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1. Introduction

In this paper we consider a differential equation

y'=q(t)y (M)

with g € C%j), j = {a, b) (a < b £ ) where A is a real parameter. The object of our
study is to investigate the zero distribution of solutions and the zero distribution
of the derivative of solutions of (Aq), described as functions ¢(¢, 1), Y(t, A), x(t, 1)
and w(t, 1). On applying the “‘generalized Wronskian” w := y,y; — yoy1, where y,
and y, are respectively the solutions of the equations (Aoq) and (A,q), we prove in
analogy with [3] some results on the monoteny of the functions ¢, ¥, x and @ with
respect to the variable A, which are well known in case of ¢(¢) & O on J.

2. Basic definitions, relations and notation

Let ge CO(j) and let A be a (real) number. Throughout our discussion we exclude
the trivial solution of (Aq). Suppose that x € j and u, v are solutions of (Aq) satisfying
the condition u(x) = 0, v'(x) = 0. Denote by ¢@(x, A) (x(x, 4); w(x, A)) the first zero
(if any) of the function u (v'; v) lying to the right of the point x. The function ¢ is
called the 1st kind fundamental dispetsion of (Aq) and in case of ¢(¢) # 0 the functions
x and w are called respectively the 3rd and 4th kind fundamental dispersion of (Aq).
(Cf. [1, 2]). The functions y and w are introduced in analogy with [5].

Say, a function p € C(j) possesses the property H if there is not a cluster point

of zeros of p lying on j. If the function p possesses the property H and A # 0, then Ap
possesses this property, too.
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Lemma 1. Let a function p possess the property H and let u be a solution of y" =
= p(t) y. Then the zeros of u’ have no cluster point on j.

Proof. Suppose that the function p possesses the property H and there exists
a nontrivial solution u of 3" = p(t) y together with a sequence {t,}, t, €, t, + c €],
lim¢, = ¢ where /(¢,) = 0. Then u'(c) = 0, u"(c) = 0 and because of u(c) + 0

we have p(c) = 0. According to the assumption, p possesses the property H and
therefore there exists a number ¢ > 0 such that u(¢) + 0 for te(c — ¢, ¢ + ¢) and

p(t) &0 for te(c — ¢ c+ ¢ — {c}. Then ¥'(t,) — u'(c) = }"p(t) u(t) dt # 0 holds
c

for all n for which t, € (c — ¢, ¢ + ¢), which is a contradiction.

Suppose that x €/ and let ¢ possess the property H. Let v be a solution of (Aq)
satisfying the condition v'(x) = 0. Denote by Y(x, A) the first zero (if any) of v’ lying
to the right of the point x. If g(¢) + 0, then the function ¥ is called the 2nd kind funda-
mental dispersion of (Aq). (See [1, 2]).

Every equation (Aq) may be associated with the functions ¢(t, 1), x(¢, 1), (¢, 2),
and even with the function (¢, 1) if ¢ possesses the property H. Thereby it follows
from the definition of these functions that they need not be defined for every ¢ €.
On the assumption that the equation (Lq) is oscillatory, i.e. the point b is the cluster
point of zeros of a (and then of every) solution of (Aq), these functions are defined
for every tej.

Lemma 2. Let (Ayq) be an oscillatory equation. Then yx(ty, Ay) < x(to, 4¢) for
t < ty, t €J, tyEJ.

Proof. We may assume without any loss of generality that a £ 1, < ¢, <
< y(ty, Ap). Suppose that u,v are solutions of (Aoq), u(t,) = v(ty) =0, w'(t,) =
=v'(ty) = 1. Let x(to, A9) < x(f1, Ap)- Then w'(t) > 0 for t e (¢,, x(ty, 4,)). We put
wt):=u®)v'(t) — u'({t)v(t), tej. Then w(t) = k (= a constant #+ 0) and next
k= u(ty), k = —u'(x(ty, o) v(x(to, Ag)). Because of u(t,) > 0 we have k > 0 and
since v(x(to, Ag)) > 0, we have u'(x(ty, 49)) < 0, i.e. a contradiction.

