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OPTIMAL DISTRIBUTION OF BREAK POINTS
AT A DIODE FUNCTION GENERATOR

KAREL BENES
(Received 25. March 1980)

In computing nonlinear problems by an analog computer or by a hybrid system
with diode function generators the accuracy can be increased by an appropriate
distribution of break points (knots of approximation) if an approximating function
dependence is generated by a function transformator (see figure 1). In most cases the
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X

Uniform distribution of break points is evidently far from optimal. Its disadvantage
'es in the fact that the error of approximation g; can be substantially larger in one
segment than in the other segments. Thus we find the distribution of break points
respecting the requirement of the best uniform approximation to be for the total
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accuracy of computation of greater advantage because the maximal absolute errors
here are equal in all segments. The appropriate distribution of break points can be
determined by a graphic method at a random search for such a broken line approxim-
ating the given function within the tolerance, or we choose an analytic way for
calculating the distribution of break points. Applying the graphic method we meet
with difficulties in determining the maximal error arising at the approximation of the
function (respecting the requirement of the best uniform approximation) through
a certain number of linear segments. Choosing the analytic way in determining the
break points leads to a system of nonlinear algebraic or transcendental equations.
This article presents an analytic determination of break points distribution respect-
ing the requirement of the best uniform approximation.
A. The precise machine computing of the break point distribution.
It holds
[ sl(x) |max = | ﬁz(x) |max = e = I sk(x) Imax9 (l)

for the best uniform approximation, where k stands for the number of segments.
In figures 1 and 2 the problem is described by the following system of equations:

,{Z(X) {,(XJ')

| G = fOx-0)

IEj(X)Izmaxi X‘-‘X X (xjm_*xj—l)+f(xj~1)_~f(xjm)},
J J-
f'(xjm)z—f—(xm;)‘ﬁ(x"“), Ji=1,2,.,k—=1,k,
i -1

Isj(x) Imax = |8j+](x) |maxa .1 = 17 2, ~~;k - L
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System (2) has for f(x) = x3, xe{0; 1>, k = 5 the form

3 3
Xj—X%j 3 3
X =%, (x,,,, Xjo1) + Xy —X] (2a)

Jjm>
—
. — l_ xj —xj 1
Xjm = 3~-_——————.
X;— Xj_y

In computing the system of equations

l 8j(x) !max =

l sj(x) ‘max = I 8j+ 1(x) lmaxr j = 1> 27 3’ 4

READ N, K

s-xm'
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gives

£{(X)max = 0,013 73 (2b)
x; = 0,329 23
x, = 0,534 95
x3 = 0,706 67
x, = 0,859 58

x5 = 0,999 99 (= 1),

figure 3 shows a flow chart for computing the system (2). Table 1 presents a break
point distribution in some functions for k = 5. Table 2 presents a break point
distribution of equal functions for k = 10.

Xy x3 x4 x5 e~* In x
Xo 0,000 0,000 0,000 0,000 0,368
X 0,329 0,427 0,501 0,164 0,549
X2 0,535 0,621 0,681 0,342 0,818
X3 0,706 0,768 0,808 0,539 1,221
X4 0,859 0,891 0,912 0,756 1,822
X5 1,000 1,000 1,000 1,000 2,718
Emax 0,0137 0,0157 0,0169 0,0031 0,0199
Tab. 1.
Xy x3 x* x3 e~ In x
Xo 0,000 0,000 0000 0,000 0,368
X1 0,206 0,300 0,377 0,080 0,449
X2 0,335 0,436 0,513 0,164 0,548
X3 0,443 0,540 0,609 0,251 0,670
Xa 0,539 0,626 0,687 0,342 0,818
Xs 0,626 0,703 0,753 0,438 1,000
Xe 0,709 0,771 0,811 0,539 1,221
X7 0,786 0,834 0,864 - 0,644 1,492
Xxg 0,860 0,893 0,913 0,756 1,822
Xg 0,931 0,947 0,958 0,874 2,225
X10 1,000 1,000 1,000 1,000 2,718
Emax 0,0034 0,0038 0,0041 0,0007 0,0050
Tab. 2.

