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Dedicated to Academician O. Boriwvka on his 80th birthday

1. In this paper we investigate an equation

Yo=qt, )y =rt,n), qeC’D), reCD), m

with D = jxR, j=(a,b) (—0 £a<b < o), R=(—0w,®), comprising two
parameters A and u. Let (xg, yo) and (x,, y;) be arbitrary points of D, x, < x;.
The object of this article is:

a) to find sufficient conditions for the existence of the solution y of (1) where
W(x¢) = Yo, ¥(x;) = y, and for the relative homogeneous equation

Y o=qt, Dy, qeC%D), @)

to have a nontrivial solution v such that v(x,) = v(x;) = Oand v(t) + 0 for t € (x4, x,),
b) to find satisfactory conditions for the solution of the above problem, where
instead of the solution y of (1) and of the solution v of (2) we consider the derivative
of these solutions.
Besides, there is investigated the uniqueness of the solutions of both problems.

2. Basic definitions, relations and notation.
Let x €j and u be a nontrivial solution of

Yy =pt)y, peC()), (p)

u(x) = 0. Denote by ¢(x) the first zero of the solution u (as far as such exists) lying
to the right of the point x. The function ¢ is called the fundamental dispersion of the
1st kind of (p).

Let p(t) < 0 for ¢ € j and let v be a nontrivial solution of (p), v'(x) = 0. Denote by
Y(x) the first zero of the function v’ (as far as such exists) lying to the right of the
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point x. The function ¥ is called the fundamental dispersion of the 2nd kind of (p).

e 1 ”

Let pe C¥(j), p(t) < 0 for tej. We set py(t) := p(t) + /| p(1) | (,Trwr) ,
Vil

t €. Then the 2nd kind fundamental dispersion of (p) is equal to the st kind funda-
mental dispersion of (p): y” = p,(t) y. For more details see [1, 2].

Throughout the functions ¢(¢) and ¥(t) (e(t, 2) and ¥ (t, 1)) will denote the funda-
mental dispersions of the 1st and 2nd kinds of the equation (p) (the equation (2)),
respectively.

If for any 1; and 2, holds that ¢(z, 4;) < q(t, 4,) for t € j, then we conclude from
the Sturm comparison theorem that ¢(t, 1,) < ¢(t, A,) for ¢ from the interval of
definition of the function ¢(t, 4,). This set may be also empty.

It follows from [5, 6]: Let x, €/, ¥y, Yo be arbitrary numbers. Let u; and u, be
two different solutions of

Y o=p)y=f(t), peC%jp), [feC») [flt)=#0, 3)

satisfying the condition wu,(xy) = u,(Xe) = ¥y, and the Ist kind fundamental
dispersion ¢ of (p) be defined at x,. Then u,(t) £ uy(t) for 1€ (xq, ¥(x,)) and
u(@(x0)) = uy(p(x0)) 1= y, . In this case the points (x,, yo) and (¢(x,), y,) are called
the neighbouring knots of the Ist kind relative to (3) and to the initial condition (x,, y,).
Let p(t) < 0 for tej. Let v, and v, be two different solutions of (3) satisfying the
condition vj(xo) = v3(xe) = yo and the 2nd kind fundamental dispersion ¥ of (p)
be defined at x,. Then vi(¢) + v5(¢) for t € (xo, Y(x0)) and v;(Y(x,)) = V5 (xy)) : =
:= 7. In this case the points (xq, yo) and (Y(x,), y3) are called the neighbouring
knots of the 2nd kind relative to (3) and to the initial condition (x,, yo)-

Convention. Throughout this article we use * to denote the derivative with respect
to the independent variable ¢ to shorten the writing even in case of functions examined
being of two independent variables.

