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The coordinatization of a projective plane and expressing of ‘‘analytical”
conditions to transitive operating of a homothetic group or of some its significant
subgroups has become subject to a large number of mathematical studies recently.
Most frequently they are devoted to investigating conditions under which the
coordinatizing structure (commonly a planar ternary ring) belongs to a translaticn
plane (i.e. to a projective plane being transitive with respect to a privileged
“improper” line and to all its points). These conditions depend both on establishing
the coordinate system and on the very coordinatizing structure (we have f.i. Hall
and Hughes coordinatizations). The results of Hall [1], already classical nowadays,
(the coordinatizing structure is given by a planar ternary ring with zero and
unity —the projective plane is translation plane iff :he ring considered is a quasi-
field with respect to induced addition and multiplication) have been generalized
to a case in which the coordinatizing structure is given by a planar ternary ring
with zero —not necessary with unity —([3], [6]) and to some cases of more general
planar ternary rings, commonly non-isotopic, with Hall planar ternary rings
(4], [5].

This article investigates a coordinatization of a projective plane by means of
a planar ternary ring with left quasi-zero and with a system of relative right quasi-
zeros. There are derived nccessary and sufficient conditions for such a planar
ternary ring to coordinatize a translation plane.
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§ 1. Hall Coordinatization of a Projective Planer

Throughout by P(V, n) we mean a chosen projective plane P with a privileged
flag (¥, n). The lines of P(V, n) are understood to be the sets of points. The line n
is called an improper line and the point ¥ € n denotes a vertical direction. In other
respects we use the terminology of affine geometry in its most commonly used
sence (proper point, improper point, proper line, parallel lines etc.). Proper lines
having a point V are termed vertical lines, other proper lines are called skew lines.
We write A for a set of all proper points of P(¥, n) and A for a set of all skew
lines of P(V, m). S is written for a set for which card S = ord P(¥, n). Then also
card (SxS) = card A = card A.

Every pair of bijections

():SxS—= A"
[]1:5SxS - A,

will be called a coordinate system in P(V, n) if

(a) Vx,y,x',y €S the points (x,y), (x’, ') lie on the same vertical line
@ x =Xx';

(b) Va,b,a’, b €8 the lines [a, b], [a, b'] are parallel <> a = &'

As a consequence of (a)

{(x,)eA|x=x0 xS} uU{V}
is a vertical line written as [x,]. Likewise, as a consequence of (b)
{[a,b]e A|a = ay; ape S} U {n}

is a pencil of lines with an improper centre. This centre will be written as (ag).
It is well-known, if the ternary operation t: S® - S is introduced on S by
means of
y = t(x, a, b) < (x, y) € [a, b],

then the structure (S, t) satisfies the axioms below:

Al: Va,b,ceSIA xeS: t(ab, x) = c,
A2: Va,b,c,deS,a+# cI xeS: t(x,a,b) = t(x,c,d),
A3: Va,b,c,deS,a#b3! (x,y)eSxS: t(a, x,y) = c, th, x,y) = d?)

The structure (S, t) is thus a planar ternary ring (in short PTR) (see f.i. [2]).
We say, the structure (S, t) is @ PTR belonging to a chosen coordinate system.

Y Forevery x, y € S will (x, y) mean a proper point of P(V, n), and also an ordered pair of elements
of S and thus also an element of the Cartezian product S xS. It becomes clear from the context,
however, which of the above three objects is actually concerned.

2) The uniqueness of the ordered pair (x, y) is just a consequence of A2.
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This article investigates a coordinate system in P(V, n) having besides (a), (b)
another two properties:

(c)30eSVa,b,c deS so that the lines [a, b], [¢, d] have a point in common
on the vertical line [0] < b = d.

The line [0] is called a vertical axis which we also denote by v;

(d)VaeS,a#03n,eSVYy, y eS8 such that the points (0, y), (a, ') lie on the
same line of direction (n,) <>y = y’. The element n, € S is called a right a-quasi-
zero.

