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Introduction

The concept of grammatical categories introduced in traditional linquistics by
means of formal and semantic features has a great number of defects. There are many
exceptions in the system of these categories, they are not suitable for machine process-
ing e.t.c. That is why the analytical model of language was introduced in algebraic
linquistics; one of the main tasks of these models is to provide a formal definition
of grammatical categories.

In this paper we are giving a method of generating “large” grammatical categories
corresponding approximately to parts of speech.

From the mathematic point of view, we deal with a free monoid having a marked
subset and an equivalence relation on the set of generators. We define a binary
operation on the set (E(V)) of all equivalence relations of the language vocabulary
which assignes equivalence relation to any ordered pair of equivalence relations.
In the literature dealing with the algebraic linquistics we meet several operators
mapping the set of all equivalence relations of the language vocabulary into itself.
Among these operators there are also Kulagina’s and Trybulec’s operators. We prove
that our binary operation assigns to any pair of equal equivalence relations an
equivalence relation that is obtained from the given one by means of Kulagina’s
operator. Trybulec’s operator is also included as a special case in our operation. It is
obtained in choosing the second equivalence of an ordered pair to be the identity.

It is demonstrated on examples that the introduced operation is neither commutative
nor associative. It has several simple properties described in Chapter 2.
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1. Basic concepts

1.1. Let A, B be sets, f a surjection of A onto B. The relution f ~f is an equivalence
relation on A and f can be factorized in the form f = ie where e is the canonical surjection
of A onto Alf ~f and i is a bijection of Alf ~'f onto B.

We denote by E(A) the set of all equivalence relations on the set A. The set E(A)
is ordered by inclusion: it is a complete lattice with respect to this order relation.

Let «, B € E(A), « < . For every x € A/o we denote by f(x) the set y € A/f with
the property x < y. Then fis a surjection of A/x onto A/B. It will be called the natural
surjection.

Let A be a set, 2 € E(A), f € E(A), « = f, k the natural surjection of A/« onto A/p.
As we have seen, k™ 'k is an equivalence relation on A/x and k can be factorized
in the form k = ie, where e is the canonical surjection of A/a onto (A/a)/k™ 'k and i is
a bijection of (A/a)/k ™'k onto A/B.

We put:

Bla = k™'k

Let A be a set. We denote by A* the set of all finite sequences of elements of A;
we suppose that the empty sequence A is an element of A*, too. The set A* together
with the binary operation of catenation is called the free monoid over A. The elements
of the set A* are called strings. We identify one element sequences of A* with ele-
ments of A; thus A = A* holds true. If x e A¥and x = x,Xx, ... x, where n is a natural
number and x;e A for i = 1,2,...,n, we put | x| = n, further we put | 4| = 0.
The natural number | x | the length of the string x.

If n is a natural number and if A,, A,, ..., A, are subsets of A* we denote by
A A, ... A, the set of all elements of the form x,x, ... x, where x; € A; for every
i=12,..,n

Let A, B be sets, f a surjection of A onto B. Then there exists a unique homo-
morphism f, of A* onto B* such that f,/A = f. This homomorphism is defined as
follows: for every x € A*, x = x,x, ... x, wheren = Oand x; € A;fori=1,2,...,n,
we put f(x) = f(x,) f(x,) ... f(x,). Clearly, f,(A) = A. Let us suppose x € B* for
i =1,2, ..., n Then there exist the elements x,, x,, ..., x, in A* with the properties
X = X;X; ... X, and fy(x;) = y; forevery i = 1,2, ..., n.

Clearly, | x | = | fo(x) | for every x € A*.

Let « € E(A) be an equivalence relation on A, f the canonical surjection of A
onto A/a with the property f,/A = f. We put a,, = f, 'f; @, is a congruence relation
on A* with the property a, mn (A X A) = «. This congruence relation is defined as
follows: for every xe A*, ye A*, x = x,x, ... x,,, ¥y = y,Y2 ... ¥, Where m, n are
natural numbers and x; € A foreveryi = 1,2, ..., m, yje Aforeveryj=1,2,...,n
we put (x, y) € a, iff m = nand (x;,y) eaforeveryi = 1,2, ..., n. Clearly, (x, A) €
€o,, iff x = A.