Convention. In so far as a function at x,, passing to an infinite expression of the
type ““0/0” occurs in our consideration, the value of such a function at x, will be
defined as its limit (if any).

In closing this section let us remark the following observation: If there exists an
interval (¢, d) = j with q(t) < 0, then every solution of (Aq) possesses at least two
zeros on (¢, d) for a sufficiently large A.

3. Main results

Theorem 1. Assume (MoQ) to be oscillatory. If:
a) Ay > 0, then (Aq) is oscillatory also for every A = Ao and ¢(t, 4;) > o(t, 12)
for 2oy £ 2, < Ay, tE;
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b) Ao < 0, then (\q) 1s oscillatory also for every A < 2y and ¢(t, A1) > o(t, 42)
for 2, < ), < o, fej.

Proof. Suppose (L,q) to be oscillatory and p '102 > 0, which means that

- %0

either 0 < A9 < A or 0 > 4, > A Let xej and let y, and y; be solutions of (Aoq)
and (Ag), respectively, with yo(x) = p;(x) = 0, yo(x) = ¥ (x) = 1. Then yo(@(x,10)) =
=0 and yo(t) > 0 for e (x, @(x, Ay)). Assume @(x, 1) £ @(x, 4), consequently
y1(t) > 0 for te(x, o(x, Ao)). We set w(t) := yo(t) y1(t) — yo(t) y,(t), te€j. Then
w = (1 — Ao) 9¥o¥1 and w(x) = 0. This gives

@(x, A) o(x, A0)

0< ! Yoy dt = yo(0) yo( 1577 = 4o [ a(t) yo(1)dt =

__ 4 R yo(1) w'(1) dt =
A= 20 x yl(z)

___ %o Vo) w(z) [#E=4 ‘p(x’%)(w(t) )2 _
A—io[ o . Tl Gw) et

@(x, Ao) 2
_ % ( w(t) ) ar,
A=A y1(0)

which, however, contradicts the assumption y Ao 7 > 0. Consequently (1, ) <
- 0

H

< @(t, A,) for tej and (Lq) is oscillatory for every A where 7 '1"/1 > 0. The rest
- A0

of this proof is carried out writing 4, and 1, for 1, and 4 into the above part of the
proof.

Remark 1. Suppose (Ayq) to be oscillatory. Then the statement of Theorem 1 on
the oscillation of (Aq), where 4, £ A and 1 < A, are respectively 1, > 0and 4, < 0,
follows also from Theorem 2. 60 [7, p. 105] or from Lemma 3 [4].

Corollary 1. Let 2, > 0 and let (MyQ) be an oscillatory equation. Then
lim (t, ) = @,(1), tej,
A= o0
where

(1) = t when q(1) <0,
&7 linf {x; x€j, t < x, g(x) < 0} when q(1) = 0.

Proof. Let x ej. By Theorem 1 ¢(x, 1) is a decreasing function on the interval
{Ag, ). There exists therefore lim ¢@(x, 1) whose value we denote as ¢; lim ¢(x, 1) =

A= © A ©
= ¢. Let q(x) < 0. Then there exists ¢ > 0 with g() < 0 for te{x,x + € and
hence necessarily ¢ = x = @ (x). Let g(x) = 0. Then gq(t) = 0 for te (x, D (x)>
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(the case of x = @,(x) is not excluded) and there exists on every interval {(@,(x),
D x) + ey, £€>0, a subinterval (g, v,) = (P (x), P(x) + &), where q(t) <O.
Then, of course, every solution of (Lq) has at least two zeros on the interval (i, v,)
for a sufficiently large 1; hence @,(x) £ @(x, 1) £ @(P,(x), }) < B (x) + ¢ holds
for such A and therefrom ¢ = @ (x).

