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Consider two projective planes P and P’ coordinatized by planar ternary rings
(S, t) and (S', t'), respectively. Either of these coordinatizations is essentially de-
termined by ordering a four-point coordinate frame V, U, O, E and V', U’, O’, E’,
respectively. Every epimorphismus (if any) of the projective plane P onto P’
induces a mapping ¢ : S into S’ U {co} which becomes a place of fields in the
commonly used sence, if P and P’ are Pappian planes and (S, t), (S’, ¢) are fields.

This problem was most generally discussed in [2] and [5]. The place of alterna-
tive fields was investigated in [6].

This article deals with the place theory of nearfields. It appears, namely, that
from the point of view of the place and its connections with valuations, the near-
fields are close to skewfields. In more great details: there exists a one-to-one
correspondence between the classes of eq’%xivalent places, valuation nearrings and
valuations of nearfields, respectively. The same concluding has been reached by
J. L. Zemmer in [5]. Our article considers the algebraic problems. For complete-
ness, let us point out that a planar ternary ring (S, #) coordinatizing the plane P
is a planar nearfield exactly if the plane P is simultaneously translative; if (V, x)-
transitive for every line x passing through the point U and if (U, y)-transitive for
every line y passing through the point V.

0. Introduction
For codification reasons, let us first introduce the axioms for a nearring, a near-

field and planar nearfields; unlike to [3] we will require from the beginning the
commutativity of addition. “



Let NR be a nonempty set -
(a,b) > a + b, (a,b) > a.b

two binary operations on NR called addition and multiplication, respectively.
(a + b and a. b are, respectively, sum and product of elements a, b € NR). The
set NR together with both binary operations are called a nearring if the following
axioms hold:

Va,be NR a+b=>b+a, ¢5)

Y a,b,ce NR a+b+c)=(@+b +ec ?2)
30e NR,Vae NR a+0=a, 3)
VaeNR,3 —aeNR a+ (—a) =0, @
Vae NR a.0=0, 5

VY a,b,ce NR a.(b.c)=(a.b).c, (6)
Va,b,ce NR (@a+b).c=a.c+b.c @)
31eNR,VaeNR a.l=1.a=a ' ®

where O in (3) denotes a zero element and —a in (4) is written for an opposite
element to @ and 1 # 0 is valid. Immediate consequences are
(@) Yxe NR 0.x =0,
(b) Va,ye NR (=x).y = —(x.y).
The nearring NF is called a nearfield if the set of its nonzero elements together
with multiplication is a group, i.e.
YVaeNF,a #0 Ja'eNF ag.al=a'.a=1, )

where @~ ! denotes an inverse element to a.
If NF is a nearfield of charakteristic # 2, i.e. VxeNF, x # 0is x + x # 0,
then

(¢) Yae NF a.(—1) = —a.
For the proof see [7], p. 348, whence
(B) Va,be NF a.(=b)= —(a.b).
Besides it holds for arbitrary nearfield
(c) Va,beNF. a #b J1x e NF a.x=b.x+c.

Proofia.x=b.x+c<a.x—b.x =c<(a —b).x = c, however, such
an x exists exactly one.
(d) Let NF be a nearfield. Then V x, y, x', ' € NF; x # x’

A (a,b)e NFxNF:x.a +b =y, )

x.a+b=y.

Proof: If (1) is valid, then :
(x—x).a=y—y. ‘ V)
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Conversely, if (2) is true for an ae NF, then puttingb=y —x.a, wegetx'.a+b =
=x'.a-x.a+y=—-x.a-x".a)+y=—-(x—-x).a+y=y —y+-
+ y =Y. Since x # x', a is uniquely determined by condition (2) as well as b
issobyx.a + b =y.

(e) Ya, b, c, x' e NF, a#b:x.a=x.b+c xX.a=x.b+c=
=x = X'

Proof:(x — x).a = (x — x') . b;ifforinstance b = 0,thena # 0 = x — x'=
= 0;if a # 0, b # 0, then there must be again x — x’ = 0.
The nearfield is called planar if

Va,b,ce NF, a #b 3 xe NF X.a=x.b+ c. (10)

We understand an ideal of the nearring NF any of its nonempty subset # having
the following properties:

a,be fg=>a+beyg, €))
ae ¢, ceNR=a.ce g, 2)
a,beNR, uefg=a.(b+u) —a.be . 3)

The definition of a maximal ideal is analogous to that for rings. Zorn’s lemma
can equally well be used to show that every ideal # of NR and different from
NR, is contained in a maximal ideal.

