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1. We consider an initial value problem
Y =f(x,3),  y(xo) = yo

and a linear multistep formula with second derivatives of the type
k k k o
Y 0Vns; =h Y Bivns; + Ry ViVt 12}
i=0 j=0 j=o

for its numerical solution. Let us denote by

k k k
o)=Yl oQ=YB W)=y’
Jj=0 j=0 j=0
the characteristic polynomials of the formula (F) and suppose the formula (F)
to be
— stable in the Dahlquist’s sense (¢(¢) fulfils the “root condition™),
— consistent (g(1) = 0, ¢’(1) = a(1)).
Following the known theory (e.g. [7], [10]) the formula (F) is then convergent.
There are another stability concepts for the formula (F) to be found in the
numerical analysis area; they are based mostly on applying the formula to the
“test equation” y’ = Ay resulting in the difference equation
k

Z(O‘j—‘Iﬁj"qz’}’j)YkH:Os q=Ah

j=0
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with the characteristic polynomial (“stability polynomial of (F)”)

(¢, q) = e(0) — qo(0) — g*(0). /

We denote its roots (with respect to ) as {; = n;(g).

The aim of this paper is to give some results concerning the stability on the
imaginary axis (see [5], [2]) of the formula (F) for k = 1, 2 in addition to those
results concerning its 4, 4,, 4, —stability, given in [8].

Definition (see [5], [9] for the case t({) = 0): A formula (F) is stable on the
imaginary axis (Aystable) if {iy; —0 <y < +w} =« 4 = {geC; |nfg)| £ 1
every root with modulus one is simple}.

Remarks. A is called the absolute stability region. Jeltsch has shown in [5]

that the following holds for (g, ¢) methods (z({) = 0):

— every consistent, 4,-stable method (g, 6) is A-stable,

— the maximal order of the consistent A;-stable (¢, 0) method is p = 2 (with the
trapezoidal rule having the smallest error constant); this contrasts with Cryer’s
result for the A,-stable formula in [1],

— an example of the (g, o, 7) formula (F) is given, being 4;-stable, but not A-stable.

The imaginary stability boundary of the k-step method (g, 6) of order at least two

is shown in [2] with the corollary that for the k-step method of the order p = 2

it is at most /3.
>

2. The one-step formula
Vust = Yo = hBoVn + BiVnst) + B2 Goyn + 71Vn+1)s (F1)

has the stability polynomial n({,q) = { — 1 — q(By + B0 — q*(yo + 7:{) with
the root {; = (1 + qBy + ¢%y0)/(1 — qB: — ¢*y). Followmg the definition the
formula (F1) is A4, stable iff

=y +iBoy Il T + yp? =By S 1. ¢))
Theorem 1.
a) The one-step formula (F1) of the maximal order p = 4
2

h
Yn+1 — yn (yn + yn+1) + =5 12 ( yn+1) (F1'4)

is A-stable.
b) The one-step formula (F1) of the third order (parameter 71)

2 ’ 1 ' 1 " ”
Ynt1 = Yn= h[(—3~ + 2?1)%. + (? - 2v1> y,.n] + h? [(‘6 + v:)y.. + VIYn+1:|

(F1.3)
8 Apstable iff y, < —1/12.
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Proof: The formula (F1.3) was presented and its A4, 4y-stability for y; < —1/12
shown in [8].
a) A;-stability condition (1) for the formula (F1.4)

1, 1.
/ ‘ R
is fulfilled for any y € R because the numerator and denominator are complex

conjugate numbers.
b) For the formula (F1.3), the A-stability condition (1)

1 1 y 1 .
Ini(iy)l = [ 1- <’6‘ + ')’1))’2 + 2<? + Vi)ly l ’ 1+ V1y2 + (*’3“ + 2)’1) Ly
| |
is equivalent to the simple condition (1/6 + 2y;) y2 £ 0 which holds for all ye R
iff y, £ —1/12.