Now we want to find out what properties of the coordinatizing PTR(S, t)
correspond to ours given above under (c), (d). Property (c): Let us choose an
arbitrary a € S and define a permutation

* 1858 x b b"™
by the condition
YbeS:(0,b)e[a, b™].

If u is another arbitrary element of S, then, of course,
VbeS:(0,b)e[u b™].

In consequence of (c) is ™ = b*2 for every b, so that

o= X
a u

Putting for an arbitrary a e S
* = *

then * is independent of the element ¢ which implies that (S, t) satisfies

A4: 30€S and permutation * :S — S(*: b — b*) such that Yu,be S:
t(0, u, b*) = b.

Conversely, if (S, t) satisfies A4 and if [a, b*], [c, d*] are skew lines, then
t(0, a, b*) = b, t(0, ¢, d*) = d. The above lines hav:- thus one point in common
on the vertical axis [0] iff b = d < b* = d* Hence we see that our coordinate
system has the property (c).

Let us now make the convention to denote by x the inverse permutation to *
relative to A4. Hence for every u,be S

t(0, u, b) = b*.

Property (d): Let a€ S, a # 0 and let b be an arbitrary element of S. Then the
points (0, b), (a, b) lie on the same line of direction (n,); however it is the line
[n,, b*] so that b = t(a, n,, b*). From this we see the validity of
A5:VaeS,a#0,3n,eS,VbeS, b = t(a,n,, b*).
Conversely, let A5 and A4 hold and let y, y’ € S. One and only one line of direc-
tion n,, namely the line [n,, y*], passes through the point (0, y). The point (a, y")
then lies on [n,, y*] iff y' = t(a, n,, y*) = y. Hence it holds:
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1.1. Theorem: The coordinate system in a projective plane P(V, n) has besides
the properties (a), (b) also:

(A) the property (c¢) when and only when the PTR belonging to it satisfies the
axioms A4, and

(B) the properties (c) and (d) when and only when the PTR belonging to it satisfies
the axioms A4, AS5.

§ 2. Planar ternary Rings with o Left Quasi-zero.

2.1. Definition: The planar ternary ring (S, t) satisfying the A4 stated in § 1.
is called the planar ternary ring with a left quasi-zero (in short L-PTR). The element 0
from A4 is called the left quasizero of L-PTR(S, t).

2.2. Remark: If the PTR(S, t) has a left zero i.e. an element 0 such that for all
u,beS t(0, u, b) = b, then 0 is a left quasi-zero for * = lg.

Every PTR(S, t) coordinatizes a projective plane P(V, n), say its canonical
plane [2]. This property will be utilized in some proofs.

2.3. Proposition: Let (S, t) be a L-PTR. Then
(2) (S, t) has exactly one left quasi-zero,
(b) Va,b,ceS,a# 0,3 xe8S:ta x,b) =c

Proof: (a) Be a,b,c€eS, a # b. The element z€ S is a left quasi-zero iff the
vertical line [z] passes through the point of intersection of lines [a, c], [b, c];
such a vertical line is naturally exactly one.
(b) Let a,b,ceS, a # 0, then t(a, x,b) = c<(a,c) e [x,b]. Since for an
arbitrary x € S the line [x, b] passes through the point (0, 5*), so the line [x, 4]
and thus also the element x are uniquely determined by the condition (a, ¢) e
€ [x, b].
Let a€ S, a # 0. According to 2.3. (b) there exists exactly one e, € S such that
t(a, e,, 0%) = 0. Let us set ¢, = 0 for a = 0. Then the ternary operation induces
two binary operations called addition (+) and multiplication (.) defined by means
of the functions
a+ b = ta,e,, b*), 0y
a . = t(a, b, 0%)

respectively.

/ In place of a. b we generally write only ab.

2.4. Proposition: The addition and multiplication operations in the L-PTR(S, t)
have the following properties:

92



@D VaeS:a+0=0+a=a,

B Va,beS3I'xeS:a+x=>bandthusVa,x,yeS:a+x =a + y =
=>x =y,

) VaeS:0.a =0,

() Va,beS, a#0 3! xeS:ax =b, thus Va,x,veS, a #0:ax = ay =
=X =y,

(e) VaeS:ae, =a.
The proof is trivial.