Corollary 2. Suppose %o > 0 and let (Ayq) be oscillatory with ®(t) being the
Sfunction defined in terms of Corollary 1. Then lim @(t, 2) = ®(t) uniformly on every

A=
compact subinterval of j exactly if ®,(t) =t for te{P(a), b) :=j,, i.e. iff q(t) =0
for tej, and q(t) does not vanish in any interval (< j;).
Proof. Suppose lim ¢(t, 1) to be uniformly converging on every compact sub-

A= 0
interval of j. Then @,(¢) = lim ¢(t, 4) is a continuous function on j.
A= 0
According to Theorem 1, the function ¢(¢, 1) is a decreasing one in the variable A
on the interval {4y, 00) and since ¢(t, 1) is a continuous function for every Ae

€ {4y, ) on j, then by the generalized wellknown Dini’s theorem lim @(¢, 1) = @ (¢)
A= 0

uniformly on every compact subinterval of j. It is evident from the definition of @ (t)
that this function is continuous on j exactly if @ (¢) =t for r€j; (= (P a), b))
which occours precisely in case of ¢(t) < 0 for ¢ €, and ¢(t) nonvanishing on every
interval (< j)).

Remark 2. If 4, = 0, then (A,q) is a nonoscillatory equation and it is easy to verify
that the domain of the function ¢(t, 4,) is an empty set. There is, however, such
a function ¢ to be found where ¢(¢, 1) is defined on the set jx R, with j = <a, 00),
Ry, = (—o0,00) — {0}. From [6] that say ¢ may be replaced by any function

g€ C(), q()) % 0, q(t + 7) = q(0) for 1€ jand [ () dr = 0 (xo €))

X0

Theorem 2. Suppose that (MQ) is oscillatory. If:

a) Ao > 0, then the function y(t, 1) 1s defined at every point (t, A) € jx {4y, )
and y(t, 1) > 2t A,) for Ao £ Ay < A,, teE),

b) 4o < 0, then the function x(t, 2) is defined at every point (t, 2) €% (—00, Ay>
and y(t, 4,) > x(t, A3) for Ay < Ay £ Ao, tE].

Ao
A — 4o
(Aq), respectively, with yo(x¥) = 11(x) = 0, yp(x) = yi(x) = 1. Then yo(x(x, %)) = 0
and yo(t) > 0 for te (x, x(x, A)). Assume that yj(¢) > 0 for te (% x(x, '}'0)) and
therefore y(% A0) < 706, &) We_set w(t) 1= yo(t) i(t) — yo(D) 1) 1€ and get
W = (A = do) avoyis w(x) = 0. This gives

> 0. Let next y, and y, be solutions of (Aq) and

Proof. Let xej and
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x2(x, 40) x(x, A0)

0< [ yRdt =y yo® "~ 2 [ a(t) ya(r)dt =

ho TPy W)
A— /10 x yl(t)

_ Ao _Jio(t)W(t) x(x, %0) Z(X'lO)(W(t) )2 ]_
“‘A—Ao[ o ) v =

_ " Yo(x(x, 20)) Y1 (x(x, 20)) +’“"‘f°’(_w(t) )2 dt:l

Y Ao y1(x(x, 40)) x 0}

Yo(x(x, A0)) yi(x(x, 2)) +X(x'j10) (ﬂ)zdt >0
71(x(x, 4)) *

y1(0)
> 0. Consequently y(t, 1) < x(t, A;) and thus the function x(f, 1) is

which yields a contradiction since

4o

and R

. . A . .
defined at the points (¢, 1), where ¢t € and T 0/1 > 0. Writing 4, and 4, in the
- 0
above part of the proof for A, and 1 satisfying the assumptions of the Theorem,
we prove so the remaining part of its statement.

Theorem 3. Suppose that (M,Q) is oscillatory. If:

a) Ay > 0, then the function w(t, A) is defined at every point (t, 1) € j x {Aqy, ©) and
at, A > o(t, 4,) for g < Ay < 4,, tej,

b) o < 0, then the function w(t, 2) is defined at every point (t, X) € jX (—0, Ay»
and o(t, 1) > w(t, 4,) for A, < 41 < Ay, tE].

