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1. Introduction

We investigate differential equations having the type

y'=4q@®)y, qeCR). ' @

The distribution of zeros of solutions of (q) may be described by means of the
basic central dispersion ¢ of (q). O. Bortivka proved in [2] that the function
(p(t) — tis m-periodic if the coeﬁment g of the oscillatory equation (q) is n-periodic,
too. This paper proves

Theorem 1. Let q be an almost periodic function and let ¢ be the basic central
dispersion of the oscillatory equation (q). Then the functzon o(t) — t is almost
periodic.

2. Fundamental concepts and lemmas

An equation (q) is called oscillatory on R if 4+ oo are cluster points of zeros of
every nontrivial solution of (q). A function o e CO(R) is a (first) phase of (q) if
there exist independent solutions u, v of (q) such that

tg a(r) = u(t)/v(t) for teR — {¢; v(t) = 0}.
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Every phase a of (q) has a continuous derivative of the third order on R and «'(¢)
# 0 for t e R. The equation (q) is oscillatory if «(R) = R. If € denotes the set
of phases of " = —y and « is a phase of (q), then €a := {ea, ¢ € €} is the set
of phases of (q) and &(r + n) = &(¢) + sign ¢’ for ¢ € €.

Let « be a phase of (q) and let us put ¢(¢) 1= a™*[«a(t) + nsign«’] for teR.
The function ¢ is called the basic central dispersion (of the first kind) of (q) (see

(1], [2D-

Definition 1. ([4]). The continuous function f is called almost periodic (on R)
if there exists a number L(= L(g)) to every ¢ > 0, such that at least one number t
exists in [x, x + L) for every x € R so that

[ft+71) —f)| <e  for teR.

It was proved in [5] that every equation (q) with an almost periodic coefficient ¢
is either oscillatory or disconjugate (i.e. every (nontrivial) solution of (q) has at
most one zero on R).

Lemma 1. Let g, € C°(R) and lim q,(t) = q(t) uniformly on R. Then there exist

n—+ao

Dhases o, of (q,) and o of (q) such that

lim o, (1) = of2), )

lim a,(t) = &'(t)
uniformly on every compact interval.
Proof. Let «,, v, be solutions of (q,) and «, v be solutions of (q) satisfying the
initial conditions: #,(0) = u(0) = v,(0) = v'(0) = 0, 4,(0) = u'(0) = v,(0) = v(0) =
= 1. Let us put

Bu(t) 1= 1(ui(t) + v3(2)),  B(t):= 1/(P(t) + v*(r)), 1€R.

Then lim (u2(t) + v2(t)) = u?(¢) + v*(f) uniformly on every compact interval
n— o

([3], Theorem 2.4.) and thus also lim 8,(t) = B(t) uniformly on every compact

n—+o0

interval. Let us put
t t
at):= [ Bs)ds, a(t):= [P(s)ds, teR.
. Y 0
Then «, is a phase of (q,) and « is a phase of (q) having properties given in the

Lemma.

Remark 1. It appears from the following example that (1) generally does not
uniformly hold on R. ,
Example 1. Let g,(t) := —((n + 1)/n)?, q(t) := —1 for te R. Then lim g,(t) =

n-*wo

= ¢(¢) uniformly on R. The function t(n + 1)/n is a phase of (q,) and the function ¢
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is a phase of (q). Assume the existence of phases a, of (4,) and « of (q) such that (1)
uniformly holds on R. Then there exist phases ¢,, ¢ € €, such that .

lim &,(t(n + 1)/n) = &(t) @)
uniformly on R. Hence, there is an index N, such that [ g,(t(n + 1)/n) — &(t) | < 1
for t € R and every n > N;. Specially (we put ¢t = nn)

|ef(n + D)) — enm) | < 1 for n > N,. 3)
From (2) we get lim ¢,(0) = ¢(0) and further signe, = signe’, g,((n + 1) n) =

n-—* oo

=¢£,0) + (n+ 1)zm.signe’ for n > N,, enn) = &) + nnsigne’. Then we

have for n > N,
[e((n + 1) m) — e(nm) | 2 n — | £,(0) — &(0) |,

which leads, because of lim ¢,(0) = &(0), to a contradiction of (3;.

n— oo
Lemma 2. Let ¢, and ¢ be the basic central dispersions of the oscillatory equations
(q,) and (q), respectively. Let lim q,(t) = q(t) uniformly on R. Then

n—*oo

lim @,(t) = ¢(1)
uniformly on every compact interval.