In what follows we will occasionally investigate the function ¢q(t, A) for which
one of the following assumptions applies:

(i) g€ CUD), q(t, Ay) < q(t, A,) for A; < A,, tej and
lim q(t, ) = — 0, lim q(t, 1) = o0, tej “@)

A== A=

(i) q(¢, H) = Ap(t), pe C%j) and p(¢) % 0 on every interval (< j);
(iii) g € C%D), ¢q"(t, 1) € C%(D), q(¢, 2) < O for (t, ) e D,

lim (q(!, A+ Jla(, 2| (——- L——~>n) = —00

. T4t )1

A \/|fi( )” 5
lim (g(t, D) + V140 DT (e ) | =0, €]

‘1‘2(" )+l ”(wq(r,m)) ot
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and

R, 1 ”
t, A0 + Jla(t, 24| ( :;;:) , Ap) +

* JITJ'ETJF(~L- )

JTa@ )|

for 4, < A, tE];

(iv) g CD), q"(t, 2) € C°(D), q(t, 4) < 0 for (¢, A) e D,

at, y) + JTath A)T(;l

e ”E A
JTaa D ) 7o

and p(t) % 0 on every interval (< j).

Lemma 1. Let x, €, x; € be arbitrary numbers, x, < x,. If the function q satisfies
the assumption (i), then there exists exactly one number Ay : (X, Ao) = x;. If the
function q satisfies the assumption (ii) and inf {x;xe€j, x > X, p(x) < 0} < x;
(inf {x; xej, x > x4, p(x) > 0} < x,), then there exists exactly one A, >0
(4> < 0) with @(xo, A1) = Xx1(@(xo, 45) = Xy).

Proof. Following Lemma 1 [3] the function ¢(x,, 4) is continuous on its interval
of definition. If the function g satisfies the assumption (i), then ¢(x,, 4) is an increas-
ing function mapping the interval of definition onto (x,, b). Hence, there exists
exactly one number 4, :@(xy, Ag) = x;. Let g satisfy the assumption (ii) and
inf {x; x €/, x > x4, p(x) < 0} < x; (inf{x; x €/, x > x4, p(x) > 0} < x,). It fol-
lows from Theorem 1 [7] and from its proof that ¢(x,, 4) is for A > 0 for which
@(xy, A) is defined (it is for A < 0 for which @(x,, 4) is defined) a decreasing (an
increasing) function. The rest of the statement of the Lemma follows from
Corollary 5.1. [4, p. 408] and from Corollary 1 [7].

Remark 1. Let the function ¢ satisfy the assumption (ii). Then it follows from
Lemma 1 that there always exists at least one number 4, : @(xy, 49) = x;.

Corollary 1. Let x,€j x, €j be arbitrary numbers, x, < x,. If the function q
satisfies the assumption (iii), then there exists exactly one number Ay : Y(xq, Ag) = X;.
If the function q satisfies the assumption (iv) and inf {x; x € j, x > x4, p(x) < 0} <
< x; (inf {x; x€j, x > xo, p(x) > 0} < x,) then there exists exactly one i, >0
(A2 < 0) with Y(xo, 41) = X1 (Y(Xo, 42) = xy).

The proof follows from Lemma 1 and from the fact that the 2nd kind funda-
mental dispersion of (2) is equal to the Ist kind fundamental dispersion of y" —

e 1 ”
—(q(t, )+ Jlq(t, )| | ——— =0
(q( Vi 4 (\/I @D ))y
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Lemma 2. Let x, €, Yo be arbitrary numbers, r e C%D), let the function (1) be
defined at x, and let

lim r(t, y) = — o, limr(t, p) = © (6)

i) B0
uniformly on the interval {x,, p(x,)> (< j). Let u(t, ) be a solution of
Y =p®)y=rt,w), peC°y),reCD) (M
satisfying the condition u(x,, p) = y,. Setting

M= {u(‘l’(xo); Au'); HEe R}9 (8)
then

M =R

Proof. Let . be the set defined by (8). It follows from the continuous dependence
of solutions on the parameter that .4 is a convex set. To prove Lemma 2 it suffices
to show that inf # = —o0, sup # = oo. We prove the second of the given equalities
(the proof of the first one proceeds similarly). Let sup # = L < oo. Let y,, y, be
solutions of (p) satisfying the initial conditions y,(xq) = y3(xo) = 0, yi(x¢) =
= ya(xo) = 1. Then p,(p(xo)) = 0, y,(0(x0)) < 0. We set

ke = — L+1-y,. J’2(§0(XO)) (W(EO)y,(f) dt)_l.
y2((x0)) %o

According to the assumption there holds (6) uniformly on the interval {xq, @(xo))
and consequently there exists u, € R such that r(t, uo) > k for t € {xq, 9(xo)>. Let v
be a solution of the equation y" — p(t) y = k, v(xo) = Yo, V'(Xe) = t/'(Xg, o) 1= Yo-
Then

o(t) = yoy2(t) + yoyi(t) + k § (y1(t) y2(s) — p1(s) yo(1)) ds.