Ao
1= 7
(Aq), respectively, with yo(x) = »,(x) = 1, yo(x) = pi(x) = 0. Then yo(w(x, 4o)) = 0
and y,(t) > 0 for te(x, w(x, 49)). Assume that y,(t) > 0 for e (x, w(x, 4¢)) and
therefore w(x, 4o) £ w(x, 1). We set w(t) := yo(t) y1(t) — yo(t) y,(t), tej and get
w = (1 — 1) qyoys, w(x) = 0. Then

Proof. Let x € and > 0. Let next y, and y, be solutions of (A,q) and

w(x, 20) w(x, A0)

0< [ yo(ndt=yo®)yo (5= 2 [ qt) yi(t)dt =

A. w(x, A0) ’
IS o OV O Y

*"{—’10 x yl(’)

_ AO yO(t) W(t) w(x, o) olx;f0) (l_(_g_)z ] _
A= [ nw " .'E y1(1) i

w(x, 20) " 2
___h [} (M(t))dt,

A= 10 x yl(t)

which is a contradiction. Therefore w(t, 1) < w(t, Ay), tej and thus the function
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w(t, A) is defined at every point (¢, 1), where ¢ € j and —ioi—— > 0. If we replace v,
— 40

and A in the above part of the proof by 4, and 1, satisfying the assumptions of the
Theorem, we prove so the remaining part of its statement.

Lemma 3. Let x €j and q possess the property H. Further let (Ayq) be oscillatory
and Y(x, Ag) > w(x, Ag). If:

a) Ay > 0, then Y(x, 2) > w(x, A) for 1 > A,

b) Ao < O, then Y(x, A) > w(x, 2) for 1 < 4.

Proof. Let x €, Y(x, A9) > w(x, 4o). Let ¥(x, 4,) < w(x, 4,) for a number 4,
7 'ELZ)— > 0 and thus also the inequality - '_{_1 7 > 0.
Let y, and y, be solutions of (A,q) and (A,q), respectively, yo(X) = y,(x) =1,
Yo(®) = %4(x) = 0. Then y(¥(x, 4,)) = 0, ,(t) > 0, ¥;(t) < 0 for 1 (x, Y(x, 1))
and yg(t) < O for 7€ (x, Y(x, 4,)), since by Theorem 3 we have w(x, 4y) > w(x, 4,).
Setting w(t) 1= yo(t) y1(t) — yo(t) y1(1), t €j gives w' = (4; — Ao) Yoy and w(x) =0.
From this

satisfying the inequality

¥(x, 41) V(x, 1)

0< [ yo0)yidt = yi@®yoe® X5 =4 [ q() yo(§) yo(1) dt =
ll Y(x,41) /11
= - Hdt = — —w(P(x, 4,)) =
Al — /10 £ W( ) }-1 _ /10 (!l/('x 1))
A

= ﬁy&(lﬁ(x, }“1)) JH(‘/’(x’ }»1))

i.e. a contradiction to the fact that yo(Y(x, 4,)) y1(¥(x, 4,)) < 0.

Theorem 4. Let x € j and q be possessing the property H. Let (Lyq) be oscillatory
with Y(x, Ay) > w(x, Ay). If:

a) Ao > 0, then Yi(x, A,) > W(x, A,) for Ao < Ay < A,
b) Ao < O, then Y(x, A;) > Y(x, A,) for 2, < Ay £ 4.

Proof. Suppose that x € j and y(x, 40) > w(x, 45). Let 0 < 5 £ 1, < A,. Then,
from Lemma 3, we obtain y(x, 1,) > @(x, 4,), ¥(x, ;) > w(x, 1,) and consequently
U(x, A1) = glo(x, 4,), A,), ¥(x, ;) = xlw(x, 4;3), ;). Theorem 2 and Lemma 3
imply Y(x, 20) = gloa(x, Ay), &) > 7006 22), A1) > 2(@(x, 1), 45) = Y(x, 4,), hence
W(x, A1) > Y(x, ;). We proceed similarly even in case of 0 > 45 = 4, > A,.