We have A*/a, = (A/x)*.
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1.2. The ordered pair (V, L) where V is a set and L a subset of V* is called a language.
The elements of L are called correct sentences of the language (V,L). The set V is
called the vocabulary of (V, L).

Let (V, L), (U,M) be languages, f a surjection of V onto U. The mapping f is
called a weak homomorphism of (V, L) onto (U,M) iff f,(L) = M. The mapping f is
called a strong homomorphism of (V, L) onto (U,M) iff f {(M) = L. Clearly, every
strong homomorphism is a weak one and every bijective weak homomorphism is
strong. A bijective strong homomorphism of (V, L) onto (U,M) is called an iso-
morphism. If i is an isomorphism of (V, L) onto (U,M) then i ~! is an isomorphism
of (U,M) onto (V, L). :

Let (V, L) be a language, « € E(V), e the canonical surjection of V onto V/a. We
put L(V/a) = ey (L). Then (V/a, L(V/a)) is called the factor language on V/a. Clearly,
e is a weak homomorphism of (V, L) onto (V/a, L(V/x)).

Let (V, L) be a language. For every x € V we define the binary relation a(x) =
= {(u,v); (4, v) e V¥x V* uxveL} on V* and its elements are called contexts
accepting the symbol x. Let « € E(V), x e V. We denote by oc[x] the set X e V/u
with the property x € X. We put: Z,(x) = U a(t). X(x) is again a binary relation

tea[x
on V*. The elements of X (x) are all contexts z[icgcepting the symbol x and all contexts
accepting elements that are a-equivalent with x.

Let (V, L) be a language, « € E(V) an equivalence relation such that the canonical
surjection of V onto V/u is a strong homomorphism of (V, L) onto (V/a, L(V/&)).
Then « is called a strong congruence relation on (V,L). We denote by S(V, L) the
set of all strong congruence relations on (V, L). We have S(V, L) < E(V) and S(V, L)
is ordered as it is a subset of an ordered set.

1.3. Theorem. For « € E(V) we have o € S(V, L) iff, for every x,y eV with the
property (x, y) € ay, the condition x € L implies the condition y € L.

1.4. Theorem. Let (V, L) be a language. Then S(V, 1) is a complete lattice which
is a complete convex sublattice of E(V).

It follows that there exists the greatest strong congruence relation on every language
(V,L). We denote by 3(V, L) the equivalence relation on V defined as follows:
AV, L)={(x,y); xe V,ye V,o(x) = 6(»)}. Clearly, if xeL, (x,y)e XV, L), then
y e L; therefore 3(V, L) is a strong congruence relation on(V, L). Let « € S(V, L) be
arbitrary. Let x, y € V* be such that (x, y) € a. Let u, v e V*, (u, v) € o(x) be arbitrary.
Then by 1.3, we have (4, v) € a(p). Thus, (x, y) € 3(V, L) and « = 3(V, L). We have
seen that 3(V, L) is a strong congruence relation on (V, L). Therefore, the following
theorem holds true.

LS. Theorem. Let (V, L) be a language. Let 3(V, L) be greatest strong congruence
relation on (V, L). Then for every x,yeV the conditions (x, y)e 8(V, L) and
a(x) = o(y) are equivalent.
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2. Qperation I and its properties

Let (V, L) be a language, o, p € E(V). For x,y € V we put x(aIf) y if the following
condjtions are satisfied:

1° If (u, v) € Zy(x) is arbitrary, then o, o {(u, v)} 0 a, N Zy(y) # B,

2° If (u, v) € Zy(y) is arbitrary, then o, o {(u, v)} o a* N Zy(x) # 0.

Let o, Be E(V). For x,ye V we put ﬁ[x] ﬂ[y] if the following condition is

satisfied: for every s e B[x], (u, v) € a(s), there exzst te Bly]. W', v') e o(t) such that

(u,u)ea, and (v, V) ea,. Weput ==z n(2)" "
a,p a B a,p

2.1. Theorem. Let (V, L) be a language, o, € E(V). Then the relation 2 is reflexive
B
and translative on V/f.

Proof: From the definition of =, it follows that > holds for x, y,s, 7€ V such
a,p a B
that x = y, s = t. Then = is reflexive.