B. An approximate determination of break point distribution
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1. A METHOD BASED ON THE ESTIMATE
OF THE UPPER BOUND OF THE ERROR

In the polynomial approximation of the function f(x) by the function g(x) in the
interval of the approximation a; b there is the inaccuracy of the approximation
(x) = f(x) — g(x) given by the relation

_ SO ! )
e(x)_m(x——xO)(x_}‘l)s""(x_)‘n)’ (3)
where x°, Xy, ..., x, are the knots of the approximation and { a certain point of the

interval {a; b), n is the degree of the approximating function. The maximal absolute
error of the approximation satisfies the inequality

Mn+1

[ (%) |max = (—n‘m

(x’ xO’ xla ceey xn)’ (4)
where M, ., = max | f(x)®*+D |

o(x, x°, Xq, ooy x,) = max | (x — x°) (x — X)) ... (x — x,) |
xe{a,b)

In the approximation of the function f(x) through the the linear segments is n = 1
and the error in the interval x e {a; b)> (according to (3)) is given by the relation

o)=L ey, ®

{elxj-13xp,J=1,2,..., k, where k stands for the number of linear segments.

For the estimate of the maximal absolute error (according to (2)) it is necessary
to find the extreme of the expression v = (x — x;_,) (x — x;). From the condition
for the extreme value of the function v

we determine the value x, at which the function » assumes its extreme. Hence

= i—l_z‘til_ (52)

Inserting these values into the right-hand side of equation (2) shows that
M, (x;—x;—4 \2
| s(x) ’max é T(_J'Tj—) ’ (6)

holds for the upper bound of the absolute inaccuracy in the interval {x;_y; x;>.
Then it suffices to choose the length of the corresponding step 4; = x; — x;_; as
follows
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By means of (6) we can then with a sufficient accuracy determine the computation
of the break point distribution if we approximate the function through linear segments
respecting the requirement of the best uniform approximation while the maximal
absolute errors are equally large in all segments.

| gl(x) lmax = i gz(x)max = e = | 8k(x) |max' (8)

Substituting this into (8) according to (6) enables us to carry over the equality (6)
to a system of equations for x;, x,, ..., X,—;. We approximate the function in the
interval {a; b). If there is M,; = constant, then we may consider an equality in (6)
and the system of equations for x,, x,, ..., X,_,; becomes the form

My (x — a)’ = Myy(x; — x4)°
M,y(x, — x1)2 = My;(x; — xz)z

My (g — x4-2)* = My (b — xk—l)z,

where M,; is the maximal absolute value of the second derivative of the function
in the j-th segment where a is the beginning and & the end of the interval of the ap-
proximation. In monotonic functions f(x) = x", Inx, e* etc. there is M,; at the
beginning or at the end of the corresponding segment which is to be decided in
each individual case first. For f(x) = x3, k = 5, a = 0, b = 1 the system (9) has
the form

x? = x,(x; — x)?
X300y = %)% = X300 — x,)°
X3(x3 — %)% = x4(xs — x3)? (%a)
Xg(xy — x3)2 = (1 =x)
and
x; = 0,286 x; = 0,684
x, = 0,500 x, = 0,848 (9b)
is the solution of the system. The sizes of the maximal errors | &;(x) |nax are
£1(X)max = 0,0020 £3(X) max = 0,0150
&(X)max = 0,0135 £4(X)max = 0,0155 (9¢)

£5(X)max = 0,0160.

The above determination of the break points based on the relations of (9) without
computer application is a relatively laborious task. The system (7) is a generally
nonlinear system of algebraic or transcendental equations whose solution is difficult
to be found without computer. It is relatively easy to find the solution of the system (7)
in case of f(x) = /x (cf. [1]) and f(x) = In x.

152 .



In computing the break point distribution using the approximation of the function
f(x) = In x with the number of segments k we proceed according to (7) as follows:

Seeing that f(x) = iz , the maximal absolute value of the second derivative of the
X

function f(x) = In x will be always at the beginning of the corresponding segment,

ie. M,; = »21—. The system of equations of (7) will have the form

j—1

1 1
—2(x1 —a)’ = —Z‘(XZ - x)%,
a X1

1 1
— (x2 —x;)* = ’xT(xa - x2)%,

Xy 2
®
1
”"2*—(xj~1 “‘x_f-z)2 = (xj'—xj-l)za
xj_z xj._l
1 1
2 (o1 —Xk-2)® = 2 (b—x-1)"
Xy 2 Xk-1
Extracting these equation we get the following system of equations
1 1
Y (-1 —=x;-2) = — - (xj—%;-1),
J- J—
j=23,..k, Xo = a,x; = b. (10a)
From (10a) we calculate x, for j = 2,
Xy Xy
a Xy
i.e.
2
x
n-2t, an
Inserting this into (10a) for j = 3 instead of x, we get
1 (%} a X}
M (7"‘1)— ;(X )
ie.
3
X3 = —x~;—. (11a)
a
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with the modification (multipiying by —‘1;?53) we get

4

Xy =L (11b)

If we compare the relations (11), (11a) and (11b) we get

1

—_ j c
xf_" aj_l X1 (llv)
ie.
1
b = Xp = ak_l X1,
x, = V" 'b. (11d)

Insering into (11c) gives the values x;, j = 2,3, ...,k — L.