1. Places of Nearfields

Let NF and NF’ be nearfields, and oo be an element not belonging to NF'. Like-
wise, as we did in case of fields, we extend the addition and multiplication in NF’
via formulas

a + 00 =0+ad = a e NF',
ad.0o=0w.a = ® aeNF,qd #0,
00 .00 = 0.
Thus oo 4+ 00, 0. o0, o0 . 0 are undefined.
By a place (more precisely NF’ place) of the nearfield NF we call every mapping
U: NF - NF u {00},
for which
U(a + b) = U(a) + U(b),
if U(a) + U(b) is defined (i.e. if there is not U(a) = U(b) = );

Ua.b) = U@). U®),
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if U(a). U(b) is defined (i.e. there is not U(@) = oo A U() = 0 or U(@) = 0 A
A UB) = o0); :
Ul = 1.

Proposition 1.1. Let U: NF - NF U {0} be a place. Putting NF* =
= {x"e NF'| 3 x e NF, x’ = U(x)}, then NF is a nearfield.

Proof: The validity of axioms (1), (2), (5)—(8) is clear. However, there is also
1" = U(1), which leads to U(1 + 0) = U(1) + U(©) = 1" + U(0) = U(0) = 0' =
= 0" e NF*,

Letting a’ € NF* = o' = U(a); a € NF. Then 0' = U(0) = Ufa + (—a)] =
= U(a) + U(—~a) = U(—a) = —U(a) = —a’ = —a’' € NF*,

Corollary. The set NF* U {0} may be taken to be a codomain of the place U,
whereby U: NF — NF* U {0} becomes a surjective mapping.

Besides, we have found in the proof of Proposition 1.1, that U(0) = 0', U(—a) =
= —U(a) VY a e NF.

Proposition 1.2. Let U : NF - NF' U {o} be a place of the nearfield NF. Then
the following implication U(@) = U(b) = © A U(x . a + b) e NF = U(x) =
= U[—(b.a "] holds for every x, a, b e NF.

Proof: Lettingy =x.d +b,s = —(b.a ') = b = (—s).a leads to y =
=x.a+ (—s5).a = (x —s).a; because U(y) e NF' and U(a) = oo must be
Ux —5) = 0= Ulx) = U@).

Theorem 1.3. Let U : NF - NF' U {0} be a place of the nearfield NF. Then
the following two conditions are equivalent:

A) Va,mxeNF: Ux.a.x")=Ux.m.x")AUx) #0A
_ AUx.a — x.m)e NF = Ua) = Ulm).
(B) VamxeNF:Ux)=Ux.m = o AUXx.a — x.m)e NF =
= U(a) = U(m).

Remark: Changing the assumption U(x.m) = oo by the condition U(x.m) €
€ NF' in (B) gives U(m) = 0, so that Ux.a) = U[(x .a — x . m) + x.m] =
= U(x.a — x.m) +U(x.m)e NF. However, because of U(x) = oo, there
must be U(a) = 0 and U(a) = U(m) always when U(x) = o, Ux.a — x.m)€
€ NF’" and U(x.m) e NF'.

Proof: (A) = (B).

Letusputb =x.m — x.a= Ub)e NF = Ub.x" ") = Up). Ux"?*) = 0;
sinceb.x '=x.m.x" ' —x.ax 'itholdsx.a.x ' +b.x ' =x.m. x>
=Ux.a.x ') = Ux.m.x"). By relation (A) U(a) = U(m).

(B) = (A).

Let first U(x) € NF'. Then U(x™') # 0, oo, hence U(x™')e NF'. Now U(x) .
U@ . [Ux)] ' =Ukx.a.x)=Ux.m.x ") = Ux). Um). [Ux)]* =
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= U(a) = U(m). Let U(x) = 0. If also U(x . m) = oo, then by (B) U(a) = U(m).
Let Ux.m)e NF. Then U(m) =0, but Ux.a) = U[(x.a —x.m) + x.m] =
=Ux.a — x,m) + Ux.m)e NF = Ua) = 0, i.e. Ua) = U(m) again.

