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1. Introduction and notation

In [6] J. Vosmansky derived certain higher monotonicity properties of i-th
derivatives of solutions of

y'+ax)y +b(x)y =0, x € (0, ) a

in the oscillatoric case.

In this paper, using the first accompanying equation with regard to the basis «, j,
where o, B are real numbers with the property «? + B2 > 0, we extend the above-
mentioned results from [6] to the function

ay® + ﬂ(y”“) + ziai(x) y(')), i=0,1,..,

where y(x) is a solution of equation (1).

Finally, we introduce certain applications of the derived results for Bessel
functions.

In [2] M. Laitoch introduced the first accompanying equation (Q) towards
the differential equation

V' +q9(x)y=0 (@)
with regard to the basis «, § in the form
Y'+ Qx) Y =0, (%)
where
(xﬁq, 1 ﬁzq” 3 ﬂAq/Z

Q) =gq + +

= 2
o+ 2 o+ % @)

4 (2 + pg)?
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under the assumptions that g(x) e C,, g(x) > 0 for each x e (a, ), a is a real
number, and o, § are real numbers with the property «® + g2 > 0.
In [2] it is proved that if p(x) is a solution of (g), then the function

Y(x) = % N
Vo + Bq(x)
is a solution of the differential equation (Q) and conversely, if Y(x) is any solution
of (Q), then there exists a solution y(x) of the equation (g) such that
ay + By’
Vo + (%)
A function f(x) is said to be n-times monotonic (or monotonic of order n) on

an interval (a, o0) if

(-DIfOx) =0, i=0,1,..,n xel(a, o). 3)

= Y(x).

For such a function we write f(x) € M,(a, ). If strict inequality holds through-
out (3), we write f(x) € M (a, ©). We say that f(x) is completely monotonic on
(a, o) if (3) holds for n = co.

A sequence {x,};>,, denoted simply by {x,}, is said to be n-times monotonic if

(=1 dix, =0, i=0,1,...,n, k=12,.. ©)
Here
A%, = Xy, AXy = Xppq — Xpy eoer A" = A" Txpyy — A",

For such a sequence we write {x;} € M,,. If strict inequality holds throughout (4),
we write {x,} € M. The sequence {x,} is called completely monotonic if (4) holds
for n = .

2. New basic results

1. In this section we consider a second order linear differential equation (1),
where a(x) € C;5(0, 00), b(x) € C,(0, )
The transformation

u(x) = y(x) exp [% fa(x) dx:l
transforms (1) into the differential equation

U+ f(x)u=0, &)
where

1) = bx) — 2 () ~ -4 ©

70



Let f(x) € C,, f(x) > 0 on (0, ). The first accompanying equation towards
differential equation (5) with regard to the basis a, § has the form

U+ F(x) U =0, @)
where F(x) is given by formula (2;).

Thus, some of the results of [1] can be applied to equation (5) to give informa-
tion on solutions of differential equation (1).

Lemma 1. Let o,  be real numbers such that «*> + B> > 0, af < Oandletn > 2
be an integer. For the function f(x) defined by (6) suppose that

f(x) >0, f'(x) >0, f'(x)eM,0,x), xe(0,c0). ®)

Then for the carrier F(x) of the first accompanying equation (7) towards
differential equation (5) with regard to the basis o, § we have

F'(x) >0, F'(x) e M, _,(0, ), x € (0, o0)
d
“ 0 < F(©) = f(0) < o0.

Proof. (see paper [4], Lemma 2).
Let us denote, for fixed 4 > —1,

ay + ﬂ(y' +5a() y)
Vo + B (x)

where y(x) is an arbitrary solution of (1) and {x,} is a sequence of consecutive

g ®
dx, k=1,2,..,

R, = xkf 1W(x) exp [% fa(x) dx]

zeros of the function az(x) + B (z’(x) + —;—a(x) z(x)) , where z(x) is any solu-

tion of (1) which may or may not be linearly independent of y(x). The function W(x)
is any sufficiently monotonic function.

Theorem 1. Let o, f be real numbers such that «*> + 2 > 0,0 < 0,andn = 2
be an integer. For the function f(x) defined by (6) suppose that

f(x) >0, f'(x) >0, f'(x)eM,0,x), xe(0,x0).