2.5. Definition: The L-PTR(S, t) is said to be linear (or to satisfy the linearity
property) if Va,b,ceS : t(a, b, c*) = ab + c.

§ 3. The Lr-planar ternary Rings.

3.1. Definition: The L-planar ternary ring (S, t) satisfying also AS is called
the Lr-planar ternary ring (in short Lr-PTR). The element n, of A5 is called the
right (relative) a-quasi-zero.

3.2. Proposition: Let (S, t) be a Lr-PTR. Then for every a€S, a # 0 there
exists exactly one right a-quasi-zero. For every element a€ S, a # 0 holds an, = 0.

Proof: Let (S, t) belong to a certain coordinate system in a projective plane
P(V,n). Let aeS, a # 0; for an arbitrary ne S the line [n, 0%] passes through
the point (0, 0) € [0]. Then n is a right a-quasi-zero iff (a, 0) € [n, 0*¥]. However
the line [n, 0*] and thus also the element n are uniquely determined by this
condition.

3.3. Remark: If the PTR(S, t) has besides the left zero 0 also a right zero Oy
(i.e. Y u, be S holds t(u, Og, b) = b), then is (S, t) a LR — PTR. Indeed, according
to Remark 2.2., (S, t)is a L — PTR with x = Ig; putting n, = O for every a € S,
a # 0, then t(a, n,, n*) = t(a, Oy, b) = b.

3.4. Proposition: /f the L — PTR(S, t) is linear, then it is Lr — PTR,

Proof: Let a€ S, a # 0. Let us determine n, € S so that t(a, n,, 0*) = 0 =
=an, = 0. Let b€ S, then t(a,n,, b*) =an, + b =0+ b = b.

s Mas
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§ 4. Vertical transitive Planes.

Throughout the next two sections there are assumed a chosen firm projective
plane P(V, n), a coordinate system with properties (a)—(d) in it, and a PTR be-
longing to it, which must be a Lr — PTR. From here on this PTR will be referred
to as (S, t).

For every direction U € nlet Ty stand for both a set and a group of all translation
of P(V, n). Here the group operation is represented by the composition of transla-
tions.

For the purpose of simplifying our notation, we will understand under the term
affine line p a set of proper points of p for every proper line p.

4.1. Definition: Let U be a direction in the projective plane P(V, n). The P(V, n
is called (U, n) transitive if the group Ty operates transitively on every affine line
of the direction U. A (V, m)-transitive plane is said to be vertically transitive.

4.2. Remark: If p is a affine line of the direction U and Q is its arbitrary point,
then the P(V, n) is (U, n)-transitive exactly if there exists a translation 1: Q — A4
(it is obvious) for every point 4 € p.

In what follows we will identify the translations of the plane P(¥, n) with their
restrictions on the set A of all proper points relative to the P(V, n).

4.3. Lemma: Let the P(V,n) be vertically transitive. Then Y a,beS, a # b,
In,eSVoveS ta, n,, v) = tb, n,, v).

Proof: The Lemma is evident if either a = 0, or b = 0. Let us assume that a, b
are different from 0. Let [n,,, u*] be a line passing through the points A = (a, 0),
B = (b, 0), thus [n,,, u*] = AB. Putting Q = (0, 0), then QA = [n,, 0*], QB =
= [ny, 0*]. Let us choose an arbitrary ve S and investigate the translation t:(0,u) -
— (0, v™). According to our assumption, such a translation exists. Let 1(Q) =
= (0, 9), 1(A) = (a, @), ©(B) = (b, b'). Then t(Q) 1(A) || QA and since ©(Q) is
a point on a vertical axis, we get ©(Q) ©(A) = [n,, ¢*] and likewise t(Q) ©(B) =
= [y, q*]. Since (0, u) € AB, then (0, v*) € ©(A) 1(B) whereby t(A) ©(B) || AB =
= «(A) ©(B) = [n, 0]. (A) € [n,, ¢*] td’ = t(a. n,, ¢*) = ¢; WB) & [y, 4*] +
= b = t(b, n,, g*) = ¢ therefore a’ = b'.