Proof. Let «, and a be, respectively, phases of (q,) and (q) having the properties
given in Lemma 1. Then o,(R) =R, «(R) = R and sign «, = sign «’ for n> N. By
Lemma 1 lim o!?(¢) = a®(¢) uniformly on every compact interval, i = 0,1. It follows
from this that lim «, !(¢) = «~*(t) uniformly on every compact interval. From

n—= o
the above properties of sequences {a,(f)} and {a, '(t)} and from the equalities
o) = oy o, () + nsigna)], @) =a '[a(f) + nsigna’] then follows the

assertion of the Lemma.

Lemma 3. Let q be an almost periodic function and ¢ be the basic central disper-
sion of the oscillatory equation (q). Then there exists a number K > 0 such that °
o) —t < K forteR.

Proof. Let s := ¢(0). By the Theorem on continuous dependence of solutions
on parameters there exists an ¢ > 0 such that for | | < ¢ any (nontrivial) solu-
tion z; of z” = (g(t) + A) z, z;,(0) = 0, has a zero in (s/2, 3s/2). Then it follows from
the Sturm comparison theorem that-any (nontrivial) solution z of (p), z(0) = 0,
has a zero in (s/2, 3s/2) for every p € C°([0, 3s/2]) for which |q(t) — p(t)| < ¢
for te[0,3s/2]. By assumption ¢ is an almost periodic function i.e. there is
a number L with such a property that there exists a 7: | q(t) — gt + 1) | < ¢
for ¢ € R on every interval of type [x, x + L) (x € R). If x, € R, then there exists
such a 14 € [xo, xo + L) that | g(t) — q(t + 1,) | < e for teR.

101



If u is a (nontrivial) solution of " = g(¢f + 7o) ¥, u(0) = 0, then there exists
such a solution y, of (q) that u(t) = yo(t + 7,) for te R. Let u(¢) = 0, u(t) # 0
for 1€ (0,&). Evidently &€ (s/2, 35/2), yo(to) = Vo(to + &) = 0 and using the
Sturm comparison theorem we obtain

(o) = @(10) = 1o +& <Xo + L + & <xo + L + 3s5/2.
It then follows that
@(xg) — xo < L + 3s/2.
The assertion of the Lemma can be found by setting K := L + 3s/2.

Lemma 4. Let q be an almost periodic function, (qQ) be an oscillation equation and
lim q(¢t + h,) = p(?)
uniformly on R, where {h,} is a sequence of numbers. Then (p) is an oscillatory
equation.
Proof. Let a be a phase of (q), sign ' = 1. Then evidently a(t + A,) is a phase
of (q,), where g,(t) := q(¢t + h,) for t € R. By Lemma 1 there exist ¢, € €, sign ¢, =
= 1 and a phase § of (p), sign f’ = 1, such that

lim e, (a(t + h,)) = (1) | Q)

n—+w0

uniformly on every compact interval. Let ¢ be the basic central dispersion of (q).
By Lemma 3 there exists a number X > 0:

o) —t <K for teR,

whence «(t + h, + K) > a@(t + h,) = ot + h,) + =n. Hence a(h, + K) > a(h,) +
+ =. If (p) is not oscillatory equation, then it is a disconjugate eqation so that

| B(t) — BO) | < =, for teR, ©)
(see [1], [2]). Putting ¢ = 0 or ¢t = K in (4), we find '
B(K) — B(0) = lim [e(a(K + h,)) — e,(a(h,)] =

n—w
> lim [e,(a(h,) + 7) — g(a(hy))] = limn = m.
But this contradicts (5) above. N

3. Proof of Theorem 1
By the. Bohr — Bochner theorem a function g e C°(R) is almost periodic if and
only if there exist for any sequence {h,} a sequence of functions selected from

{g(t + h,)} uniformly converging on R (see [4], Theorem 4).
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To prove that the function ¢(¢) — ¢ is almost periodic, it suffices to show that
for any sequence {/,} a subsequence uniformly convergent on R may be selected
from the sequence {@(¢ + h,) — ¢t — h,}. By our assumption, ¢ is an almost
periodic function. Thus, we can select a subsequence uniformly convergent on R
from {q(t + h,)}. Without any loss of generality we may assume, lim q(¢ + h,) =

n—+w©

= p(t) uniformly on R. Let a(f) be a phase of (q). Then a(t + 4,) is a phase of

' =q(t + h,)y. ©)