Let
W(x) >0, W(x)eM,_,(0, ), xe(0, o). (10)
Then for R, defined by (9) there holds
{(R}eM?,. (11

Proof. Let y(x), z(x) be solutions of the differential equation (1). Then the
functions

u(x) = y(x) exp [-;— Ja() dx],
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v(x) = z(x) exp [% fa(x) dx] ,

are solutions of the differential equation (5).
It follows from [2] that the functions

Y(x) = ot pu’ ,
Vo + B (x) .
Z2(x) = av + o’

Vo + B (x)
are solutions of the differential equation (7).

Lemma 1 implies that F'(x) > 0 on (0, «0), F'(x) € M,_,(0, 00) and 0 < F(00) <
< 0. So, the conditions of ([3], Theorem 3.1) are fulfilled. Using this theorem
we have

{Nk} € M:—Z s
where N, is defined by

Sk +1

Ny= | W®IY®)[*dx, 1>-1, k=12, ..,

where Y(x) is the solution of equation (7), {s,} denotes the sequence of con-
secutive zeros of the solution Z(x) of (7).

Since Z(x) Vo2 + Bf(x) = av(x) + fv'(x) we have {s,} = {t}, where {1}
denotes the sequence of consecutive zeros of the function av(x) + fv'(x).

But, av(x) + Bv'(x) = exp [% { a(x) dx] (ocz(x) + BzZ'(x) + —:1{ a(x) z(x)), so
that {#,} = {x}, where {x,} denotes the sequence of consecutive zeros of the
functions az(x) + B (z’(x) + —;—a(x) z(x)) .

Hence it follows that

=] e
‘ @ + B(x)
so that (11) holds, and the theorem is proved.

‘ dx=Rk,

Corollary 1. Under the hypotheses of Theorem 1 we have

{xkf‘ ! W(x) exp I:% fa(x) dx]

for Ae(—=1,00, k =1,2, ...

2
ay + ﬂ(y' + %a(x) y) dx}eM:‘_Z,
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Proof of this corollary follows directly from Theorem 1, because (11) remains
valid when W(x) is replaced by

W(x) @ + B2, Ae(=1,0),
since the last function belongs to M, _,(0, o).
Corollary 2, Let the conditions of Theorem 1 be satisfied. Let a(x) > 0, a(x) €
e M,_,(0, ©), x € (0, ). Then for R, defined by

A

Xk +1

|y +ﬂ(y' +%a<x)y)

> =
\/m dx, A=20, k=12,..,

where {x,} and y(x) have the same meaning as in (9), there holds
{R}eM;_,.
Proof.Let us choose the function W(x) in the form W(x) = exp [—é—f a(x) dx] .

It is easy to see that under the assumptions of Corollary 2 W(x) satisfies (10) for
A = 0. Hence from Theorem 1 we obtain {R,} € M)_,,and the corollary is proved.

Remark 1. If in the above considerations we choose o = 1, § = 0, then we get
the results from [6] concerning the monotonicity of the sequence of consecutive
zeros of any arbitrary solution y(x) of equation (1).

If we choose « = 0, f = 1, then we obtain the results from [6] for the monoton-

icity of the sequence of consecutive zeros of the function y’'(x) + —;—a(x) y(x).

2. Consider the differential equation (1). Let ay(x) = a(x), bo(x) = b(x) # 0
be continuous and sufficiently differentiable functions on (0, o). Let a;(x), b;(x)
be defined recurrently for i = 1, 2, ... by formulas

. b;_
ai(x) =a;-y —5—-1— ,
i-1

bx) = b;—y + ai-y —a;_; sb 12y
bi-y
Suppose that b,(x) # 0 for x € (0, o0) and all needed i.
In ([6], Lemma 2.1) it is proved that if y(x), z(x) are non-trivial linearly independ-
ent solutions of

Y+ ag(x) Y + bo(x) y =0, | (130)
then yP(x), z(?(x) are non-trivial linearly independent solutions of
Y + a(x)y + b(x)y = 0. (14)
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Let ai(x), b,(x) be defined by (12,). The transformation

u(x) = Y exp [% faix) dx], (s
transforms (14,) into the differential equation
u" + flx)u =0, : U ¢ T
where fi(x) is defined by
Jilx) = by(x) — %a{(x) - %afx, i=0,1,..[6] 17,

Let fi(x) € C,, fi(x) > 0 for x > 0 and an arbitrary but fixed integer. The first
accompanying equation towards the differential equation (16;) with regard to the
basis «, f has the form .
U+ F(x)U =0,
where Fy(x) is given by formula (2,).