Since ©(A) 1(B) = [n,,, v], it holds t(a, n,,,v) = a’ = b = t(b, n,y, v).

4.4. Proposition: The following conditions are equivalent:

(a) the P(V, n) is vertically transitive

(b) VbeS is the mapping ¢, : A A, ¢, :(x,y) (x,y + b) a translation.
In this case is (S, +) antiisomorphic with the group Ty. Hence it is a group as well.
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Proof: 1. (a) = (b).

Let be S and 71, be a vertical translation in which 1, : (0, 0) = (0, ). We now
prove that t, = @,. We choose (x, y) € A and assume first x = y. If y = 0, then
1,(0, 0) = (0, b) = (0,0 + b) = ¢,(0,0). If y # 0, then the points (0,0), (y, »)
are lying on the line [e,, 0*] and their images 7,(0, 0), 1,(», ¥) then on the line
[e,, b*]. If 1,(y, ) = (3, ¥), then y" = t(y, e, b*) = y + b.

Let x # y. According to 4.3. there exists an element n,, € S such that Vve S
we have t(x, n,,, v) = t(y, n,,, v). Hence the points (x, y) and (y, y) lie on the line p
of the direction (n,,), consequently p = [n,,, v*], veS. Their images Ty(x, y),
Ty(y, ) lie on the line p' || p and therefore p’ = [n,,, w*]. However t,(y, y) =
= (y,y + b), thus

¥+ b =t(y,ny, u*). (2)

Let 14(x, y) = (x, y'). Then " = t(x, n,,, w¥) = t(y, n,,, w*) = y + b. Hence for
every (x, y) € A holds @(x, y) = t,(x, »).

2. (b) = (a).

Let A = (0,b), Q = (0,0). Then Q, A € v (a vertical axis). The translation ¢,
has a vertical direction and evidently ¢, : Q = A. Let ¢ : S —» T, be a mapping
where ¢(b) = ¢, for every beS. If for both elements b, 5" € S o(b) = @(b") or
¢, = @y, then for every (x,y) e A

(X, y+b)=(,y+0b) 3)

Putting y = 0 in (3), we obtain b = b’ = g is an injection, evidently surjective.
Let a, b€ S. Then

9, +55(0,0) = (0, a + b) = 9,(0, @) = 9,(9,(0, 0)) = (9, 0 ¢,) (0, 0) =
= Q,rp = Qp O @, OF (@ + b) = 0(b) 0 g(a).

4.5. Remark: If (S, +) is a group, then naturally, its neutral element is its left
quasi-zero 0. For every a € S; let —a stand for the opposite element to a. Thus
a+ (—a) = (—a) + a=0.If bis the next element of the set S, we shall also
write b — a in place of b + (—a).

4.6. Theorem: The projective plane P(V, n) is vertically transitive exactly if (S, t)
possesses the following properties:

(A) (S, +) is a group,

(B) (S, t) is linear.

Proof: I. Let the P(V,n) be vertically transitive. According to 4.4. there
holds (A). Let a, b, c € S. Then the point A = (a, ab) lies on the line p = [b, 0*].
Let 1, be a translation with 1, : (0, 0) = (0, ). According to 4.4. there holds T, = @,
such that t.(A) = (a,ab + ¢). Further t(p) = [b, c*] and since t.(A) e 1(p)
we get ab + ¢ = t(a, b, c*), which implies that (B) is true.
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I1. Conversely, let us assume that (A) and (B) hold. According to 4.4. it suffices
to prove that for every b € S the mapping

0y (X, ») > (x, ¥ + b) @

is a translation of a vertical direction. With respect to (A) we see that ¢, : A - A
is a bijection reproducing every affine vertical line. Let us consider a skew line
p =[b,c*]. Then (x,y)ep<y =t(x,b,c¥)>sy=xb+cy+b=(xb+c)+
+bey+b=xb+ (c+b)=(x,y + b)e[b, (c + b)*] < @y(x, ) e[b,(c + b)*].
Thus if we put p’ = [b, (¢ + b)*], then on the one hand p || p’, on the other hand
b = @u(p), such that @, is a translation of a vertical direction.

