, lim¢, = oo such that lim ¢’(f,) = co. From (5) we obtain the exis-

n—o n—*o

tence {u,} solutions of (q), u,(t,) = 0, u,(t,) = 1, such that
lim u/[(1,)] = 0. ©

Put x, := ¢(t,), n = 1, 2, ... The fact that we may choose from {g(¢t + x,)} a sub-
sequence uniformly convergent on R enables us to assume without any loss of
generality that
lim q(t + x,) = p(t) uniformly on R. @)
n—* oo
If we put v,(¢) := u,(t + x,), t€R, (n = 1, 2, ...), then v, is a solution of the equa-
tion y”" = q(t + x,) ¥, v,(t, — x,) = 0, v,(t, — x,) = 1, limv;(0) = 0. It follows

n— o

from Lemma 4 that we may choose from {x, — t,} = {@(¢,) — t,} a convergent
subsequence {x, — #,}:lim(x, —#,) = o where « > 0. From (7) we obtain
k— 0

Nk

lim o82(t) = v'2(¢) uniformly on every compact interval, (i = 0, 1), where v is
k=
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a solution of (p), v(x) = 0, v'(a) = 1, v'(0) = 0. On account of u,[¢(t,)] =0,
we have v(0) = 0. Then, naturally, v = 0, which is a contradiction.
We proceed similarly for lim sup ¢'(t) = oo, lim inf @'(¢) = 0, lim inf ¢’(r) = 0.

t= =0 t—+ oo t— -0

Let us pass to the proof of inequality (4) for i = 2. Lzt this inequality invalid.
Formula (6) in [1] yields for every to € R: @"(t5) = 203[@(t,)] v'[@(t5)], v being
a solution of (q), v(ty) = 1, v'(t) = 0. Consequently, there exists a {t,}, lim | £,| =

n—=oo
= oo such that lim | ¢"(¢,) | = co. For definiteness we assume lim ¢, = 00. Let v,
n-w n—w
be solutions of (q), v,(t,) = 1, v,(t,) = 0. Then necessarily
lim | v3[p(t)] viLe(t)] | = . ®)
n—oo

Now we prove that {v,[¢(t,)]} and {v,[¢(,)]} are bounded, contrary to (8). Let
{v[o(z,)]} be unbounded. Without any loss of generality it may be assumed that
lim | v,[e(t,)] | = c0. If we put u,(t) :=v,(t + ¢,) for teR and n = 1,2,3, ...,

then u, is a solution of the equation y" = ¢(t + t,) y, 1,(0) = 1, 4,(0) = 0. Let {#,,}
be such a subsequence {#,} thatlim g(¢ + #,) = p(¢) uniformly on R and let ¢(t) —

n=*om
— t £ K for teR (the existence of the positive constant K is guaranteed by
Lemma 4). Letting v be a solution of (p), v(0) = 1, v(0) = 0 yields
limulX(t) = 0%t), i=0,1, 9)

k=

uniformly on <0, K», contradicting the fact that lim | v, [e(t,)] | =
ko0
= lim I unk[(p(tnk) - tnk] ‘ = 00.

k-
Let {;[¢(#,)]} be unbounded and assume again lim {t;,[¢(t,)]} = c0. We come
n— o
to the contradiction in a manner analogous to that used above, but this time —
uhlike to the foregoin —we will utilize i = 2 in (9).
It remains to prove (4) for i = 3. This result however immediately follows from
the boundedness of the functions g, ¢”, from the inequalities (3) and from the

equality

Lo, 3 (OY, e
20 s 2 (%) + eiatew = aw.)

introduced and proved in [2].
3. Proof of Theorem 1
To show the function ¢'(¢) to be almost periodic it suffices to prove (by Bohr —