Setting w(t) := u(t, po) — v(t), tej, then w” — p(t)w = r(t, uo) — k w(x,o) =
= w'(x,) = 0. Hence, by Theorem 1.1 [6] and its proof, we have w(¢(xo)) > 0
and therefore u(p(x,), o) > v(@(x,)). We have next

¢(x0)

U((P(Xo)) = )’OJ’z(CO(xo)) - kh(‘P(Xo)) j yi(s)ds =L + 1.
Thus u(@(x,), to) > v(@(xe)) = L + 1 contrary to the assumption u(p(xo), Ho) < L.

Lemma 3. Let X, €, Yo be arbitrary numbers, let the function ¢(t) be defined at xo
and let the function r € C°(D) satisfy (6) for t € {x;, ¢(xo)) and

r(t, ) <r(t,py)  for py < py and te{xq, p(xo)) ©)
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Let u(t, p) be a solution of (7) satisfying the condition u(xy, p) = yo. Then the function

a(p) := u(p(xo), ),  peR (10)
is an increasing function on R and «(R) = R.

Remark 2. As stated before, it follows from [5, 6], that all solutions u(z, i) of (7)
satisfying the condition u(x,, 1) = y, have equal values at the point (¢(xo), &)
Evidently this implies that the function « is by relation (10) correctly defined.

The proof of Lemma 3. From assumptions (6) and (9) laid on the function
then follows the uniformly convergence of (6) on the interval {x,, ¢(x,)y Whic
implies by Lemma 2 that «(R) = R, where the function « is defined by (10). Let py, p
be arbitrary numbers p, < p,. Let y,, y, be solutions of (p), y1(x¢) = y3(x0) =0
Y1(x0) = y2(xo) = 1. Then

u(t, py) = yoya(t) + t'(xo, y) y1 (1) + § (y1(8) y2(s) — y1(s) y(0) (s, uy) ds

u(t, o) = yoy2(t) + u'(xg, 12) y1 (1) + [ (11(0) y2(s) = y1(s) y2()) (s, p2) ds

and assumption (9) and the inequalities y;(t) > 0 for 7 € (xq, @(xo)), y2(@(xp)) < 0
yield
a(py) — a(iy) = u(p(xo); M) — u(P(Xo), 1) =

@(xo0)
= —J’2(§0(x0)) j y1(5) ("(57 Ua) — (s, lh)) ds > 0.

Consequently the function « is increasing on R.

Remark 3. The function r(¢, p) = f(¢) + u, fe CO(j) satisfies the assumptions
of Lemma 3.

Lemma 4. Let x, €, v, be arbitrary numbers, fe C(j) and let the function ¢(t)
be defined at x,. Next let

@(x0)
[ S y(Hdt+0,

where y, is a solution of (p), y1(xo) = 0, ¥i(Xo) = 1. Let u(t, u) be a solution of
Y= p)y = pf(t)

satisfying the condition u(xy, u) = yo. Then the function a(u) defined by (10) is strictly
monotone on R, o(R) = R, o' + 0.

Proof. Let y, be a solution of (P), ¥2(xo) = 1, y5(xX¢) = 0 and y,, u be the
function defined in Lemma 4. Then

u(t, 1) = yoy2(t) + u'(xq, 1) y1(1) + ﬂxf (11(1) y2(8) = p,(s) y,(0)) £ (s) ds

63



and from this we obtain

@(x0)

(1) = u(p(xo), 1) = yoya(e(xo)) — uyz(ca(’co)) J yi(s) f(s)ds,

o'(p) = —yz(w(Xo)) f }’1(5) f@)ds:=k +0,
X0
oalp) = ku + ¢ (¢ = a constant)
from which the statement of the Lemma results.