§ 5. Transiation Planes.

As is well-known, the projective plane P(V, n) is called translation plane if the
group T of all translations operates transitively on the set A of all proper points
relative to the plane P(V, n). Obviously, the plane P(V, n) is translation one if
V (b, b') € A there exists a translation 1 : (0, 0) = (b, b").

5.1. Proposition: Ler the P(V, n) be vertically transitive and for every be S let
the translation o, : (0, 0) — (b, 0) exist. Then the P(V, n) is translation plane.

Proof: Let (b, b)) € A; oy, 1,0 be translations with o, :(0,0) ~ (b,0), T,
(b, 0) = (b, b'). Both these translations exist. Thzn 1y © o, : (0, 0) = (b, b').

5.2. Proposition: Let the P(V,n) be vertically transitive and let there exist
a translation oy :(0,0) + (b,0). Let h = [n,,0%], thus (0,0)eh, (b,0)eh. If
(x,y)e h and oy(x,y) = (X', '), then Vme S:

x'm — bm — xm = x'n, — xn,>) (5

Proof: Clearly (x', y') € h. The equality (5) holds for m = n, (3.2. Proposition).
Let m # ny,. For the determination of the point (x’, y’) let us direct a vertical line [x]
through the point (x, y) and a skew line [m, 0*] through the point (0, 0). The
point (x, xm) is the point of intersection for both above lines. A parallel line &’
to the line 4 be directed through this point, where h' = [n,, ¢*], g€ S and xm =
= Xxn, + q i.e.

q = —(xn,) + xm. (6)

The point oy(x, xm) lies on the line 4'; if p = [m, 0*] and p’ is a parallel line to p
passing through the point (b, 0); then the point o,(x, xm) lies on the line p’.

W e write —bm instead of —(bm).
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Simultaneously, the points (x’, »') and o,(x, xm) lie on the same vertical line.
Hence o,(x, xm) = (x', y") where it holds for y”

Y = x'ny + (xn,) + xm @)
on the one hand and
y'=xm+v ®)

on the other hand with [m, 0*] = p’. Since (b, 0) € p’ we can evaluate v from the
relation 0 = bm + v or
v = —bm. )

After substituing (9) in (8) and comparing with (7) we get (5).
Now let us write for every three elements a, b, c€ S

Q(a, b,c) = {meS|cm — bm — am = cn, — any}.

Let A = [n,, 0*]. If there exists a translation o : (0, 0) > (b, 0), (a, an,) — (c, cny),
then according to 5.2. we have Q(a, b, ¢) = S.

5.3. Proposition: Let the P(V, n) be vertically transitive and let for every three
elements a, b, ce S hold

Q(a, b, c) = {n,} vV Q(a, b,¢c) = S. (10)

Then there exists a translation o, : (0, 0) = (b, 0).

Proof: Letb € S. Let us choose an arbitrary m € S, m # ny and define a mapping

y:S S, yoix e X
via the condition

x' = vy(x)<ex'm - bm — xm = x'n, — xn,. (1Y)

As a consequence of m # ny, the element x' is uniquely determined through the
element x of (11). Rewriting (11) in the form

’

x' = vy(x)<xm + bm — x'm = xn, — x'n, (12)

yields an uniquely determination of x by x" which implies that y is a bijection and
evidently y(0) = b. Let us make a mapping o, : A - A, o, : (x,») = (y(x), "),
with the points (x, »), (y(x), ¥) lying on the line of the direction (n,). [t is immediate
now that
I. the definition of the mapping o, is correct,

11. oy, is a bijection transforming every vertical line in a vertical line again

I1I. o, reproduces every line of direction (n,),

IV. 0,0, 0) = (b, 0).

Let us now prove that o, is a translation. Be [, v*] an arbitrary skew line, (x, y)
be its point, (x', y') = o,(x, y). Then

me Q(x', b, x)
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such that also u € Q(x', b, x) as assumed, and therefore
X'u — bu — xu = x'ny — xn,. o (13)

There exists an element g € S such that (x, y) € [n,, ¢*], (x", ') € [n,, ¢*] and

y=2Xxn,+q (14)
V=X, + g (15)

and finally (x, y) € [u, v*] =
Yy = Xxu + v. (16)

Substitution of (14) in (15) gives y’ = x’ny — xn, + y and applying (16) and (13)
we can write y' = x'n, — xny + xu + v =xu — bu — xu + xu + v = x'u —
— bu + v hence (x'. y’) € [u, (—bu + v)*] which is a line parallel to [u, v*].