Theorem 1.4. Let the place U: NF - NF' U {0} fulfil either of the conditions
(A), (B) given in Theorem 1.3. Then Va,b,xe NF: Ula) = U®b) = Uix) =
=Ux.a+b)=0=Ux"'.(x.a+b]=0VUb.a')= .

Proof: Be assumed that the assumption of our Theorem are fulfilled and
Ub.a ') e NF'. Since x # 0, there exists an me NFsothatx . m = x.a + b =
=m=x'.(x.a+b)=>x.m.al=x.a+b.a'=x+b.at=>
=x.m.at. x'=1+b.a'. xL,butl=x.1.xLUb.a"t.x71) =
=Ub.a"").Ux"")=0,thus Ulx.(m.a ). x" '] = Ulx.1.x ') and by
condition (A) U(m . a™ ') = 1’ = U(m) = oo, for Ua™!) = 0.

Theorem 1.5. Let U: NF - NF' U {0} be a surjective place of the planar
nearfield NF, with U fulfilling either of the equivalent corditions from Theorem 1.3.
Then NF’ is a planar nearfield.

Proof:Leta',b',c’ € NF', @' # b'. Because of the surjectivity of the mapping U
there exist a, b, c e NF so that a’' = U(a), b’ = U(b), ¢' = U(c). As a # b and
with respect to the planarity of the nearfield NF, 3 x € NF so that

x.a=x.b+ c.

Let first U(x) e NF'. It then follows from (1) that U(x).d = U(x).b" + ¢'.
Let next U(x) = oo and besides also U(x . @) = oo. WehavethenU(x.a — x.b) =
= U(c) = ¢’ e NF' and following the condition (B) from Theorem 1.3. a’ =
= U(a) = U(b) = b’, which is a contradiction.

Let as assume U(x) = oo, U(xa) e NF'. Then U(a) = 0 and U(xa — xb) =
= U(c)e NF. But xbx ' +cx ' =xax" . As Ulx™!) =0, Uxbx™?!) =
= U(xax~ ') holds. According to the condition (A) from Theorem 1.3. @’ = U(a) =
= U(b) = b’ which is a contradiction.

&

2. Valuation Nearrings

Let U: NF - NF' U {0} be a place of the nearfield NF. Write
NR = {xe NF| U(x) e NF'}, '
V = {xe NF| U(x) e NF' A U(x) # 0}, @
‘ M = {xe NF| U(x) = 0}.
Clearly, NR is ¥V U M. As in the case of field, we can easily find that: NF is a near-

ring, V is a set of its units, M is a set of its noninvertible elements being the single
maximal ideal of the nearfield NR.
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It evidently holds:

(a) xe NF,x¢ NR = x"!' e NR,

(b) a,b,xe NRAXx *¢ NR=[a.(b + x) —a.b] !¢ NR.

The nearring NR is called the valuation nearring of the nearfield NF relative
to the place.

If we define the equivalence of two places equally as in the case of fields, we
find that two places of the same nearfield NF are equivalent if and only if they have
same valuation nearrings. Generally, let us define for an arbitrary nearfield NF:

Subring NR of the nearfield NF is called its valuation nearring if it has the
properties (a), (b). .

The definition of sets ¥V and M from (I) may be rewritten for the valuation
nearring of an arbitrary nearfield in the form:

V={xeNR|x 'eNR},

an
M = {xeNR|x 'e NF\NRV x = 0}.

Proposition 2.1. The set M defined by (II) is an ideal in a nearring NR.

Proof: Clearly, M is a set of all noninvertible elements from NR, so that it
follows from the condition (b) in the definition of the valuation nearring that

a, b, x e NR, xeM=>a.(b+x)—a.beM.

Let a, b € M. If any of these elements is zero, then certainly a + b e M. Let a # 0,
b # 0. Then either a.5 * e NR or b.a ' e NR. Assuming a + b ¢ M, then
a + bis a unit (@ + b € V), whence it follows that (@4 + b)) "' e NR=> 1+ (a.b)"! =~
=b.b" ' +a.b'=(@+b).b"' = (a + b).b !e NR, which next yields
(@a+b)'.(a+b.b'eNR=5b"1eNR=>b¢M,ie. a contradiction. Let
aeM,ceNR. Ifa.c¢ M, then (a.c)"*eNR=c '.a'eNR=>c.c"'.a e
e NR =g ! e NR, i.e. a contradiction again.