Lemma 5. Let p e C%(j), p(t) + 0 for t€j and fe C'(j). Then for every solution y
of the equation

Yy =p@)y =f@) (11

the function z(t): = A ( ) , t €] represents a solution of the equation

NTOIR

" — | p@t) + /rtl(w—~>ﬂ> =
’ (p( VIPOT L T

' f'®
I 12
f()( /lp(t)l>+\/lp(t)l (12

and vicer versa, for every solution z of (12) the function z(t) \/ | p(2)| is the derivative
of exactly one solution of (11).

Proof. Let y be a solution of (11) and z(¢): = \/ly (t)
that the function z is a solution of (12).

Let z be a solution if (12) and v(t): = z(¢) \/rﬁ(t)_l , tej. Assume that v is the
derivative of a solution y of (11). Then the solytion y and its derivative 3" at x,€j
have necessarily the following values

, tej. Itis easily verified

— (v'(xo) — f(x0)), vo 5= 2(xo) \/l p(x0) |

o= p(*c )
Setting
! —_—
w(t) :=vo + [z()/I p(s)] ds,  tej,
then w'(t) = z(t)\/[ p(t) |, w(xo) = vg, W(Xo) = vo and further

" oY S
W= Tpl+ E%I‘g + 2171

=[<p—%+%(%,)2) 2f(:/Tp|>’ _;/I;T]\/Ipl
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v (w,, _zp signp) (pp” — p7)signp  _
217l 4pJTp|

’ p/ ” T 1 ' ’
=pw + —w" + 2f |p|<—_:)+f.
p v JIpl

Thus

From this we obtain

(W” _ pw)l—‘ (f)/
p p
w' —pw=f+kp (k= aconstant).
The definition of the function w and w(x,) = ve, W'(xo) = vy yields k = 0. This
completes the proof of the Lemma.
Remark 4. Lemma 5 was proved in [1, p. 9] under the assumption f(z) = 0.
Lemma 6. Let x, € j, ¥y be arbitrary numbers, [ € C°(D), I'(t, p) e C%(D), k € C¥(j),

k(t) < O for tej. Let the second order fundamental dispersion  of (k): y" = k(t) y
be defined x, € j and uniformly on {x,, Y(xo)>

im LAY e8]
- JIk(®) | NILOI
1 S X (") (13)
lim {21(;, #)(_ﬁ_*) G L} .
Horoo N0V OY
Let v(t, ) be a solution of
Y= k() y =it 1) (14)
satisfywng the condition v'(x,, ) = yy. Setting
My = {0'(P(xo) w); pE R}, (15)
then
My =R,
Proof. Let ./, be the set defined by (15). Let v(?, 1) be a solution of (14) satisfying
.. ’ [
the condition o/(x, 1) = 4 and let u(r, u): = %ﬁ‘% (6, 1) € D. Then u(xg, ) =

’

= —=—==_ and according to Lemma 5 u(t, u) is a solution of

Yo
V! k(xg)]
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(k(’) IR '( JTKO ))y B

1 ! I'(t, w
PYORY SR WL CY)) I
“)(w k(r)|> NIZ0Y
Putting
1 "
(1) := k(1) + JTR@D] (—_—._—_) . ted,
P v N0l el

', ) (16)

1 !
t, )=21 t, ———— )+ —- s D’
7t 10:= 200 ”)(wk(m) N

then u(t, 1) is a solution of (7) where the functions p,r are defined by (16), u(x,, 1) =

= -«yi’*w Since i is the 1st kind fundamental dispersion of (p), we have with
\/ [ k(xo0) |

respect to Lemma 2

= {“@(Xo), H); peR} = { ('//(xo)’ #) W) I s LE R} =

= {'(Y(xo), u); nER} =

Remark 5. Let ke C(j), k(t) < 0 and ( ) >0 for tej, he CI(j).

NIoY
Setting /(t, n): = h(t) + u, (¢, p) € D, then (13) applies uniformly on every compact
subinterval of j.