Let x, y, z e V be such that ﬂ[x] > ﬂ[y} and ﬂ[y] > B[z] hold. For every r € f[x],

(u, v) € a(r), there exist se f[y], (u v') € a(s) such that (w,u)ea,, (v,v)ea, by
definition of . As B[y] = B[z], there exist r € f[z], (u”, v") € o(t) such that (u’, u") €
a,p [

’ a,
€a,, (V,v") €ay. Further, we have (u,u")ea, 0 ay = oy, (v, V") Exty Oy = ty.
Thus, we obtain: for every r e B[x], (u, v) € a(r), there exist t € p[z], (u", v") € a(1)

such that (u, u") € 2y, (v,v") € . So B[x] = Bjz] holds and = is transitive.
a,p a, p
By definition of = and by 2.1, it is clear that the relation = is an equivalence
ap a B
relation on V/f.

Let a, B € E(V), x, y € V. Easy to see that the following assertions are equivalent:

(@) If (u, v) € Zy(x) is arbitrary, then a, o (u, v) O ay N Zg(y) # 0.

(IX) If (u, v) € Zy(x) is arbitrary, then there exists (u',v") € Zy(y) such that (u, u’) €
Eay, (V,V)€Eay.

(III) For every (u,v) € V* x V* such that there exists s € ﬂ[x], with the property
(u, v) € a(s), there exists t € B[y] and (w', v') € o() such that (u, u') € oy, (v,0) € ay.

(IV) For every (u, v) € V¥ x V*, s € B[ x] such that (u, v) € o(s), there exist t € [ y],
(u', v') € a(t) such that (u, u’) € oy and (v, V') € ay, .

V) L] z 1)

Let us denote by (I') =(V’) the statements obtained from (I) +(V) by exchanging

elements x and y.

By definition I, by definition of =, it is easy to see that the condition ﬂ[x] B[y]
ap
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is equivalent with the condition x(aIf) y for any x, y e V. As = is an equivalence
a8
relation on V, «If is an equivalence relation on V, and I is an operation on E(V).

Let (V,L) be a language, o, f e E(V), x,y € V. We put particularly « = 8 in
(D) +(V) and (I') +(V'). Then (V,) «[x] = o[ y] is equivalent with the following con-
dition:

(IIL,) For every (u,v)e V* x V* such that there exists s e zx[x] with the property
(4, v) € a(s), there exist t € a[y] and (W', v') € o(t) such that (u,u') € oy, (v, v') € a*.

Similarly (V) is equivalent with (IIT}).

Let (V/o, L(V/a)) be a factor language on V/x. Then (III,) is clearly equivalent
with the following condition:

(IIl,) For every (%, ¥") € (V/)* x (V/a)* such that (%, ¥") € o(¢[x]) the condi-
tion (%, ¥") € a(af y]) is satisfied.

Similarly the condition (III}) is equivalent with the condition (III}). From the

definition of = and from (IIL,) being equivalent with (V,) and (III) with (V}) the
a,p
following corollary holds true:

2.2. Corollary. Let (V, L) be a language, a € E(V), (V/o, L(V/&)) the factor language
on V/a. Then the following assertions are equivalent.

(1) ofx] = «[y].

() a(@[x]) = a(=[y].

From 1.5 and 2.2 = is the greatest strong congruence on (V/x, L(V/a)).

aa

2.3. Theorem. Let (V, L) be a language, o, B € E(V) arbitrary equivalence relations.
Then 8 < ol holds.

Proof: Let x, y € V be such that x € f[y]. Then B[x] = B[r] and Zy(x) = Z4(y).
Let (u,v) € Z4(x) be arbitrary. Clearly (u,v)ea, (1, v) 0 ay N Zy(y) therefore
condition 1° from the definition of the operation I is satisfied for the pair «, §.
Similarly, condition 2° from the definition of the operation I is satisfied.

We have proved the following: If x € B[ y], then x(«If) y. Thus, f = oIf.

2.4. Lemma. Let (V, L) be a language, «, B € E(V) arbitrary equivalence relations,
x,y,x,yeV. If (x,x)e B, (y,y)eB, (x,y) € (dp), then (x', y") € («If).