5.4. Theorem: The projective plane P(V, n) is translation plane if and only if the
Lr-planar ternary ring (S, t) possesses the following properties:

(A) (S, +) is a group

(B) (S, t) is linear

(C)Va, b,ceS:@Q(a, b,c)={n}V Qa,b,c)=S8.

Proof: 1. If the P(V, n) is translation one, then it is vertically transitive, too.
We see that according to 4.6. Theorem the (S, t) possesses the properties (A), (B).
Let there exists an 7 € Q(a, b, ¢) such that /i # n,. We set p = [n,, 0*] and let
be m € S. Then there exists a translation t : (0, 0) — (b, 0). Next let there be B € p,
B = (a,q), B’ = 1(B)= B’ ep; B = (¢, q¢'). According to 5.2. Proposition we have

¢'m — bm — am = ¢'ny, — an, (17)
and since m € Q(a, b, ¢) it holds also

cm — bm — am = cn, — an, (18)
and ¢ = ¢'. For every m € S, with respect to 5.2. Proposition, we have

cm — bm — am = cny, — any,
with Q(a, b, ¢) = S.

II. Let the (S, t) have the properties (A), (B), (C). According to 4.6. Theorem
the P(V, n) is vertically transitive. According to 5.3. Proposition there exists

a translation o, : (0, 0) = (b, 0) for an arbitrary b€ S. By 5.1. Proposition the
P(V, n) is a translation plane. -

5.5. Remark: If the (S, t) possesses both a left and a right zero written as 0,
and Oy respectively, then there is for every a € S n, = 0Oy such that

Ya, b, ceS Qa, b,c) = {meS|am + bm = cmj}.

Consequently, the P(¥V, n) in this case is a translation plane exactly if for arbitrary
a,b,ceS am + bm = c¢m either only for m = n, or for all m e S holds ([6], [7]).
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§ 6. Example.

Let E, be a Euclidean plane, P be its projective extension, (¥, n) a flag in P such
that n is an improper line. Let us choose a Cartesian coordinate system with an
origin 0 and orthonormal vectors e,, e, such that V = [e,] Let us choose a
function f: R —» R such that f(0) = 0 and introduce the coordinate system in
P(V, n) as follows:

(x,») = 0 + xe; + (y + f(x))e,.

[u, v] is a line possessing the equation y = ux + v in the Cartesian system. Naturally,
our coordinate system possesses the properties (a), (b), (c) as stated in § 1. The
vertical axis presents a line given by equation x = 0. Let ¢ € R, @ # 0 and consider
the points (0, ) = 0 + be, and (a,b’) = 0 + ae, + (b’ + f(a)) e,. For the line
p = [u, v] with the points (0, ) and (a, ') holds u = [b" + f(a) — b]/a. Herefrom
b = b < u = f(a)/a. Thus, our coordinate system possesses even the property (d)
for n, = f(a)la, a # 0. The corresponding PTR(S, t) is thus a Lr — PTR; for
every x, u, v € R we have

t(x, u,v) = xu + v — f(x).

The left quasi zero is the number 0 being at the same time also a left zero.