=1

. 1 , 1.
|7r1(ly)[—‘1~72—y +71y

<1

The one-step formula of the second order (parameters S, y,)
’ ’ 1 7" " '
Yn+1 — Vn = h[ﬂoyn + (1 = Bo) yn+1] + h? [(‘3‘ + fo — 71) Yn + V1Yu+1J (F1.2)

was studied in [8]; its stability polynomial
(. q) = o(0) — qa(0) — ¢*1(0)

has the root .
¢ =m(q) = [1 + Boq + (—% + Bo — m) qz]/[l —(1 - Bo)q — 1:4°].

Theorem 2. The formula (F1.2) is A-stable if and only if

1 1 1 1 1 1
(ﬁmh)e{ﬁo:?, Y1 éjﬁo —Z}u{ﬁogj, 74 ;_?'_ﬂo_._z}_

Proof: The A;-stability condition (1) for the formula (F1.2) can be written as

follows
2

SIt+pp =il =By %

11 _<"%‘+ﬁo - ?1)Y2 + ifloy

after some algebraic modification we can write it as (% - Bo é— —fo+ 2y1) <o.

This condition is fulfilled exactly in the above mentioned region of the (8o, ¥1)-plane,
pictured in g. Fil.

Remarks.
1.
— We have the formula (F1.3) for (fy, ;) on the line y, = %[30 -z Fig. 1.
— The point (B, y,) = (1/2, —1/12) corresponds to formula (F1.4).
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— Jeltsch’s example from [5] with (8o, ;) = (1/2, 1) corresponds to the boundary
point of the region.

— The upper part of the stability region corresponds to formulas, which are 4;-stable
but not 4,, 4-stable (see [8]).

o

g

\ti 10 ’ .

Wil

Fig. 1

3. Some stability criteria for second degree polynomials .

3.1. Let the polynomial f(z) = a,z*> + a;z + ao, a;€C,a; = o; + if;,j =0,1,2
not to possess the roots on the imaginary axis. Then the following criterion may be
written from the generalized Hurwitz’s criterion (see [4]):

f(2) has all roots in the open left half-plane iff ,

a) a0, + BBy >0, ) o (H)

b) (2,2, + B1Ba) (@o%y + BoB1) — (B2 — 22B0)> > 0. ‘

3.2. Using another stability criterion by Schur—Cohen (see [3], [6]) leads to
f(2) has all roots inside the unit disc iff _
a) D2 =la,| —|ao| >0, R SO
b) D4 =|a,|* — |a|? "Iaoa1"alaz|>0 v
(a denotes complex conjugate to a).
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Remark: In this special case the condition a) is involved in the condition b) so
that it suffices to consider the condition b) only.

3.3. The Mébius transformation z = (w + 1)/(w — 1) maps one-to-one the left
half-plane and the unit disc of the complex plane. The polynomial f(z) = a,z® +
+ a,z + a, is transformed into

f(w + Diw — 1) = [a;(w + 1)* + a;(w? = 1) + ag(w — D?]/(w — 1)'2 =
= (b,w* + byw + by)l(w — 1)?, '

with b, = a, + a; + ay, by = 2(ay — @), bo = a, — a, + aq.
Using the criterion (H) we get ‘
f(2) possesses all roots inside the unit disc if and only if
a) (g + o + 0y) (2 — ) + (Bo + By + B2) (B2 — Bo) >0, ' (HT)
b) [(@, — @) (g + oy + a3) + (B2 — Bo) (Bo + B1 + B2)] [(2z — ) X
X (g = oy + 03) + (B2 = Bo) (Bo — B1 + B2)] > [(og — &ty + @2) (Bo + By + B2) —
— (o + oy + @) (Bo — By + BT

3.4. Respecting the possible root of the stability polynomial with modulus one,
we need to express this case not involved in the criteria (H), (SC).

Lemma 1. Let a3, — a,a@, = 0 hold for the polynomial f(z) = a,z*> + az + aq,
a;eC, a, # 0 and let us write D = a,d,(a,d; — 4a,d,) € R.