Proof: (x',y)e o (df) o B = («If) o (aIf) o («Xf) = oIff holds by 2.3 and by
transitivity of the relation oIf.

Let (V,L) be a language, o, f e E(V). We denote by S, = {x;; i = 1,2, ..., n}
a set of elements x; € V with the following properties:
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() a[x;]nofx;] =0 forij=1,2,...,ni#j
2 V= a[x]
i=1

The set S, is said to be a system of representatives of the equivalence «.

By 2.3 and 2.4, the construction of equivalence relation «Iff can be simplified
as follows:

We determine the set S;. Now for an arbitrary pair of elements x, y € S; we check
whether they are in the equivalence relation aIf or not. If such a pair does not exist,
then B = «If. If there exists at least one pair of representatives such that they are
in olf, then B < aIf and each maximal subset of S; in which any two different
elements are not in aIf defines a system of representatives S,;, of the equivalence
relation alf.

2.5. Example. We prove that the operation 1 need not be commutative. Let (V, L)
be a language where V = {a, b}, L = {ab}. Let o, Be E(V) be such that V]a =
— {a,b} = V, VJp = {{a}, (b} ~ id,.

Proof: For the language (V, L), « € E(V) is the greatest equivalence relation on V.
From 2.3 and from I being an operation on E(V), we obtain flx = «.

We construct aIf. The set S; = {a, f}. We prove that a(aIp) b does not hold.
We have Zy(a) = {(4, b)}, Zy(b) = {(a, A)}. Then o, o {(4,b)} 0 a, N Zyb) =
= {(4, b), (A, @)} ©\ Zy(b) = @ holds. Thus, we obtain: (g, b) € («If) and o«If = f.

We have proved the following: aIff = f # o = fl«, therefore the operation I is
not commutative.

2.6. Example. We prove that the operation X need not be associative. Let (V, L) be
a language where V = {a, b, c, d, e}, L = {abc, edc}. Let a, B, y € E(V) be such that
Via = {{a, ¢}, (b}, {c.d}}. VIB = {{a}. (b, d}, {c. e}}, VI = {{a, ¢}, (b}, {e}, {d}:

By a detailed analysis it can be proved that («If) Iy = pIy = y and oI(fly) =
= aly = 6 where V/§ = {{a, ¢}, {b, d}, {e}}. Then («If) Iy = y # & = al(fIy) and
the operation is not associative.

2.7. Theorem. Let (V, L) be a language, o, B,y € E(V). If « < y, then oIff < yIf.

Proof: Let x, ye V be such that x(aIf) y. Let (u, v) € Zy(x) be arbitrary. Then
Yx 0 {(1, ©)} 0y NV EZp() 2 2y O {(w, v)} © ay N Zp(y) # O holds and, therefore, we
obtain x(yIf) y. Thus «If < yI.
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3. Kulagina’s operator

Let (V, L) be a language, o € E(V) an arbitrary equivalence relation. We put o' =
= ala. Operator ' is called Kulagina’s operator.

If (V,L) is a fragment of the Czech language, « the equivalence relation on V
where blocks are paradigms, then o’ provides blocks approximating parts of speech.

3.1. Example. Let u, = stoji, u, = bojim se, uy = klanim se, u, = vidim, us = ozvi
se, ug = mluwvim o, u, = pohrdim, v, = had, v, = hada, vy = hadu, v, = hade,
vs = hadem, w, = hrad, w, = hradu, wy = hrade, wy, = hradem. Let V = {u;, v;, w;;
i=12..,7j=12,..,5 k =1,2,3, 4}, the set L of all grammatically correct
sentences consists of some strings xy, where xe {u;; i =1,2,...,7}, ye {v;, w;
F=12,...,5k = 1,2, 3,4} and is defined as follows: L = {u,v,, u,0,, u3v3, uv,,
UsVy, Ugly, UqVs, Uy Wy, UsWy, Us W3, UWy , UsWs, UgW,, U;W, ). Let o be the equivalence
relation on V whose blocks are paradigms. Then V/o = {{u,}, {u,}, {u5}, {us}, {us}
{ug}, {us}, {v;37=1,2,...,5}, {wm; k = 1,2,3,4}}.