Fork=5,x¢ <—i— ; e> is the distribution of break points as follows:

x, = 0,549, x,=0816, x;=1215, x,=1807. (11e)

The distribution of break points by (11le) agrees with that obtained by the digita
computer in solving system (2), where x, = 0,5488, x, = 0,8187, x; = 1,2213,1
x, = 1,8221.

System (9) is generally calculated by the trial-and-error method (of successive
approximations). Assume again a monotonic function of f(x), k the number of
linear segments, x € {a, b). If we first assume a uniform segmentation, i.c. the length

b—a . . .
of the segment 1 = ————, then we can determine from (7) the error with which
k

the function will be approximated through the given number of linear segments
with a uniform distribution of brezk points, i.e.

1/{b—a\
| 605) lnax = - (—ki) M;, (12)
M, = max |f"(x) |, xela, b).

Because by nonequidistant distribution of the break peoints the maximal error will be
smaller than that determined by relation (12). Thus we reduce the determined error
by the estimate (f.i. by 50 per cent according to the type or degree of the function
approximated). Let us now start from the point x; e {(a; b), where f“(x) maximal
(which is in monotonic functions mostly at the beginning or at the cnd of the interval
{a; b) and following (5) we search for the bound of the segment i.c. the point x;,,
or x;_;. We proceed analogous from this point further on tili exhausting all k
segments.
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If

k
h;>b—a,
Jj=1

then we reduce the error, in the case of

k
hj<b—‘a,
Jj=1

the error will be enlarged. This procedure is repeated till we obtain

zkjhjib—a. 13)

Let us show the given procedure on the approximation of the function f(x) = x°,
x €0, 1),i.e.a=0,b = 1,k = 5. By (12) the maximal absolute error in the uniform
distribution of break points may be equal to 0,030. Let us assume that we shall have
in the nonuniform distribution of break points | e(x) | max = 0,020. The maximal
absolute value f"(x) in the interval of approximation is at the point x5 = b = 1,
so that we start the calculation of the break point distribution from the value x5 = 1
towards x, = a = 0. The length of the segment is by (5)
hs = —q’gﬁ— = 0,163.

The maximal values f"(x) in the segment A, is at the point x, = 1 — 0,163 = 0,837
so that

0,16

= 0
=g os37 - OL7

and x; = x, — hy = 0,658. Likewise /iy = 0,210, x, = 0,448, h, = 0,244, x, =
= x, — hy = 0,204, Iy = 0,363. Because of /1, > x; (i.e.Y.h; > 1) we reduce the
estimated maximal error and will repeat the calculation. In | e(x) | max = 0,0173
we obtain

hs = 0,152 x, = 0,848
hy = 0,164 x; = 0,684 (14)
hy = 0,184 x, = 0,500
h, = 0,214 x; = 0,286

hy =0,284 = x,.

The calculation is proved satisfactory, condition (13) is satisfied with a sufficient
accuracy (3 h; = 0,998).

The above procedure is just a certain modification of solving the system of (7a),
as it is appeared from the results of (7b) and (14).



2. THE METHOD BASED ON A NUMERICAL

INTERPRETATION OF THE SECOND DERIVATIVE

Likewise the followng approximative method is based on using approximative
numerical methods and on the understanding that the second derivative of the
approximated functions is approximately constant, i.e. f"(x) = const, x € {X;, Xj4+ (>
(see figure 4). Devide the interval {a; b) into n equal subintervals where » is chosen

-

" Va'’%
- X -1 -
. p'e JJ
b-a b-os
m/ Yas'd

a (-1)h-a) , . X # (4-a), a -

so thatin any subinterval f”(x) = const. holds. By the required accuracy of approxim-
ation, each of these subintervals is approximated by an appropriate number of
linear segments. Then the total number of segments k is by given the relation

b—a 1 b—a & 1

k= .
N Ax; n = Ax;