Clearly, M is the only one maximal ideal in NR. Besides this it holds for every
xe NR, x¢ M that xe V, so that x~! + M is a class being inverse to x + M.
Thus, the following theorem is valid:

Theorem 2.2. If NR is a valuation nearring of the nearfield NF with M being
its maximal ideal, then NR/M is a nearfield.

Evidently, the mapping U: NF - NR/M U {0} given by the conditions U(x) =
=x + M, if xe NR; U(x) = oo, if xe NF\NR, is a place of the nearfield NF
and NR is a valuation nearring belonging to the place.

Theorem 2.3. Let NR be a valuation nearring of the nearfield NF,M,;, M, be
its arbitrary ideals. Then

M cM,VM, c M.

Proof is the same as for fields. . !
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3. On Valuation of Nearfields

Let NF be a nearfield, G be a linearly ordered, at least two-element set with
the smallest element o. The mapping

v:NF - G

will be called the valuation (more precisely G-valuation of the nearfield NF)
if it holds:

¥(x) = 0 <0, . ¢))

V x,y,ze NF, v(x) S vp)=>v(ix.z) S v(y.2), 2

V x € NF, v(x + y) £ max [v(x), v(»)], (3)

Y a, b, x € NF, v(a) £ v(1), v(b) = v(1), v(x) < v(1) = 4

=vy[a.(b + x) —a.b] <)
In what follows we put e = »(1). Obviously e # o. Let

NR = {xe NF | »(x) < ¢},
V = {xe NF|v(x) = e}, (IID)
M = {xe NF|y(x) < ¢},

0,1 are certainly in NR. Assume that a, b€ NR = v(a + b) < max [v(a), v(b)] <
< e=a + b e NR. Further v(a) £ v(1) = v(a.b) < v(1.b) = v(b) L e=
=a.be NR. _

We investigate the element »(—1) of the set G. If v(—1) < »(1), thenv[(—1).
(=D < y[1.(=1)]=»(1) < v(=1), yielding a contradiction.

Completely analogous we disprove that v(1) < v(—1). Thus »(—1) = e, so
that —1 € NR, whence with every ae NR it is —a € NR.

This proves:

Proposition 3.1. The set NR from (III) is a subnearring of the nearfield NF V NF

Proposition 3.2. Let v: NF — G be a valuation of the nearfield NF. Then
(a) Y a, b, c e NF it holds v(a) = v(b) = v(a.c) = v(b. ¢),
(b) Va,b,ce NF, ¢ # 0 v(a@) < v(b) = v(a.c) <vb.c).
Proof: (a) v(@) = v(b) = v(@) < v(b) Av(b) < v(ia) = v(a.c) £v(b.c)A
Avb.c) S v(a.o).
(b) v(a.c) £ vwb.c), if however v(a@.c) = v(b.c) then by (@) vi@a.c.c™?) =

=wpb.c.c ') = v@ = vb). Our consideration leading Proposition 3.1
shows that

) v(—1) = e, ‘
whence ‘

v(a) = v(—a) V a € NF.
Theorem 3.3. Let v: NF — G be a valuation of the nearfield NF. Then the set
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NR, V and M from (III) are, respectively, the valuation nearring of the nearfield NF,
the set of the units of the nearring NR, and the maximal ideal of the nearring NR.

Proof: Because of Proposition 3.1, it suffices to prove that NR meets the condi-
tions from the definition of the valuation nearring.

Let x € NF\NR, then v(x) > ¢ = v(1) = v(x.x" ) > p(x™!) = ¢ > »(x7!) =
= x"1e NR (even x~ ! e M).

Let a,b,xe NR and let x ' ¢ NR. Then v(a) < e, v(b) <e, v(x) <e=
=>va.(b+x)—a.b]<e=[a.(b+x—a.b] 'eNR

Other statements of our theorem are obvious. .