By a detailed analysis it can be proved that V/a' = {{u;; i = 1,2, ..., 7}, {v;, w,;
J=12,...,5k = 1,2,3,4}}. Then the blocks of the equivalence relation «’ define
parts of speech.

3.2. Theorem. Let (V, L) be a language. Then idy is the greatest strong congruence
on (V, L).

Proof: For arbitrary x € V, we have Z;y(x) = o(x). Let u, u’ € V*; then (4, u) €
€ idy. iff u = u'. By definition of the operation I, the condition (x, y) € idylidy = idy
is satisfied iff 6(x) = o(y) where x and y are arbitrary elements in V. Hence, by 1.5,
idy is the greatest strong congruence on (V, L).

3.3. Corollary. Let (V,L) be a language. Then ~ < idy holds for arbitrary a e
€ S(V, L).

Proof: This is a consequence of 1.4 and 3.2.

3.4. Theorem. Let (V, L) be a language. Then a < o' holds for arbitrary a € E(V).

Proof: a < ala = a' holds by 2.3.

3.5. Theorem. Let (V, L) be a language. Then al(alx) = oo holds for arbitrary
a € E(V).

Proof: ala = o’ < ala’ = al(ada) holds by 2.3.
Let x, ye V be such that x(ala’) y and (u, v) € Z,(x) be arbitrary. Since « S« ’,
we have a[x] < «'[x] and therefore Z,(x) S Z,(x). As x(ol’) y, we obtain a, o
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o {(u, 1)} 0 ay N Z,(y) # 9, i.c., there exists y' € a’[ y] such that a, o {(u, v)} 0 2, N
N a(y) # @. Then there exist u’, v’ € V* such that (u, u) e a,, (v, V") € &, and (&', v') €
€ a()"). Further, we have (3', y) e «’ = alo.. Thus, there exist y" € a[ y] and (", v") €
€ o(y") such that (&, u") € ay, (v, v") € 2y . We conclude that (¥, u") € 2, 0 o, = @,
(v,v)eay, 0o, =a, and y"ea[y], ie, ay 0 {(,v)} 0y, N Z(y) # 9. Thus,
condition 1° from the definition of the operation I is satisfied for the pair («, @).
Similarly condition 2° from the definition of the operation I is satisfied. Thus by 2.3,
we obtain o’ < ala’ < o', -
We have proved that: ola = ¢’ = alo’ = al(al).

3.6. Theorem. Let (V,L) be a language, a € E(V) be arbitrary. Then o' Ia =o'
holds.

Proof: a < ala = a' holds by 2.3. By 2.7, we have «’ = ol < o'Ia.

It remains to prove that a'lx < o' = ala. Let x, ye V be such that x(«¢'Iax) y.
Then for every (u, v) € Z,(x), u, ve V*, the condition af 0 {(u,v)} o ay N Z(y) # @
holds, i.e., there exists y° e a[ y] such that aj o {(, v)} © o N a(3°) # 0.

Let us denote by n the natural number such that ¥ = x;x; ... X, U= Xppigy ..o X,
where x;€ Vfori = 1,2,...,n. If 1 £ k £ n, we denote by V(k) the following state-
ment: There exist x¥*e V for i = 1,2, ..., n, y*€ V such that (x*, x)e o for i £ k;
(b, x)eo fork <i<n; (0% y)exand x5 ... xkyoak . xkeL.

We prove the validity of V(k) for 1 £ k £ n by induction.

(A) o} © {(u, )} © & N a(y°) # Bimplies that there exists xY € Vfori = 1,2,...,n
such that (x{, x)ea for i = 1,2,...,nand x% ... x2px°2,, ... x? € L. Hence, V(0)
holds.

(B) Let us suppose that V(k) holds. Assume k < m. Then (xk,,, ;1) €0’ = ala
and (% ... xf, Xk, xEyRxk . x¥) e o(xk, ). This means that there exists x| €
€ o[ x;4,] such that o, o {(x% ... X[, Xkio .. XEVAXE Ly L XD} O o N a(xyyy) # D,
i.e., there exist x¥*1 e V, (xX**!, xY) eafori= 1,2, ...,n i # k + 1, **' € V such
that (O**1, y¥) e and (xXXF1 L xpTL X EL L xR IR XY € 6(x, 4 4). Thus

AT xkFLyktLpkal kvl e L. By hypothesis, we have (x}*!, x) e a 0 « = a for

i=1,2,..,k; il x,pea (XX, x)eaoca’ =ao for i=k +2,...,n; and
" Neaoa =a For m £k £n, we proceed similarly. Hence, V(k + 1) is
implied by V(k).