Lemma 7. Let x, € j, v be arbitrary numbers, l € C°(D), I'(t, u) € C°(D), k € C*(j),
k(t) < O for t €. Let the 2nd order fundamental dispersion  of (k) be defined at x,,
let the function 1 satisfy (13) for t e {xq, Y(x,)> and

1 (3
20, H1)( ) + (_f_LL <
NIZ0) VK@) |
l’(t9 HZ)

l ’
<2 “2)( Ji k(t)T) N0l

Sor uy < p, and te {xq, Y(xy)>. Let next v(t, u) be a solution of (14) satisfying the
condition v'(xqy, 1) = yo. Then the function

Bu): = v'(Y(xo), b),  peR, 17)

is an increasing one on R and B(R) = R

Remark 6. It follows from [5] that all solutions o(f, #) Of (14) satisfying the
condition v'(xg, i) = Yo have the same values at the point ((x,), u). Therefore
the function f is defined correctly by relation (17).
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The proof of Lemma 7. Let v(t, ) be a solution of (14), v'(xo, u) = yo. We

put u(t, p) := «U, G108 , (¢, W) € D. Then, with respect to Lemma 5, u is a solution
NILOX
of (7), where the functions p, r are defined by (16), u(x,, ) = Yo Since Vs
VI k(xo) |

the 1st kind fundamental dispersion 0£ (p), the assumptions of Lemma 3 are satisfied

and () = v'Gh(xo), 1) = V| k(@ (xo) | - u(@(x,), 1) and the properties of the func-
tion B under proof, immediately follow from the properties of the function o defined
in Lemma 3.

3. We prove the following

Theorem 1. Let x, € j, X, €], ¥o, ¥, be arbitrary numbers, x, < x, and q € C°(D),
r e CO%D). Let next (4) and (6) hold uniformly on every compact subinterval of j. Then
there exist numbers lg, lto such that the points (xq, yo), (X1, y,) are the Ist kind
neighbouring knots relative to equation (1) with A = Ay, u = Uy, and to the initial
condition (xq, o).

Proof. The function ¢(x,, ) is continuous on its interval of definition with
respect to Lemma 1 [3] and it follows from (4) holding by assumption uniformly
on every compact subinterval of j that: lim ¢(xq, 4) = x, and there exists

A= =0
a number A,, where the function ¢(x,, 4) is mapping the interval (—oco, 4,) onto
the interval (x,, b). There exists therefore at least one number Ay(e (—o0, 4,)):

1 @(xg, Ag) = x;. Let u(z, u) be a solution of
y” - q(ts iO)y = r(t’ H)
u(xg, 1) = yo. With respect to Lemma 2 then follows the existence of a number

Ho = u(xy, to) = Y1.

Corollary 2. Let x, € j, X, €], ¥o, ¥y be arbitrary numbers, x, < x,. Let q satisfy
the assumption (1) and let r satisfy one of the following assumptions:

(v) re C°(D) and (6) and (9) are satisfied for t € j,
i) r(t, ) = pf(t), where fe C°(j) and jlf(t)yl(t) dr 0.

Here y, is a nontrivial solution of y" = q(t, X9) ¥, ¥1(xo) = 0 and A, is the number
occurring in the statement of Lemma 1.

Then there exists exactly one value of the parameter ), which we write as Ao and
exactly one value of the parameter u written as wo with the points (Xo, o), (X15 ¥1)
being the Ist kind neighbouring knots relative to (1), where A = A and p = o, and
to the initial condition (xy, yo)-
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Proof. With respect to Lemma 1 there exists exactly one number 1, : ¢(xg, 49) =
= x;. We set p(t) := q(t, Ay), t €j. If r satisfies the assumption (v) and (vi) then—
with respect to Lemmas 3 and 4 respectively —there exists exactly one value of the
parameter p written as p,, where the equation y” — q(¢, 4) y = r(¢, 1to) has a solu-
tion u for which u(x,) = y, and u(x,) = y,.

Corollary 3. Let x, €, X, €], yo, ¥, be arbitrary numbers, x, < x,. Let q satisfy
the assumption (ii) and inf {x; x € j, x > x4, p(x) < 0} < x,. Let r satisfy either the
assumption (V) or the assumption

I

(i) r(, @)

solution of y" = q(t, A) y, y1(xy) = 0 and A, > O a number occurring in the statement
of Lemma 1.

wf(t), where fe CO(j)and | f(t) y,(t) dt O with y, being a nontrivial

Then there exists exactly one positive value of the parameter A written as A, and
exactly one value of the parameter y written as 1y such that the points (xo, ¥o), (X1, ¥1)
are the Ist kind neighbouring knots relative to (1), where A = A, and u = p,, and to
the initial condition (x4, yo)-

Proof. With respect to Lemma 1 there exists exactly one number A, > 0:
@(xg, A) = x; . Weset p(t) := q(t, A,), t €]. The rest of the proof proceeds completly
analogous to the proof of Corollary 2.