Theorem 5. Let x € j and q be possessing the property H. Let (Lyq) be oscillatory
with Aog(x) > 0. If:

a) Ao > 0, then Y(x, Ay) > Y(x, L) for Ao £ Ay < 23,
b) A1 < 0, then Y(x, ) > W(x, 22) Jor 1y < Ay S Jo.
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Proof. Let x€j, 2oq(x) >0 and 0< i, £ 4 <4,. Let y and y, be
solutions of (A;q) and (A,q), respectively, y,(x) = y2(X) = 1, y1(¥) = yj(x) = 0 and
vix, A;) < Y(x, A,). According to the assumption 4;4(x) > 0, 2,4(x) > 0 and there-
fore yi(t) > 0, y5(t) > Ofor t e (x, Y(x, A)); :(t) > 0, ¥,(t) > 0fort e {x, Y(x, /).
Setting w(t) 1= p1(t) ¥3(t) — y1(t) y2(0), 1€, gives W' = (2, = 1) qy1y,, w(x) = 0.
From this it follows that

Y(x, A1) R R Y(x, i1) 2
0< [ yP(di=y,OyiI* =24 | q@)yi(Ddt =

_ 11 Y(x, A1) yl(t) Wl(t) dt B
Ay — Ay % y2(1)

M [)H(’) w(t) e a + w(x,j}l) <w(1) )Zdt =

A=A L oy * » \n®

N [ﬁ@ma»nmujm_JmM(wnym
A=A ya(W(x, 4y)) 5

A 20 and yilx, ) ya(¥(x, 4y))

bk va(W(x, 4y))
fashion we proceed in case of 0 > Ay = 4, > 4,.

y 2—(—‘7

contrary to

> 0. In an analogous

Remark 3. It becomes apparent from the proof of Theorem 5 that the assumption
Aog(x) > 0 may be replaced by a weaker one: 1,g(x) = 0 and 4,q(¢) > 0 in a right
neighbourhood of the point x.
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Souhrn

VLASTNOSTI ZAKLADNICH DISPERSI ROVNICE
Y =2q(t)y

SVATOSLAV STANEK

V préci je vySetfovano rozlozeni nulovych bodi feseni a nulovych bodu derivace
feSeni rovnice
y'o=24q0y,  qeC%), (Aq)

kde j = <a, b) (a < b £ ), které je popsdno pomoci zdkladni centralni disperse
1. druhu ¢(¢, ) rovnice (Aq) a pomoci jistych funkei y(z, 1), x(¢, 1) a w(t, A), které
v piipadé ¢(t) = 0 (tej) odpovidaji postupné zakladnim centrdlnim dispersim
2., 3. a 4. druhu rovnice (Aq). UZitim ,,zobecnéného wronskidnu‘‘ w := yoy] — yoy;,
kde y, a y, jsou feSeni rovnic (Aoq) a (A,q), je dokdzana monotonnost funkci ¢, ¥,
¥ 2 o vzhledem k proménné A.

Pesrome

CBOIICTBA OCHOBHBIX OUCIEPCUU
YPABHEHWUA y = aq(t) y

CBATOCJIIAB CTAHEK

B pabote ucciaenoBaHo pacnoJiokKeHUe KOpHeH pelieHnid U KOpHeH UX MpOu3BOI-
HBIX IJI51 YpaBHEHHUS
V' =400y, g€ C%j), (*q)

rae j = <a,b) (@ < b £ o0). X pacnoyioxenue OMUCAHO MPH MOMOILM OCHOBHOM
mucnepcud 1-ro pona ¢(t, A) ypaBHenust (Aq) u HekOoTophIX GyHxumit Y(t, 1), x(¢, 1)
U w(t, A), koTopsre B ciay4ae ¢(t) + 0 1 ¢ € j COOTBETCTBYIOT MOCTENEHHO OCHOBHBIM
pucnepcusm 2-ro, 3-ro u 4-ro ponos ypasuenus (Aq). C nmoMousio ,,00001eHHOTO
BPOHCKHMAHA' w: = yoy; — JoVi, TA€ yo M y,; peluenus ypaBueuuu (Aoq) M (A,q),
[l0Ka3aHa MOHOTOHHOCTb GVHKUMH @, Y/, ¥ U @ OTHOCUTEJbHO NEPEMEHHOTO A.
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