The validity of V() follows by induction. Thus there exist x7;, ..., X, ", Xps 15 -+
..., X"e Vsuch that (x;, xf)eafori= 1,2, ...,n; ()", y) €a, and X7 ... Xp3"xp 4 q ...
...xpeL. We put u' = x}] ... x}, v = X4y ... xp, ¥ =" Then u’y'v’eL; this
means (u',v')ea(y’). Clearly (u,u)ea,, (v,v)€eay, and hence (u',v)ea, o
o {(u, v)} © ay N a()). Since y’ € a[y], we have a, © {(4, V)} 0 oy N Z(y) # 0.

Hence, condition 1° from the definition of the operation I for the pair (a, o) is
satisfied. Similarly condition 2° from the definition of the operation I is satisfied.
Thus (x, y) e ala = o’ and we have o'l = o',
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3.7. Theorem. Let (V, L) be a language, o € E(V). Then o" = o’.

Proof: The condition o' < oI’ = " holds by 2.3.

It remains to prove that o” = o'Ia’ < o’. Let x, y € V be such that x(«'I2") y and
(4, v) € Z,(x) be arbitrary. Since « S o’ we have a[x] = «'[x] and, therefore Z,(x) =
< Z,(x). The condition x(«'I’) y implies that o} o {(u, v)} 0 oy N Z,(y) # 9, ie,
there exists y ea’[y] such that aj o {(u, v)} 0 2} N o()') # 9. Then there exist
u’,v' € V* such that (u, u') e ai, (v,v")€eaf and (u', v') € 6(3’). Now, (', y)ea =
= o'l holds by 3.6. Thus there exist y” € o[ y] and (u”, v") € 6(p") such that (u’, u") €
€ aj, (v', v") € af. We have proved that (v, u”) € o, 0 af = af, (v, V") € 0y © Ay = oy,
and y" e o[ y], i.e., oy © {(u, v)} w N () # 9.

Hence condition 1° from the definition of the operation I is satisfied for the pair
(o', o). Similarly the condition 2° from the definition of the operation I is satisfied
as well. We conclude that a” = a'ld’ < o'Ia = o',

We have proved that o’ = a”.

3.8. Theorem. Let (V, L) be a language, o, f € (V). Then the following assertions
are equivalent

(A) o = f'.

(B) there exists y € E(V) with the property a =« y<c o, f=yc .

©C)avppca,avpcp.

Proof: 1. Let (A) hold. We put ' =y=f. Thenacyca,fcycf
and (B) holds as well.

2. Let (B) hold. Thenavfcyca,aVvf < yc B and (C) also holds.

3. Let (C) hold. We put y = a v §; hence, a < y < . Let x, y € V be such that
(x,y)ea’ly and (u,v) e T (x) be arbitrary. Since x(a'ly)y holds, we have aj o
0 {(u, 1)} 0 oy N Z(y) # B, i.e., there exists y' € y[y] such that ai o {(u, v)} 0 &} N
N a(y’) # 9. Then there exist u’, v’ € V* such that, (u,u')eay, (v,v')ea; and
(', v) € a(y). Now (', ) ey < o' = o'l by 3.6. Thus there exist y” € a[ y], (", v") €
€ o(y") such that (u', u") € ay, (v', v") € ay. We have proved that (u, u”) € ay 0 ay =
=y, (V) e, 0o = a, and y" ealy], ie., ax 0 {(4, 0)} O af N Z(p) # D

Hence condition 1° from the definition of the operation I is satisfied for the pair
(o', ). Similarly condition 2° from the definition of the operation I is satisfied as
well. We have proved o'ly < o'Ix. Then we obtain y" = yIy < a'Iy < a'le = o
by 2.7 and 3.6.