Let us now have a nearfield NF and its valuation nearring NR. Let V be a set
of units NR. Putting NF* = NF\{0}, then NF* together with the multiplication is
a group, Visits subgroup (not necessarily normal). Let G* be a set of all right classes
of the group NF with respect to the subgroup V. Let 0 ¢ G*, G = G* U {0}. We
introduce the relation < on G as follows:

(1) VaeNF* 0<ZV.a(=0<V.a);0=0,
(Q Va,beNF¥ V.a<V.b<a.b 'eNR

We prove that < is a linear orderingon G.Vae NF*V.a<V.afora.a ! =

= 1€ NR.

Leta,be NFfandV.a S V.bAV.b<V.a=a.b"*eNRAb.a"'eNR=
=>a.b'eV. Furthera=(a.b™').b=>V.a=V.b

Let a,b,ce NF and let V.a £ V.band V.b < V.c, then a.b"'e NRA
Ab.cc'eNR=a.c 'eNR=V.a<V.cLeta be NF* theneithera.b e
eNRorb.a'eNR=V.asV.bvV.b<V.a

Letx,y,ze NFfandV.x £ V.y=x.y 'eNR=x.z.z7' .y e NR =
=(x.2).(y.2)"*'eNR=V.(x.2)SV.(y.2), thus V.x = V.y =V (x.2) <
V.(y.z2). Let x, ye NF*and let,say V.x S V.y=>x.y "' e NR = (x+)).
Tt =x.y"'+1eNR=V.(x + y) £V.y Therefore Vx,ye NF*is
V.(x +y) Smax(V.x,V.y). Letfinallya, b, xe NFfandV.a S V,V.b SV,
V.x <V=aeNR, beNR, xe NR If xisa unitin NR,thenxe V=V .x =V,
which is a contradiction. Hence it is that x ™ *¢ NR=[a. (b + x) — a.b] ' ¢
eNR=V.[a.(b+ x) —ab] < VandthereforeV.a S V,V.b SV, V.x <V =
=V.[a.( + x) — a.b] < V. This however implies that the mapping v : NF —
— @G for which v(a) = V.aq, if ae NF* and v(0) = 0 is a valuation of the near-
field NF for which

=
-y

NR = {xe NF | v(x) e V}.

Let v: NF > G be a valuation of the nearfield NF. Then we may take the set G’ =
= {ye G|3xeNF; y = v(x)} as a codomain of this valuation. G’ is then in -
a natural way linearly ordered set possessing the smallest element 0. Thus, every
valuation may be considered as a surjective mapping.
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If we define the equivalence of two valuations of the nearfield NF analogous
to the case of the field, we find that both valuations v and v’ are equivalent if and
only if the same valuation ring belongs to them, i.e.

{xe NF|v(x) < »(1)} = {xe NF|v(x) £ v'()}.

Thus there exists a one-to-one correspondence between the class of equivalent
places of the given nearfield and its valuation nearrings on one side, and a one-to-
one correspondence between the classes of equivalent valuations and the valuation
nearrings of the nearfield NF on the other. If NF is a planar nearfield and U is
its NF'-place being surjective, and if NF possesses any of equivalent properties
(A), (B) from Theorem 1.3, then NF’ is planar as well, and U in a natural way
induces an epimorphism of the projective planes coordinatized by the nearfields
NF and NF'.

HOPMUPOBAHIA MOYTH-TEJ
Pegmue

B cratke HOKa3aHO CYMIECTBOBAHUE B3aHMHO OXHO3HAYHOIO OTHOINCHUS MEXHY TOYKaMH,
TOYTH-KONBIAMA HOPMMPOBaHHA X HOPMHPOBaHMAMM NPABhIX HOYTH-TENI AHAJIOTHYHO, KAK TOMY
B Clly4ae nosei.

ITo reoMeTprIeCcKOik MpUIMHE 0COGEHHO PACCMATPHUBAIOTCS IUIAHAPHEIE HOYTH-TENA.

VALUACE SKOROTELES

Souhrn

V &lanku je dokazana existence 1 — 1 korespondence mezi umisténimi valualnimi skorookruhy
a valuacemi pravého skorotélesa analogicky, jako je tomu u komutativnich téles. Z geometrickych
diivodi je zvlastni zfetel vzat na planarni skorotélesa.
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