Corollary 4. Let xq € j, X, €], yo, ¥, be arbitrary numbers, x, < x,. Let q satisfy
the assumption (ii) and inf {x; x € j, x > x4, p(x) > 0} < x,. Let r satisfy the assump-
tion (V) or the assumption (vii), where instead of A, we consider A, < 0 occurring
in the statement of Lemma 1. Then there exists one negative value of the parameter A
written as 2, and exactly one value of the parameter p written as p, such that the
points (xy, ¥o), (x1, yy) are the Ist kind neighbouring knots relative to (1), where 4 = A,
and 1 = g, and to the initial condition (x,, o).

We refrain from proving these assertions since the proof is an exact repetition
of the previons one.

Theorem 2. Le¢i x4 €, X, €, Vo, ¥y be arbitrary numbers, x, < x,, g€ C°(D),
q"(t, 2) e C%D), re COD), r'(t, w) e CUD) and q(t, 1) < O for (t, %) € D. Let (5) hold
uniformly on every compact subinterval of j and let uniformly with respect to the variable t
on every compact subinterval of j:

: 1 Lorw
hm 2 (t, N ’/__.:’:'_—) + e —— ”‘"} = —
”—'hw{ ' lu)(\/lq(t’A)‘ \/Iq(t:'l)l

. 1 ! r'(t, w
lim 42 L SN C X B
u'fl{ r(t’”)(w 4 0] ) T TG, m} ©
(LeR).

(18)
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Then there exist numbers Lo, llo Where points (Xq, yy), (x,,¥)) are the 2nd kind
neighbouring knots relative to (1) (with A = Jq, 1 = 1) and to the initial condition
(XO ’ yé))

Proof. We set ¢,(1, 2):=q(t ) + /I q(1, X)I( '/[*L_)’ (t, A) € D. Then

(21
the 2nd kind fundamental dispersion y(z, A) of (2) is equal to the 1st kind fundamental

dispersion of the equation »” = ¢,(¢, 2) y. From the assumption (5) we can prove
the existence of a number 4, : ¥(x,, 4g) = x; by a completly analogous method to
that used in the first part of the proof of Theorem 1. We set r,(t, p) :=

1 ! r'(t, p)
= 2r(t, )+ e t, )e D. Let u(z, be a solution of
#)(Jlg(t o)t T P (10
V' = qi(t, o)y = ri(t, ), v(xo, p) = \/[ {ILA) |v Then, with respect to Lemma 6,
q 0

the function v(t, u) \/l q(t, Ay) | is the derivative of the exactly one solution of y" —

— q(t, Ao) y = r(t, w), written as u(z, ). Evidently u'(x,, #) = yg. With respect to
Lemma 6 there exists py, and (1) (with 1 = Ay, u = pto) has the solution u(t, ue)
satisfying 4/(xq, to) = Yo, 4'(xy, o) = u'(Y(xy), uo) = ¥1- Thus Theorem 2 is
proved.

Corollary 5. Let xy €], x, €], yy, ¥} be arbitrary numbers, x, < x,. Let q satisfy
the assumption (iii), r € C°(D), r'(t, p) e C°(D) and

1 ’ r'(t, lll) '
20(t, 1y) )+,, (e, )( f~)+
it (wgu 1) T draea N\ e

RACYVS
JVla@, 2|
Let next (18) be true for every (t, A) € D.

Then there exists exactly one value of the parameter A written as A, and exactly
one value of the parameter p written as po such that the points (xq, yo), (x{, y1) are
the 2nd kind neighbouring knots relative to (1) (with A = Ao, it = po) and to the initial
condition (xq, o).

Proof. Since ¢ satisfies the assumption (iii), there exists exactly one number
Ao : ¥(xg, 4o) = x;. Then the statement of Corollary 5 follows from inequality (19)
(where we put A, in place of 1) and from Lemma 7.

for p; < u, and (t, A)eD. (19)

Corollary 6. Let x, €, Xy €], yo, ¥ be arbitrary numbers, x, < x,. Let q satisfy
the assumption (iv), r e CO(D), r'(t, u) € C°(D) and let (18) for (t, 1) € D and (19) hold.