Since n, depens on a, the (S, t) possesses no right zero. The plane P(V, n) is
a Pappian plane and the more so translation one = (S, t) possesses the properties
(A), (B) and (C).
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Souhrn

"TERNARNI OKRUHY S LEVOU KVAZINULOU
PRISLUSNE TRANSLACNIM ROVINAM

DALIBOR KLUCKY, LIBUSE MARKOVA

V ¢lanku se nejprve vysetfuje soustava soufadnic v projektivni roviné P s vyzna&nou vlajkou (¥, n)
takova, Ze:

(1) kaZdé dva vlastni body (tj. body neleZici na n) maji touZ prvni soufadnici pravé kdyz leZi na
téze pfimce sméru V;

(2) kazdé dvé $ikmé pfimky (tj. pfimky neobsahujici ¥) maji touZ prvni soufadnici pravé kdyz
mayji spoleény bod na n;

(3) existuje pfimka », Ve v, » # n té vlastnosti, Ze libovolné dvé §ikmé pfimky maji spole&ny
bod na v pravé kdyZ maji touZ druhou soufadnici;

(4) pro kaZdou pfimku a, V € a, a # n, v existuje bod (smér) N, € n takovy, Ze spojnice libovol-
nych dvou bodl pfimek v, a ma smér N, pravé kdyZ tyto body maji touz druhou soufadnici.

Planarni terndrni okruh (S, t) pfislusny k takové soustavé soufadnic se nazyvd Lr-planirnim
ternarnim okruhem. V ¢lanku jsou déle odvozeny nutné a postaCujici podminky pro Lr- plandrni
ternarni okruh (S, t), aby rovina P byla transla¢ni (tj. X, m)-transitivni pro viechna X € n).

Pesziome

TEPHAPBI C JIEBBIM KBA3SWHYJEM IPHNHAILJEXKAULE
K HPOEKTUBHBIM IIJOCKOCTAM TPAH3UTUBHbBIM
110 OTHOMEHMNIO K OJJHOM NPAMOIN]

JAJIMBOP KJIVLUKWY, JIMBYIIE MAPKOBA

B pa6oTte cHayana n3y4yaeTcs KOOPAMHATHAS CHCTEMA B IPOCKTHUBHOM IUTOCKOCTH P C 3HAYMTEb-
vHpiIM  ¢marom (V,nm) Takas, uTo
(1) npou3BoJIbHBIE HEOCOOBIE TOYKH (ITO 3HAYMT TOYKH HeJIeXaluue Ha V) 06NafaroT OAUHAKOBOK
ePBO KOOPAMHATOM TOTHA ¥ TOJILKO TOTJIa OHM JIE)XKAT Ha TOMU k€ CaMOM OpsiMOii HanpasneHus V;
(2) npoM3BOIbHEIE KOChIE IPsIMbIE (3TO 3HAYM1 NPSMBIEC HecoAepKaye V) obanaoT Toi xe camoit
TIEpBOM KOOPAHHATON TOTJa M TOJBKO TOrAA, €CiId Obl XOTsA OQHA WX OOLIas TOYKA JIeXajia Ha m;
(3) cyuwiecTByeT npsiMasi v, V€ v, v # n obnaparomas CiaeqyroluM CBOKCTBOM: JBE KOCBIE OPSIMbIC
HMMEIOT OOLIYIO TOYKY Ha Y TOTHA M TOJIbKO TOLAA €CIIM OHM MMEIOT OJUHAKOBYIO BTOPYIO KOOPAN-
HaTYy;
(4) nia mpou3BONIBHOM NpsiMOH# a, Vea, a # m, a 5 v cymectsyer Touka (Hampasienue) N, € n
Takasi, YTO OPsSMast COeAUHAIONIas JII00YI0 Iapy TOYEK IPAMBIX » U a Hanpasiiena B N, Toraa i Tonbko
TOra 3TH TOYKH MMEIOT OOLIyIO BTOPYIO KOODAHHATY.

TepHap (S, -) IpuHAIEKAUMA K TAKO! KOOPIUHATHON cUCTeMeE HasbiBaeTcs Lr-TepHap. B cTathe
BBIBENEHB! HEOOXOMUMBbIE W NOCTATOYHBIE YCIOBAS misi Lr-tepmapa (S, -), 4To0Bl mIOCKOCTH P
ABJISJIACh TPAH3UTUBHOM IUIOCKOCTBIO B OTHOLLEHHIO K JIroOO# HEOCOOO0M ToukKe.
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