Then ’

a)ifa; =0,|ay,| =|ay| or a; # 0, D <0, the roots of f(z) are lying on the
unit circle and are simple,

b) if a; # 0, D = 0, then f(z) has double root z = —agylay on the unit circle,

¢)ifa; =0, |a,| # | ag|, then the roots of f(z) are simple and are lying on the
circle | z| = | apla, |'?, ,

d) if a; # 0, D > 0 so the roots of f(z) are simple and are lying symmetrically
with respect to the unit circle (z,z, = 1).

Proof: Let ayd, — d,@, = 0 be valid. If ¢, = 0, then it holds | z; | = | a,/a, |/
for the roots of f(z). If aga, # 0, let us put a, = @,d,/d, ; then the roots of f(z) are
also a solution of the quadratic equation @ya;z%> + @@,z + a,@; = 0 with the

discriminant D = a,a,(a,@; — 4a,d,) € R. In this case | z;z, | = | apd,/@oa; | =
=1L1If|a;| =2]ap|,then D =0, | z; | = | —a,;a,/2d5a, | = 1; D < 0 implies
z; = (—aya; + (=1) iJ—D)/(Zdoal),j =12

4|aoa; | |z;1* = | — @@, + (=1)i/=D|* = (a:3))* — D = 4aydoa,a,
from which | z;| = 1 follows. D > 0 implies

2.5, = —‘aldl + \/D—u. —alﬁi ot \/F _ (—alal)z - D =1
2 Z&Oal 2a051 4a0a_oa161
Corollaries: 1. a,a, # 0, ap@; — a,@, = 0 implies | ao | = | a, | under the condi-

tion a), b) in (SC),
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2. f(2) = a,z*> + a,z + a, under the condition ay,d, — a;@, = 0 has at least
~ one root outside or double root on the unit circle exactly if one of the following
conditions holds:

a) a; =0,]|a;| <|ay| (both roots outside),
b) a; #0,D =0 (double root on the unit circle),
c)a #0,D>0 (one root inside and the other outside).

4. The two-step formula of the type considered is

Yn+2.-— (1 + a)yn+1 + ay, =
= h(Boyn + BiVns1 + BaVns2) + B2(voyn + 7iVne1 + VaVns2) (F2)
with the stability polynomial

(L, q) = o(0) — qa(0) — ¢*<() =
=(1 = B2g =724 = (L +a+ Byg + .9 L + (@ = Poq — 700%)
Lemma 2. If the formula (F2) is A-stable, then

a)y,200r B #0, b)) [yi] <Ivo+ 72l vl =1[72]
Proof:
a) The leading coefficient in

a(C,iy) = (1 +y20% = iBoy) I = (L + a — y,p* + if1y) { + (@ + yoy® — iBoy)
vanishes if y> = —1[y, and B, = 0; the roots of n({, iy) are lying outside the unit
circle in the neighborhood of these values.
b) The roots of n({, iy) are lying inside the unit disc iff (following the (SC)
criterion, the condition b))
|1+ 920> = iBoy |> = | a + yop® — iBoy |* >
>| = (a@+yoy® = iBoy) (1 + a = y,y* — ifyy) +
+ A +a—yp*+iBy) (1 + 920" + iBoy) .
We can write this condition after putting in proper form
1—a® + [20, = ayo) + B3 — B3]V + (3 —v0) V* >

>|(1+a- 'V1y2) [1 —a+ (y, —- Y1)J’2 + B1(Bo — ﬁz)yz +
+ {1 +a =9y Bo + By) + Bi[1 + a+ (vo +72) ¥ T} -

This condition may be further modified to the form yP4(y) > 0, where the poly-
nomial of the sixth order Pg(y) possess the leading coefficient (y3 — y35)* —

— 73(yo — 72)%; from the condition of its nonnegativity results the necessity of
the condition b).