Let  be the basic central dispersion of (6). It then follows from ag(t) = a(t) +
+ mwsigna', a@(t) + h,) = at + h,) + nsigno’ that Y(@) = @ + h,) — h,.
Following Lemma 2 {¢(¢ + h,) — t — h,} converges uniformly on every compact
interval. Let us assume {@(t + A,) — t — h,} not to converge uniformly on R.
Then there exists a number a (> 0) and increasing sequences of positive integers
{ka}, {r,} and {t,} (| 4| > 0) such that

I q)(tn + hk,.) - hkn - (p(tn + hrn) - hr,.l g a, n = 13 2; 35 (7)

By Lemma 3, the sequences {¢(t, + k) —t, — b}, {@(t, + h,) — t, — h,,}
are bounded and ¢ is an almost periodic function. Possing to appropriate sub-
sequences, under the same notation for simplification, we find that

lim (o(t, + hy,) — t, — b)) = b,

lim ((P(tn + hr,,) =ty — hrn) =
and
lim q(t + 1t + hkn) = py(1), lim g(t + ¢, + hr,.) = p,(t) (8)

uniformly on R.
With respect to (7) ‘
|b—c|=a )

We now prove that p, = p,. Let ¢ > 0. Since limg(z + 4,) = p(t) uniformly

n—

on R and (8) holds, there exists an index N such that:

()| qt + ) —q + k)| < g3 for t € R and all » > N. Thus, also
lg(t +t,+h)—q(t+1t,+h)| <e3forteRandalln > N,

) | gt +t, — ) —py(1)| <e/3,1q(¢ +¢t, +h) —p(t)] <¢/3 for teR
and alln > N.

It then follows from (i) and (ii) | p,(t) — p,(f)| < & for e R and since ¢ is an
arbitrary positive number, we get p, = p,.

Since (¢t + ¢, + h) — t, — h,, is the basic central dispersion of y" =
=q(t+t,+nh)yand o +t, + h,) —t, — h,, is the basic central dispersion
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of y* = q(t + t, + h,) », we obtain from p, = p, and by Lemma 3
lim [@(t, + k) — t, — b, ] = lim [o(t, + h,) — 1, — h, ]

contrary. to (9).

OCHOBHAS IEHTPAJBLHAA JUCHEPCHA
IU®OEPEHIHAJbHOTO YPABHEHIA y” = q(t)y
C HOUYTH-NEPHONMYECKAM KOO OHUIINEHTOM 4

Pe3ziome
ITycTe
@ Y =q(t)y, g€ C°(R),
Xonebmomeecss YpaBHeHue, fo € R u y(# 0) — pemenue ypasuenus (q), y(to) = 0. ITycts @(t,) —
IIEpBOE CIIPaBa COMPSIKEHHOE YHCIIO C fo. Torma gyskums ¢ onpenenena Ha R 1 Ha3pIBA€TCA OCHBO-
Has UeHTpaibHas Aucnepcusi ypasHenus (q). B pabore mokasana Teopema:

ITycTh @ — OCHOBHAs IIEHTPANbHAS OUCHIEPCHS KOJEOIIomero ypasHenus (q) ¢ NOYTH-IEPHORH-
yeckuM korpduruentom q. Torga @(t) — ¢ mouTH-nepruoanyeckas QyHKIms.

ZAKLADNf CENTRALNf DISPERSE DIFERENCIALNI
ROVNICE )" = q(t)y SE SKOROPERIODICKYM
KOEFICIENTEM g¢

Souhrn

Necht
@ Y =q@)y, qeC°R),

je oscilatoricka rovnice, to € R a y je netrividlni fefeni rovnice (q), y(fo) = 0. Necht ¢(t,) je prvni
zprava od bodu 1, leZici nulovy bod fefeni y. Pak funkce ¢ je definovana na R a nazyva se zakladni
centrilni disperse rovnice (q). V prici je dokdzana véta:

Necht ¢ je zékladni centralni disperse oscilatorické rovnice (q) se skoroceriodickym koeficien-
tem g. Pak ¢(t) — ¢ je skoroperiodicka funkce.
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