In this section we shall study sequences {R{"}, where R{? is defined for fixed
A> —1by

: i i 1 .
2 e p( e Lo )
RY = | W(x)exp [7 falx) dx] S

)

where y(x) is an arbitrary solution of (1) and {x{’} is a sequence of consecutive

dx,  (18)

zeros of the function az®P(x) + B[ z¢*V(x) + —%— a;(x) z9(x) ), where z(x) is any

solution of (1) which may or may not be linearly independent of y(x). The function
a(x) is defined recurrently by (12;). The function W(x) is any sufficiently monotonic
function.

Theorem 2. Let n = 2, i = 1 be arbitrary but fixed integers and let a, B be real
numbers such that «*> + % > 0, af < 0. Let the coefficients a(x) = ay(x), b(x) =
= bo(x) of (1) = (13,) be such that aj(x) (j= 0,1, ...,0), b;(x) #0(j=0,1, ...,
..., i — 1) defined by (12;) are differentiable. For the function f,(x) defined by (17)
suppose that

fi(x) > 0, f/(x) > 0, f](x) € M, (0, 00), x € (0, ).
Let
W(x) > 0, W(x) e M,_,(0, ), x €(0,-00).

Then for R defined by (18) there holds .
{RreM,_,. | ' (19)

Proof. Let y(x), z(x) be solutions of the differential equation (1). It follows
from [6] that the functions yP(x) = yi(x), z)(x) = z,(x) are solutions of the
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differential equation (14;). This implies that if {x{?} denotes the sequence of con-
secutive zeros of the function az(9(x) + ﬁ(z(””(x) + —21~ai(x) z(‘)(x)), then this
sequence represents the sequence of cosecutive zeros of the function azi(x) +
+ ﬂ(z{(x) + -;—ai(x) zi(x)) .

Theorem 2 follows now from Theorem .1 if we replace equation (1) by (14,).

Corollary 3. Under the hypotheses of Theorem 2 we have
0 :
A
{ | wW(x)exp [— fa(» dx]
xs‘() 2 |
for Ae(—1,0).
Proof of this corollary follows directly from Theorem 2. Assertion (19)
remains valid when W(x) is replaced by

Wx) @ + Bf(x)*?,  Ae(-1,0).

Corollary 4. Let the conditions of Theorem 2 be satisfied. Let a,(x) > 0, a,(x) €
€ M,_ (0, ). Then for R{" defined by

A
dx} eM;_,

by Lo
ay® + ﬂ(y‘ RO ))

A

i i 1 i
= | ay® 4 ﬂ(y‘ D+ S-aix) s ))
RO = | __c dx, 4>0, k=1,2,..
= | Vo2 + (%)

where {x"} and y®(x) have the same meaning as in (18), there holds
{RPYeM,.,.

Proof. In Theorem 2, we set W(x) = exp[——g—_f a(x) dx] , 4> 0.

3. Applications to Bessel functions.

Throughout this section we suppose that «, § are real numbers such that a? +
+ p*>0,af <0.

Let C,(x) denote any Bessel (cylinder) function of order v, i.e. any nontrivial
solution of the Bessel equation

1 2
y~+_;y'+(1 _ 12_)y=o, xe(0, ). (20,)
X

Let x > v and let {ay}i, denote the sequence of consecutive positive zeros
of the function

#Ci(x) + B(C;’(x) + 3 Cl)
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and let {bu}i=1 denote the analogous sequence of the function
" 1 )
GCC(X) + B(Cv(x) + 'é" avl(x) Cv(x)) ’
where a,;(x) is defined by (12,) and C,(x) denotes any Bessel function of order v,

possibly C,(x) again.

Lemma 2. Let f,,(x) be defined by (17,) for x > v. Then there exists one and only
one number a e (v, ) such that f, (@) = 0.

2 _ L
_ 7% 1 3
Proof. Using (17,) we have f,;(x) = 1 — 2 T e o — )
for x > v. It is obvious that lim f,;(x) = —o.
Since lim £,,(x) = 1 and f,(x) € My (v, ) ([5], Theorem 3.1) there exists one

X—>

and only one number a e (v, o) such that f,,(a) = 0.