Now let us suppose that (x, y) e ylo’, holds for x,ye V. Let (u, v) € Zy(x) be
arbitrary. Since y € o, we have y[x] S «’[x] and therefore Z,(x) < Z,(x). Since
x(yIa') y, we obtain y, o {(u, v)} © y, N Z,(¥) = ¥, i.e., there exists y' € «'[ y] such
that y4 © {(&, V)} © 4 N a(") # 0. Then there exist u’, v’ € V* such that (u, u’) € y,,
(v, v') € v, and (&', v') € o(y’). Now we have y’ € o’[y]. Since o’ = ol < 7l by 2.7,
hence ¥'(yI) y holds, i.e., there exists y” € «[y]. u”, v” € V* such that (u”, v") € 6(")
and (4, u")€ypy, (v',v")€y,. Further « =y holds and, therefore, «[y] = y[»].
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We have proved that (u, u") € p, 0 74 = 4, (1, V") €74 O y4 = 74, and y" eay] =
< y[¥] Thus, y, © {(4, v)} © y4 N Z(y) # O.

Hence condition 1° from the definition of the operation I is satisfied for the pair
(7, y). Similarly condition 2° from the definition of the operation I is satisfied as
well. Hence o' = ala = alo” < yIa’ < yIy = " by 2.7 and 3.5.

We have proved o' = y’. Similarly we prove ' = y’. Hence o' = y’ = " which
is (A).

3.9. Corollary. Let (V, L) be a language, o, Be E(V). Ifa = p = o, then o’ = f'.

Proof: a v = B < o holds. Further § < B, hence (C) from 3.8 holds. Thus
o = p.

3.10. Theorem. Let (V,L) be a language, o, f € B(V) be such that « < B < «'.
Then the following assertions hold:

(A) Pla =o',

B) aIff =o'

Proof: 1. Clearly o« < f < «’ implies o' = ala < fla < (ala) Ie = o' by 2.7
and 3.6. We have (A).

2. The condition aff < PIf = B = « is satisfied by 2.7 and 3.9. Let x, ye V be
such that x(aIf’) y and (u, v) € Z4.(x) be arbitrary; thus a, o {(, v)} 0 oy N Zu(y) #
# §. This means that there exists y’ € [ y] such that o, o {(, v)} © ay O a(y’) # 0.
Hence there exist u’, v’ € V* such that (u,u)ea,, (v,v)ea, and (&, v') e a(y').
Now we have (y', y) € p’ = o' = ol by 3.9. Then there exist y” € o[ y] and (", v") €
€ a(y") such that (', u") € oy, (v',v") € a,. Since « = B, we have ofy] < p[y] and
therefore y” € B[y]. Thus we obtain (u, u") € ay, (v, v") € ay, (", v") e a(y"), and y" €
€ Bly]. e, ay © {(, 0)} © oy O Zp(p) # O

Hence condition 1° from the definition of the operation I is satisfied for the pair
(¢, B). Similarly condition 2° from the definition of the operation I is satisfied as
well. Thus, x(«If’) y implies x(«If) y. Therefore, o' = ala = ola’ = alf’ by 3.5
and 3.9.

We have proved that o’ = aIf.

3.11. Theorem. Let (V, L) be a language, o € E(V) such that « < idy,. Then o' =
= idy.

Proof: The condition idy S a < idy holds. By 3.9, we obtain a' = idy,.
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4. Trybulec’s operator

Let (V, L) be a language, o € E(V) an arbitrary equivalence relation. We put a¥ =
= alidy. Operator T is called Trybulec’s operator.

Let (V,L) be a fragment of Czech language, « an equivalence relation on V,
whose blocks are paradigms. Let x, y € V. Then any word-forms x, y are in the same
block of a¥, iff the following conditions hold:

1. In each correct sentence containing x, each word-form different from x can be
replaced by a word-form from the same paradigm and x can be replaced by y in
such a way that a correct sentence is obtained after these replacements.

2. In each correct sentence containing y, each word-form different from: y can be
replaced by a word-form from the same paradigm and y can be replaced by x in
such a way that a correct sentence is obtained after these replacements.