4.1 The two-step sixth-order formula with the parameter a

yn+2 + (1 + a)yn+1 + ay, =
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= h[(101 — 11a) y,4» + 128(1 — @) Y+ + (11 — 101a) Ynl[240 +
+ W2[(=13 + 3a) sy + 40(1 + @) Y4y + (3 — 130) ,]/240  (F2.6)
was derived in [8]; it is stable for @ € [ —1, 1) and possesses the stability polynomial
.. —13+3a , 101 —1la 2,
TC(Q,U’)'—‘I}‘*‘TY — i 7 4
1 s 8 3—13a , . 11—10la
+[—6—(1+a)y —1——a——lyT§(1—-a)]C+[a+ 340 y =iy 540 .

Theorem 3. The formula (F2.6) is not Astable for any ae(—1,1).
Proof: Applying the M&bius transformation the roots of n({, iy) are mapped
into the roots of F(z) = a,z*> + a,z + a,, a; = a; + if;, j = 0, 1,2 where

a0 = (1 + a) y*/8 B, =(a—1)y,
a0, =201 —a)( —p*15), B, = =31 + a)y/4
% = (1 + a) (2 — ¥*/6), Bo = (1 — a)/15.

The first from the conditions of (H) turns to te y*(1 — a?) (4 — ¥*/15)/4 > 0;
it is fulfilled with a e (=1, 1) for y*> < 60 only.

It

Remarks.

1.With y=0, ae[—1,1) wehave n({,0) = (* — (1 + a) { +a and D4(a, 0)=
=0 in the (SC) criterion; following Lemma 1, we can write D(a,0) =
= (1 + a)*> (1 + 3a) (1 — a). Thus the polynomial n({, 0) has simple roots on the
unit circle for ae[—1, —1/3), double root on the unit circle for a = —1/3 and
one root outside the unit disc for ae (—1/3, 1).

2. For a = —1 we have

. 1 7 .\, 16 . 1 7
n(l, iy) = (1 - _Eyz - Fty)gz ~ﬁlyC + <——1 +T§y2 +—1~5—y>,
C DA(=1,y) =0,  D(=ly) = —ky’(v* — 45" + 225, k>0,
D(—1,) <0  for ye(—ay, o) U (ty, 0) U (=00, —a,)

with o; = [(45 + J1125)/2]"2 = 2.39; 6.27. The A,-stability conditions are not
satisfied fora = —1 and ye(—a,, ;) U (g, &,).
3.a =1 implies

A T I U A I 1,3
. D4(l,y) =0,

Lo

S 5
D, y) = —8—y2 (-6~y -—7><0 for y* < 15 only.

4. Using the computer it was numerically found that D4(a, y) < 0 holds for
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y#0,yeR,ae(—1,1) (it is sufficient to undergo the search for y = 0 only).
The author didn’t succeed in proving this fact analytically.

4.2 The two-step fifth-order formula with parameters a, y,

Yn+2 — (1 + a)yn+1 + ay, =

5 11 8 311 ,
= h[(ﬁ 7 ¢ + 3)’2))’.. 15 — A =a)ype1 + ( 50 ~ 120 ¢ —3)’2> y,,+2]+

1 1 (237
+ h{(E ~qzat n) Y+ ( <0 472) Yner + mm] (F2:5)

—see [8] —is stable for a e [—1, 1); the stability polynomial (with g = iy)
31 1
v . — 2 il - . 2
n({, iy) = [1 + 72y 1(120 50 ¢ 3?2)}’]Q
23 7

11 , (5 11
+a+<15 15a+y2)y ~1y(7‘:-——27‘;—a+3y2). )
Theorem 4. The formula (F2.5) is not A-stable for any (a,v,), ae[—1,1),y,€R.

Proof: The condition a) from the criterion (HT) applied to (2) resultsin(l — a) x
x [ —40y%(360y, + 27 + 3d) + 21240y, + 207a + 1648] > 0. It can be fulfilled
with ae [—1, 1) for all y e R iff any of the conditions

a) y, = —(a + 9)/120,

b) 360y, + 27 + 3a <0 and 21240y, + 207a + 1648 > 0 is valid. Both of
them are satisfied in the narrow strip around y, = —0.075 in (a, y,)-plane where
the condition b) of (SC) fails to hold (as can be verified by a lenghty calculation —
see also remark 3 and Fig. 2).