™=

j=1

Inserting the point x;. into the middle of the interval, i.e. if ¥ — x;_4

holds, then we have there for »”

y0xj-1) + y06) —20(x) _

Xi T Xi-1 ’
2

_ AN (p(xj ) + p(x)) — 2p(x)) _ AN A%y,
(b—a)? (b—a)*’

"o,
yj =
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where Azyj is th second difference in the j-th subinterval. If y” = const. then we
have in (5) an equality and for the lenght of the linear segment in the j-th subinterval

2 2
(ij)Z — __8;,. _ 88(71) "_Za) — 28(xj —_— xj"‘l) —, (17)
Yio ANTIATy L y(xioyg) 4+ y(x) —2p(x))
—
1 =N\/[ij|. ) (17)

Ax;  [2¢(b — a)
Inserting the last relation into (15) gives

b—a Y n Jr&Z\)T 1
k= — = 18
N j; J2b —a) 2 ,Z Via (18)

Rewriting the last equation into the form
1 N —_—
Ke= =5 (3 VIA%y,)?, (19)
=1

then the equation (19) expresses the relation between the number of segments and the
error of approximation, i.e. it determines the error of approximation ¢ if k is given,
or it determines the number of linear segments needed, if the error ¢ is given.

According to [2] it holds for the second derivative y” (cf. 16)) in the j-th sub-
interval

(ﬁ_—jm )
b YOGoy) () — 290 2 PA(4X (20)

yl_ ij“x_,'_—l_‘ 2 12
1

felx;oix).

2
The expression 112 (Ei—foL) YO = —1%— h2y)(() gives the estimate of the

error of approximation of the second derivative by the expressicn (16) at the middle

point x; of the subinterval. According to equatlon (17) it holds ——(Ax N

if the second derivative is expressed by the error —— lz 2y4(©0), then

1 2 12 @

T (Ax;) ~ 1 — YO )] = ¢ + A, 21
where Ae = ——(Ax)2 hzy“”(() is the deviation of the error caused by the error of

b—
approximation of the second derivative. Let us chcose Ax = (analogous to the

k
uniform distribution of break points). Then
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— 2 _ 2
el = (252 55 w00 = | () w55 0| -

b—a)* 1
- 0. @)

From the tolerated change of error Ae we determine the value N and thus the co-
ordinates of points, at which we will perform the preparatory calculation i.e.

(b—a)’JIyPmax (b~ a)*/[y® max

Nz = = 23)
k \/384A¢ 20k \/Ae

At the boundary points x;_, x; of the subintervals is the estimate for the error of

approximation of the second derivative given by the relation | Ay" | = | by""({) |, so
that

i1{b—aN b—a ,

[Ae| = ‘g‘(—*—kﬂ) TN Y (S 29

i.e.
o (b —a)’y"(©)
Nz —F57. 25
T (25)

The procedure of the calculation:

Given the number of segments k, we determine the maximal absolute error
| e(x) | max on the basis of (12). Since the maximal error will be smaller in the
nonuniform distribution of break points than that determined by relation (12), we
reduce this error (say by 50 m according to the type of the approximated function)
and choose the tolerated change of error Ae. We determine the number N of sub-
intervals from (23) or (25). We determine the function values of the approximated
function at the end points x;_,, x; and at the middle point x; of any subinterval,
calculate the second differences and their roots which we insert into relation (19).

On the basis of (17) we have

AXj _ J 2¢ —
Xj— Xj-1 Yxj—1) = 2y(x) + y(x;)

g (26)

If we choose the distribution of break points, then we make it more precise by means
of (26). The break points arethen given by x; = xo + Ax;, X3 = x; + Ax,, ..., Xy =
= X;_; + Axy.

Below we give an example of an approximation of the function y = x® in five
linear segments, i.e. k = 5, in the interval x € <0; 1). By (12) we have | &(x) | pax =
= 0,030. Let us choose Ae = 0,002, (by (23)), where »""({) = 6, and N = 17,5.
Choose N = 10.