Theorem 3. Let n > 2 be an integer and v > 0 an arbitrary number. Let a,,(x)
be defined by (12,), f,,(x) be defined by (17,) for x > v, and f,;(a) = 0, @ > v. Let
W(x) > 0, W(x) e M,-,(a, ©), x € (a, ©)

and let R!, be defined for x € (a, ©) and A > —1 by

A

aC) + ﬁ(c’; + 5 c’)

Byt [ 21
R,= [ W(x)exp [—)'2— fa,(x) dx] e dx. @D
~ ' Vo + Bu(x) |
Let m be the smallest integer satisfying a < b,,,. Then
{Rulzme My . (22)

Proof. Theorem 3 is a direct corollary of Theorem 2.

Since f,,(a) = 0 we obtain from f;,(x) € M, (v, ©)([5], Theorem 3.1) that £, (x) >
> 0 on (a, ©).

So, the conditions of the modified form of Theorem 2 are satisfied for any
n = 2 if the interval (0, c0) is replaced by (a, ).

The expression RS defined in (18) is of the form (21) so that (22) holds and the
theorem is proved.

Corollary 5. Let the assumptions of Theorem 3 hold. Let W(x) be a positive,
completely monotonic function on (a, ). Let R, be defined by (21). Then

{R;k}zlm € M:ﬁo .

The corollary is the case n = oo in Theorem 3.

76



Remark 2. As a direct conclusion of Theorem 3 we obtain

{(a;,k+1)y - (a;k)y}l:inIEMfo’ 0<y=1, (23)
{lg ——-—_“";'f 1 }k eM*. (24)
vk =m

Assertion (23) is an immediate consequence of Theorem 3 with A = 0,
C,(x) = C,(x) and W(x) = yx"~1.

Assertion (24) follows from Theorem 3 with A =0, C,(x) = C(x) and
W(x) = x~ L

Remark 3. Let the assumptions of Theorem 3 hold and let y > 0. Then _
{(a) Heme MY, 2%

{(lg a:’k)—y}l?;m € M:o > a"»m > 1a (26)
{exp (—yau)hizme My, @27

Assertions (25), (26) and (27) follow from Theorem 3 with C,(x) = C,(x),
A =0and

W) = =[x,

W(x) = —[Ag 07T
and

W(x) = —[e” "],
respectively.
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Souhrn

POZNAMKA O VLASTNOSTIACH VYSSEJ
MONOTONNOSTI i-tef DERIVACIE RIESENT
ROVNICE y"+ax)y + b(x)y =0

ELENA PAVLIKOVA

V praci [6] J. Vosmansky odvodil vlastnosti vy$Sej monotdnnosti i-tej derivacie
rie$eni diferenciadlnej rovnice
Y't+ax)y +bx)y=0 - x€(0, o) €))

. v oscilatorickom pripade.

V tejto praci, na zaklade prvej sprievodnej rovnice vzhladom na bazu o, f,
kde «, B su reédlne &isla s vlastnostou a® + B* > 0, st rozsirené vysledky z [6]
na funkciu

ay® + ﬁ(y"“’ + %ai(x) y“"), i=0,1,..,

kde y(x) je rieSenim rovnice (1).
V zévere st uvedené aplikacie dosiahnutych vysledkov na Besselove funkcie.

Pesrome

3AMETKA O CBOMCTBAX BBICIIEN
MOHOTOHHOCTMU i-roit IPOM3BOJHON
PENIEHUY YPABHEHMUA y" + a(x)y’ + b(x)y =0

EJIEHA TITABJIUKOBA
B pabore [6] A. BocMaHCKH HCCiIeqOBaJl CBOMCTBA: BBICIIE# MOHOTOHHOCTH i-TOM
npom3BOIHOM peutennii nuddepeHIHATIEHOTO YpaBHEHHS
Y+ ax)y + b(x)y =0, xe(0, ) M

B KonebaTeIbHOM CiIydae.

B 3T0it paboTe, c HOMOIIBIO IEPBOTO COIPOBOAMTENBLHOIO ypaBHEHHS IIpu Oa3mce
o, f rIe o, B IPOE3BOJbHEIE BEIECTBEHHEIE MOCTOSHHbIE ¢ CBOMCTBOM a? + B2 > 0,
006061eHb pe3yIbTaTh u3 [6] Ha dyHKIH

ay® + ﬁ(y““’ + 54 y“’), i=0,1,...,

rae y(x) pewenne qubdepenuuanrsroro ypasaenus (1).
B 3ak/roYeHWH NpUBEIEHBI MPHIOKEHHS TIOJXYIeHBIX Pe3yJbTaToB K Teopun Gec-
CeJIeBbIX (hBHKIHH.
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