1. By a direct calculation we can establish D4(q, y,,0) = 0 for all a,y,,
D(a,y,,0) = (1 + a)? (1 + 3d) (1 — a) with the same conclusions as for (F2.6),

2. The condmon [y11 <]vo + 72| from Lemma 2 now states

| 23/60 + 7a/60 + 4y, | < | (1 — a)/15 + 2y, |.

With ae[-1,1) it is fulfilled just for (a,y,) = (=1, —1/15); we have |y, | =
= |y, | = 1/15, but D2 = D4 = 0 in (SC) criterion for this case. Using Lemma 1

we find that D > 0 for approximatelly y € (2,39; 6,27) and so, following statement d)
of this Lemma, our formula is not 4;-stable.

3. Using the computer the first root of the equation D4(a, y,,y) = 0 has been
calculated for various values of (a, 7,). Special care has been devoted to the region
(@,9)e{~1<a=1,-0.5 <y, <0}, where A,-stable formulas can be found
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(see [8]). The numerical results has shown that D4(a, y,, y) assumes positive values
for (a, v,) from the region shown in Fig. 2, however for small values of y only. (The
numbers give the level of the first root in y, where D4 turns to be negative or
positive).

&

Fig.2

4.3 The two-step fourth-order formula with the parameters a, 8, y,
9 39 1 3 ,
Yntz =L+ @) youy +ay, = h[(h?;‘ ~ag ¢ bt 74-%)%. +
, 39 9 1 3 ,
+ Biner + ('K —we ?51 - Th>y"”] +

2 5 11 1 1 ” ”
+h [:(ZS_ pTak 4/31 +"T)’1 Yo+ V1Vnsr +
11 5 1 1 ”
+ (—-Zg- + —4—8—0 + Tﬂl +'Z"Y1)yn+2] (F2.4)
derived in [8] possesses a stability polynomial
n(l, iy) = a,(® + a;{ + ag, a; = &; + if;,j = 0,1,2 with
_— of 1 5 1 1
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% = —(1 +a) +y;y*
_ 5 11 1 1

—3 2 — — — _—— —
X=a+y (48 T 4ﬂ1+471),

= 39 9 1 3
B, = —)’(28“ T “‘é‘lﬂ —T%)

Bi= =By
- 9 39
ﬁ():—J’(ZS“‘Tg* ﬁ1 4V1>

Applying the stability criterion (HT), its condition a) can be written as

2 2 2fa—1 Bi\[ 1+a 3
)[2(1 a)+y( 3 +T)< —*8—+E—'}’1 > 0.

R

axl0

o,‘o.h

a0
SO

g\\ NN =%
as 0\ \ /

a v 0.k 4__,7

axio

Fig. 3
It can be satisfied for any y € R, when we have
[ﬁl > ~(1 —a) and y;, > (1 + a)/12]

or

l:ﬂl < %(1 —a) and y, <(1+ a)/12:|.

The condition |7;] <lyo + 7| from Lemma 2 takes here the form |y,| <
!
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< %(1 + a) + %yli (independently on B,!); it is fulfilled just for (a, y,)€

e{—( + @4 =7y, £ (1 + a)/12}. The condition | 7o [ = |7, | can be written in
this case as

B, =21 —a)3 fory,=20,9, =20, 7vy,=2(l~—-a)3 fory,<0,7,>0,
B =2(1 —a)f3  for yo<0,y, <0; 9y, 21 +a)4 fory,>0,y,<0.

When we substitute for y,, y, the expressions with the parameters a, by, y,, then

the lines y, = 0, yo = 0 (depending on a) in the (b;, y;)-plane divide this plane
into four quarters in which the conditions written above take place.

Theorem 5. There exist Aystable formulas (F2.4).