Ifinf {x;xej,x > Xxo,p(x) < 0} < x,, then there exists exactly one positive
value of the parameter A written as 1, and exactly one value of the parameter p written
as yg such that the points (Xo, o), (X1, ¥1) are the 2nd kind neighbouring knots relative
to (1) (with A = Ay, 1 = Ho) and to the initial condition (x,, yo).
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If inf {x; x €j, x > Xq, p(x) > 0} < x,, then there exists exactly one negative
value of the parameter A written as 1, and exactly one value of the parameter n written
as po such that the points (xq, yg), (x,, 1) are the 2nd order neighbouring knots relative
to (1) (with A = 2,, u = po) and to the initial condition (xy, yg).

The proof follows from Corollary 1 and from Lemma 7.
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Souhrn

DVOUBODOVY OKRAJOVY PROBLEM
PRO NEHOMOGENNI LINEARN|
DIFERENCIALNI ROVNICI 2. RADU

SVATOSLAV STANEK

V préci je vy$etfovana linedrni diferencidlni rovnice

V' = q(t, D)y = r(r, p), m
kde ge CUD), re CUD), D = jxR, j=(a,b) (—0 = a <b = ), kterd zavisi
na dvou redlnych parametrech A, u. Necht (xo, o), (X0, ¥o), (X1, y)), (x,, ¥1) jsou
libovolné body v D, x, < x;. Jsou uvedeny postaCujici podminky k tomu, aby:

(i) existovalo feSeni y rovnice (1) pro néZ y(xo) = yo, ¥(X1) = y, a piislusna
homogenni rovnice
Y =q@ Ay ®)
méla netrividlni feSeni v, kde v(x,) = v(x;) =0 av(t) £ 0 pro te (x0, x4);
(ii) existovalo feSeni z rovnice (1) pro n&Z z'(xo) = Yo, Z'(X1) < y, a pfislusna
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homogenni rovnice (2) méla netrividlni feSeni u, kde #'(xo) = v'(x;) = 0a u'(t) + 0
pro t e (xq, X().
Rovné7 je vysSetfovdna jednoznaénost feSeni obou problémi.

Pesrome

ABYTOUEYHAA 3AAYA JJIA HEOAHOPOJOHOTI O
JUHENHOTO JU®PPEPEHLMAJIBHOTO
YPABHEHMUMSA BTOPOI'O ITOPA KA

CBATOCJIAB CTAHEK

B pabote uccieayeTcs HEOQHOPOAHOE uHENHHOe U depeHaIbHOe ypaBHEHHe

Y —qt, )y =rtw, (¢))

rie qeC°(D), reC°(D), D=j xR, j=(a,b) (—0 £a—b = ©) xoTopoe
3aBHCUT OT IBYX AEHCTBUTENBHBIX TapaMeTpoB A, u. ITycTsh (X4, o), (X0, ¥0)s (X1, ¥1)
H (x;, ¥7) IPOM3BOJIbHBIE TOUKY W3 D, X, < x,. [IpHBEIEHBI NOCTATOYHBIE YCIIOBUS
IJI1 TOTO, YTOOBI

(i) cymectBoBasio pewenne y ypasuenus (1), y(xo) = yo, ¥(x;) = y; ¥ OAHOBpe-
MEHHO COOTBETCTBYIOLIEE OJHOPOIHOE YPaBHEHHUE

Yy =q(t Ay )]

HMEJI0 HETPUBUAJIBHOE PELLeHHE v, Tae v(Xxy) = v(x;) = 0uv(t) + 0 s t € (x,, X,);
(ii) cywectBoBajio pewenue z ypasHenus (1), z'(xo) = yg, 2'(x,) = y; 4 oxHo-
BPEMEHHO COOTBETCTBYIOILEE OAHOPOAHOE YypaBHeHHE (2) MMENO HeTpUBHAJIbHOE
peutenue u, rue w'(xy) = u'(x;) = 0 u u'(¢) #+ 0 wis t € (xq, xy).
Hccnenyercs Toxe ONHO3HAYHOCTh peuieHsi 06eux mpobiem.
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