N 28)°
Y VA =osi928, ki =B _ o336,
=1
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1 x y At [AZ] V1A%
0,00 0,000 00
. 0,000 12
0,05 0,000 12 0,000 76 0,027 56
0,000 88
1 0,10 0,001 00
0,002 37
0,15 0,003 37 0,002 26 0,047 53
0,004 63
2 0,20 0,008 00
0,007 62
0,25 0,015 62 0,003 76 0,061 31
0,011 38
3 0,30 0,027 00
0,015 87
0,35 0,042 87 0,005 26 0,072 52
0,021 13
4 0,40 0,064 00
0,027 12
0,45 0,091 12 0,006 76 0,082 21
0,033 88
5 0,50 0,125 00
0,041 37
0,55 0,166 37 0,008 26 0,090 88
0,049 63
6 0,60 0,216 00
0,058 62
0,65 0,274 62 0,009 76 0,098 79
0,068 38
7 0,70 0,343 00
0,078 87
0,75 0,421 87 0,011 62 0,106 11
0,090 13
8 0,80 0,512 00
0,102 12
0,85 0,614 12 0,012 76 0,117 96
0,114 88
9 0,90 0,729 00
0,128 37
0,95 0,857 37 0,014 26 0,119 41
10 1,00 1,000 00 0,142 63
Tab. 3.
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For k = 5 the error ¢ = 0,0134. The size of the error agreeg with
relation (9b). For simplicity let us assume a uniform distributiop of bre
x; — x;-1 = 0,2. By relation (26) we have

that gives by
ak points, i.e.

0,0268 0,0268
- : 02 200 |
35 =02 oty 7503 = 02 50 = 0422
x; = 0,422,
_ 0,0268 _ 0,0268
axy = 0’2\/ $0.422) = 25(0,520) 70620 ~ 2 \/ 00313 = 0185

X, = x; + Ax, = 0,607,

_ 0,0268 _ 0,0268
axy = 0’2\/ 30,607 —250,707) + 70807 ~ \/ 00435 = 0,158

X3 = Xy + Ax; = 0,765

B 0,0268 _ 0,0268
Axe = 0’2\/ 30,763) = 25(0.863) 7 7(0965) — >+ 00515 = 0143

X4 = X3 + Ax, = 0,908

For checking let us determine another point x5 = x, + Axs, where
0,0268 0,0268
¢ = 0,2 =02 (229 .
Axs \/ 3(0.908) —25(1,008) + y(1,108) \/ 00608 = 04133
X5 = X4 + Axs = 1,041 = 1.

Since the computed coordinate x5 slightly deviates from the correct value Xs =1
it is necessary to amend the distribution of break points by multiplying out by

a convenient coefficient so that x5 = 1; in our case by ¢ =

1
1,041 Then the co-
ordinates of break points are

x; = 0,405; x, = 0,583; x3 = 0,734; x4 = 0,872; xs=1 27)

The computation of break points was performed on the assumntion of a uniform
distribution of break points, i.e. x; — x;_; = 0,2. Since the first segment is (by 27))
substantially larger than the other segments, we define exactly the computation
through the assumption of the following distribution of points:

Xy — xo = 0,4; x, — x;., =02, 1=2..,5

76
Ax, = 0.4 \/ 0,0268 0.4 \/————0’0 8 _ 0,08,

W0)—=2y(0,2) + y04) ~ "/ 0,0480
X, = 0,298,
-, 0,0268 B 0,0268
Axz = 0’2\/ 3(0,298) —2(0,398) T y(0,098) \/ 0,0230 = %215
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X, = x; + Ax, = 0,513,
0,0268 0,0268
= 4 — = 2 2 =
Axs 0’2\/ J0.513) —2,(0,613) T 3(0.713) ~ > \/ o,0570 ~ o170
X3 = X, + Ax; = 0,683,
0,0268 0,0268
— 2 = == 2 It hdnth = 2
Axs 0’2\/ $(0.683) —25(0,783) + 3(0.863) ~ \/ 0,0460 ~ 1%
x4 = x3 + Ax, = 0,835,

0,0268 [0,0268
Axs = 0’2\/ $(0,835) — 2y(0,935) + »(1,035) 0.2 0,0560 0,138,

X5 = X4 + Axs = 0,973.