The proof follows from Theorem 1, for the formula (F2.4) with a = 0, f, =
= 1/2, y; = 1/12 corresponds to A;stable formula (F1.4). Another example of
the A4 ;-stable formula (F2.4) is the choice (g, f;,y,) =(0,0,0) as can be proved
using criterion (SC) directly.

Using the (SC) criterion and computing facilities, the search was undertaken to
find the A;-stability region in the (8, y,)-plane for various values of ae[—1, 1).

Results obtained are pictured in Fig. 3. The stability region is represented by the
convex part of the plane cut by the marked curve. It is interesting to compare this
result with the similar giving the A,-stability region of this formula in [8].

YCTONYMBOCTD HA MHUMOM OCU JIMHENHBIX
MHOTOWATOBBIX ®OPMYJI C BTOPO MPONM3BOJHONI

Pestome

B pa6ote u3yyaeTcsi A;~yCTOHYMBOCTH (YCTOMYMBOCTH HA MHHMMOU OCH) OJHOIIATOBBIX H JBYX-
marossix dopmyn (F1), (F2) ynucieHHOro MHTEPTrHPOBaHHUSA OOBIKHOBEHHBIX AuddepenIManmbHbIX
ypaBHeHnit. B Teobemax 1—5 mokasbiBaeTcs
— opuomarosas ¢opmyna (F1.4) MakcuMaJbHOTO NOpsKa p = 4 HE SABIACTCA A;-yCTORWMBOR
— omuomarosas ¢popmyna (F1.3) nopsagka p = 3 sBasgeTcs A;-yCTORYMBOR TOJBKO TOTNA, KOrjaa

71 S —1/12
— 06mactb A;-ycroitunBoct popmysst (F1.2) B mwiockocts napamerpos (Bo, 1) COBIALAET ¢ 06-

JIaCTHIO M300paxkeHHOM Ha puc. 1
— npeyxmarosas gopmyia (F2.6) He sBseTcs A4;-ycToituuBoR mis oboro a € [—1, 1)

— meyxmarosas Gopmyna (F2.5) ue ssisiercs A;-ycToiRuuBOi 1i1s moObix 3HaveHuH (4, ¥2)
—~ CymecTBYIOT A;~ycToituusbie ¢opmynsl (F2.4) mopsaka p = 4; Ha puCyHKe 3 II0Ka3aHbl pe3yJib-

TaThl YUCIICHHOM MPOBEPKH O0NACTH A;-YyCTORYMBOCTH B IUIOCKOCTH Hapametpos (B, ¥y) AIf

HEKOTOPBIX 3HAYCHMI mapaMeTpa a.
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STABILITA NA IMAGINARNI OSE
LINEARNICH MNOHOKROKOVYCH FORMULI
S DRUHYMI DERIVACEMI

Shrnuti

V préci se vySetfuje A;-stabilita (stabilita na imaginarni ose) linedrnich jedno- a dvoukrokovych
formuli (F1), (F2) pro numerické feSeni pocateni tilohy u obycejnych diferencialnich rovnic.
Ve vétach 1—S5 se dokazuje, Ze
— jednokrokova formule (F1.4) maximdlniho fadu p = 4 je A;-stabilni
— jednokrokova formule (F1.3) fadu p = 3 je A;-stabilni pravé pro y; < —1/12
— oblast A;-stability formule (F1.2) fadu p = 2 v rovin& parametrt (8o, ¥;) je ddna oblasti na obr. 1
— dvoukrokova formule (F2.6) fddu p = 6 neni A4;-stabilni pro Zadné ae [—1, 1)
— dvoukrokova formule (F2.5) fadu p = 5 neni A;-stabilni pro, Zddné hodnoty parametri (a, y2)
— existuji A;-stabilni formule fadu p = 4; na obr. 3 jsou ukazany vysledky numerického vysetio-
vani oblasti A4;-stability formule (F2.4) v roviné parametrd (8;, v;) pro nékteré hodnoty para-
metru a.
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