4.1. Example. Let us have u, = hodnp, u, = hodnd, v, = chlapec, v, = divka,
wy = zpival, w, = zpivala, V = {u,,u,,v,,v,, w;, wp}. Then the set L of all
grammatically correct sentences consists of some strings xyz where x e {u,, u,},
ye{v, v}, ze {w;, w,} and is defined as follows L = {u,v,w,, u,v,w,}. Let « be
an equivalence relation whose blocks are paradigms. Then V/o = {{u,, u,}, {v\},

{v2}, {wr, wal}

We construct of = alidy. By a detailed analysis it can be proved that V/af =
= {{ur}, {ua}, {v1, 02}, {wi}, 2} )

4.2. Theorem. Let (V, L) be a language, o, f € E(V). If a < B holds then of < pT.

Proof: Clearly «f = alidy = flidy = BT holds by 2.8.

4.3. Theorem. Let (V, L) be a language, o € E(V) an arbitrary equivalence relation.
Then idy < oF holds.

Proof: We have idy, = idylidy < alidy = oF by 2.7.

4.4. Theorem. Let (V, L) be a language, « e E(V). If o < idy, then «F = idy,.

Proof: By 4.3, we have idy < o'. Since « < idy, we obtain «F
< idylidy = idy proved that by 3.6, and 2.7. We have o = idy,.

Il

olidy =
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Souhrn

O JEDNE DEFINICI GRAMATICKYCH KATEGORII{

FRANTISEK ZEDNIK

V praci je zavedena bindrni operace na mnoziné viech ekvivalenci slovniku jazyka, kterd uspofa-
dané dvojici ekvivalenci pfifazuje jednoznacné dalsi ekvivalenci. Na pfikladech se ukazuje, Ze
zavedend operace neni ani asociativni ani komutativni. M4 nékolik jednoduchych vlastnosti, které
jsou popsany v kapitole 2.

V kapitole 3 a 4 jsou pomoci zavedené operace definovany operatory Kulaginové a Trybulciv.
Ukazuje se, Ze operator Kulaginové dostaneme, volime-li dvojici ekvivalenci tak, Ze jsou si rovny.
Konstrukce Trybulcova je zahrnut také jako zvlastni pfipad, voli-li se druha ekvivalence rovna
identité.

Na pfikladech je ukdzén zplsob, jakym lze pomoci zavedenych konstrukci generovat ,,velké*
gramatické kategorie na jazyku s paradigmatickou strukturou, které pfiblizné odpovidaji slovnim
druhim.
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Peszrome

Ob OJJHOM OHPEAEJEHNUN TPAMMATHYECRUX
KATETOPH X

OPAHTUIIEK 3EJHUK

B paboTe npuBoAMTCA OMHApHAA ONEPALdsi HA MHOXECTBE BCEX JIKBUBAJICHTHOCTEH ClIOBaps
s13bIKa, KOTOpas K yIOPAZOYEHHOR nape 3KBUBAJICHTHOCTEH NPUCOECAUHACT ONHO3HAYHYIO JaJIbHER-
IIyIO 3KBHBAJIEHTHOCTh. Ha oTHeNnbHBIX IpUMEpax MOKa3aHO, YTO BBEACHAS ONEPALUS HH aCCOLHa-
THBHA, HHE KOMMYyTaTHBHa. OHa OTJIMYaeTCd HECKOJIbKUMH CBOMCTBAMH, ONUCAHHBIMH B riaBse 2.

B rimase 3 ¥ 4 npu noMoLM BBEJEHHOR onepauuu onpeneiacHst onepatops! Kynarusoit u Tpei-
6ymbua. OxasbiBaercs, 4To omeparop Kynarunod Mel mojiyyaeM NOpH H30OpaHHAH Oaphl PaBHBIX
skBuBasIeHTHOCTEH. [TocTpoenne TpriOyiibla TAKXKe BKIIFOYAETCA B KayecTBe 0COOOro ciydas, Korga
BTOpasi SKBUBAJICHLMS B Iape U3GUpacTCs PaBHOU TOXKIECTBY.

B crarbe HAa mpUMepax IOKa3aH CIoco0, KOTOPHIM OPH HOMOIIH BBEAEHHBIX CTPOEHHE MOXHO
06pa3oBarh ,,60/bmKe" rpaMMATHIECKHE KATErOPHH Ha S3bIKE C MapagHrMaTHIECKOR CTPYKTYpOo’
KOTOpbIe IPHOIU3UTENLHO COOTBETCTBYIOT YaCTAM PEYH.
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