Bochner’s theorem —see [5]) that tor every sequence of numbers {/,} a subsequence
uniformly convergent on R may be chosen from the sequence of functions
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{¢'(t + h,)}. According to the assumption, g is an almost periodic function so
that we may assume without loss of generality that lim ¢(¢t + A,) = p(¢) uniformly

n— oo

on R. In analogy with the proof of Theorem 1 ([6]) we may prove the function
o(t + h,) — h, to be the basic central dispersion of

y'=qt + hy)y. (10)

Thus, by Lemma 2, {¢’(t + A,)} is uniformly convergent on every compact interval,
Assume {@'(z + h,)} not to be uniformly convergent on R. Then there exist

a number a > 0, {t,} (lim | ¢, | = ) and increasing sequence of natural number
{k,}, {rn} such that
lo'(ty + ) — @'(t, + 1) | 2 a, n=1213, ... (11)

By Lemma 4 {¢'(t, + I )}, {¢'(t, + h,)} are bounded. Thus, in passing to
appropriate subsequences—to simplify the writing we use the same notation—
we may obtain: lim ¢'(¢, + h ) = b, lim ¢'(t, + h,) = cand

n—oo n— o

lim g(t + t, + k) = py(1), limg(t + t, + h,) = p,(t) (12)

uniformly on R. With respect to (11) we have
|6 —c| = a (13)

Next we have p, = p, (see the proof of Theorem 1 ([6])). The function
ot +t,+ k) —t, — h, is the basic central dispersion of the equation y" =
=qt+1t,+M)yand o+ t, + h ) —t, — I, is the basic central dispersion
of the equation " = g(t + t, + h,) y. Consequently, it follows from (12), from

the equality p; = p, and from Lemma 2 that lim ¢'(¢, + k) = lim @'(t, + A, ),

contradicting (13).
By an analogous method we can prove that ¢"(¢) is an almost periodic function.

m ; ” 2
Then, we obtain from the equality _len + 3 (g%(t—)) + 0o'%(t) q[e®)] =
29 4\o®
= ¢(t), from Lemmas 3 and 5, and from the known properties of almost periodic
functions (see e.g. 5, pages 9—11 and 19—21) that ¢"(¢) is also almost periodic
function.
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Souhrn

O VLASTNOSTECH DERIVACI ZAKLADNI{
CENTRALNI{ DISPERSE OSCILATORICKE
ROVNICE y" = ¢(f)y SE SKOROPERIODICKYM
KOEFICIENTEM g¢

SVATOSLAV STANEK

RozloZeni nulovych bodu feSeni rovnice
)/’" = q(’) Vs q€ CO(R)> ) (q)

lze popsat zdkladni centralni dispersi (1. druhu) ¢ rovnice (q). Hlavni vysledek je
uveden v nasledujici v&t&: Nechtf ¢ je zékladni centralni disperse oscilatorické
rovnice (q) se skoroperiodickym koeficientem ¢. Pak pro i = 1,2, 3 jsou ¢'(t)
skoroperiodické funkce.

Perrome

O CBOMCTBAX ITPOMU3BOJHBIX
OCHOBHOW LLEHTPAJIbHOW JUCIIEPCUU
KOJIEBIOIWETOCS VPABHEHUSA y = ¢(1) y
C MMOYTU-TTEPUOJUYECKUM
KOD®OUILUEHTOM ¢

CBATOCJIAB CTAHEK

Paznoxenue xopHeli MHTepBaJIOB ypaBHEHUs
¥ = q(V)y, q € C°(R), @

BO3MO>KHO OIUCATh OCHOBHOM LEHTPAJbHOMN aucnepcueii (1-oro pona) ¢ ypaBHeHus
(q). OcHoBHO# pesynpTaT paboTsl: IIyCTh (-OCHOBHAS LEHTpANbHAS NHUCIEPCHS
xone6momerocss ypasHenus (q) € TOuTH-TepuoAMYecKuM KoddduuuenTom q.
Torma ¢’(f) mourn-nepuonuyeckue Gynkuuu (i = 1, 2, 3).
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