Since we slightly deviate from the correct value x; = 1, we amend the coordinates

of break points by multiplying out by the coefficient ¢ = Then the co-

1
0,973 "
ordinates of break pcints are

x; = 0,306; x, = 0,527; x3 = 0,702; x4 = 0,858; xs = 1. (28)
The maximal errors are in the particular segments as follows:

€1(Mmax = 0,0110, &2(X)max = 0,0153, &3(X)max = 0,0141;
Eea(®)max = 0,0142;  £5(X) 0, = 0,0141. (29)
We see that the distribution of break points by (26) and the size of the errors by (29)
in good accuracy comply with the correct distribution of break points by (2b).
Approximating functions at which the curvature (the second derivative) less
changes, we obtain somewhat better result as regards the resulting coordinate of the
end point in choosing the division into an equal number of subintervals.
For instance, in approximating the function f(x) = ™~ in the interval x € {0; 1)
where N = 10 and k& = 5, the coordinates of break points and the maximal deviates
are computed in the particular segments:

xy = 0,166; x, =0,342; x; =0,530; x,=0,752; x,=1,001 =1. (30)
sl(x)max = 0’00315 sz(x)max = 0)0030’ Ss(x)max = 0:00283
£4(max = 0,0032,  £5(X)pe = 0,0032.
On the basis of (2) the theoretical value of x; and the error are
x; = 0,164, x, = 0,342, x; = 0,538, x, = 0,756,
(xO = Os X5 = 1)7 S(X)ma‘( = 030031 (30‘1)

In the above case the end point well complies with the end point x = 1 of the interval.
In these functions there is no need to divide the interval into a great number of sub-
intervals. (Cf. (29)).

161



This method is not absolutely accurate since we use approximate numerical
methods. The accuracy may be increased by using a larger number of subintervals
which, however, alongates the calculation. The advantage of this method is the fact
that we obtain the result comparatively quickly without using a computer.

Valuation of these methods.

The given problem is described by a system of equations (2). Due to complexity
of this system, the solution is understood to be done on a computer. The program
for computing this problem is a comparatively laborious task.

The numerical method Bl in some cases and B2 do not require any computer.
They are sufficently accurate for the practical determination of break points. The
maximal deviation at f(x) = x* is in Bl 0,0047, i.e. 36 % from theoretical maximal
error (by (2b) and (9¢)). Very good accuracy is at function f(x) = In x (see (11e) and
the next text.

In B2 is the maximal deviation 0,0027, i.e. 20 % (by (2b) and (29)). At the function
f(x) = e~ is the maximal deviation of the theoretical error 0,0002, i.e. 6 9 in B2
(by (30) and (30a)).

Using of ideal diods without considering nonlinearities at the initial segments
of a V' — A characteristic is assumed in this calculation.
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SOUHRN

DIODOVE FUNKCNI TRANSFORMATORY
S OPTIMALNIM ROZLOZENiM BODU ZLOMU

KAREL BENES

Préce se zabyva urcenim rozloZeni bodu zlomi podle poZadavki nejlepsi stejno-
mérné aproximace pii aproximaci funkce lomenou &arou. Je uveden piesny zplisob
vypoétu s pouzitim Cislicového poéitace (A) i pfiblizné metody zaloZené na pfed-
pokladu f"(x) = konst (Bl) a na numerickém vyjadfeni f/”(x) (B2). Pf¥i metodach
Bl (v nékterych pfipadech) a B2 neni tieba cislicového poditace. Je provedeno
srovndni vysledkd u funkci f(x) = x* a f(x) = e™*. Lepsi vysledky ddvd metoda
B2. Pfedpoklada se pouZiti idedlnich diod.
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PE3IOME

AUOOHBIE ®YHKIIMOHAJNLHBIE
ITPEOBPA3OBATEJIN C OIITUMAIJIBHBIM ~
PACIIPEAEJEHUMWEM TOYEK U3JIOMA

KAPEJI BEHEII

B cratbe onucan cmoco6 BBIYHCIEHHS pacrpeneseHys TOUeK H3JIoMa MpH almpo-
xaManuy (QyHKIUE 3JTOMHOM KpuBOU HO TpeOGoBaHMIO Halmydiled anmpoXuMAanuH.
OnucaH TOYHBI CITOCO0 BBIYHCHEHES C MCIIOJIB30BAHMEM BBIYECIUTEIbHOH MalIuHbI
(A) npubiu3nTesibHBIE METOIBI OCHOBAHHE HA Npenzmojioxenud ¢'(x) = xoHcT (Bl),
¥ Ha HyMepuueckoM BeIickaseiguio ¢"(x) (52). Ilpu meronax Bl u B2 He Hano BhHI-
YHCAUTENbHON Mamussl [lokaszano cpasmrenne pesyabTaToB y dyHKumit ¢i(x) = x°
¥ GyHxuuit ¢(x) = e~ *. Jlydmme pe3ysnpTaThl gaBaeT MeTox b2.
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