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Summary 

The object of investigation in this paper is a Markov process with rewards under 
a stationary replacement policy as described in [3]. In Theorem 1 we derive a system 
of equations for establishing the mean reward from the process. The maximal reward 
is characterized by Theorem 2 and in its proof there is described the Howard's 
iteration method (see [1]) for finding the maximal reward and the corresponding 
optimal stationary replacement policy. 

1. Basic definitions and notations 

Let a homogeneous Markov process with rewards {Xt, t _ 0} (see [3]) describing 
the evolution of a system in state space / = {1, 2, ..., r} be defined by exit intensities 
(/i(l), ..., ju(r)), 0 < /{(/) fg oo, j = 1, ..., r and by a stochastic matrix P = 
= II P(hj) ¥i,j=i > P0\ i) = 0 of transition probabilities in the moment of the exit. 
We constitute a matrix of the so called transition intensities M = || \i(ij) ||f,j=i, 
where n(i,j) = n(i)p(ij) for i # j , n(i, i) = -//.(i), 

-MU) = I/i(/,;) (1) 
j * i 

The system being in state i at time t passes during the infinitesimal interval (t, t + dt) 
into state j with the probability li(ij) dt. 

Consider a situation, where the development of the process can be influenced 
by an action called replacement (see [3]). Under a replacement of type (i, -f-f) we 
mean the instantaneous shift of the system from state i into s t a t e / The information 
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on the evolution of the process up to the H-th state change is given by the sequence 
of states visited 

~o > h 9 h 9 • • • > ln - 1 > 7« = J> (2) 

by the corresponding sojourn times 

^o> h9 h> ••• > ^ i - l ? (3) 

and by the sequence 

<50> <5l5 <52, . . . , c3„_i, (4) 

where 8m = 0 if the system was left im without interference and O*m = 1 if the passage 
from im into im+1 was the result of a replacement. 

For the history of the process up to the n-th state change we use the notation 

W n = U0> ^0> ̂ 0> ll> h> ^1> •••> lw— 1 5 tn-1 » ^ n - l > Znj> 

and the complete history of the process is given by a sequence 

w = [**o>'o> <50; i l f tl9 8X; ...]. 

A replacement policy (see [3]) is a decision, for all possible sequences (2) —(4) and 
all states j , on how long the system will be left in j without shifting (maximal sojourn 
time) and in what state it is to be shifted. Since we do not want to exclude the random 
choice of these quantities, we identify a replacement policy with a sequence of func­
tions 

F = {nFk(tloon)}, k = 1, 2, ..., r; n = 0, 1, 2, ... (5) 

nFk(t\oon) is the probability that the maximal sojourn time in in will be less than t 
and that the eventual shift will be into k ^ in. We make 

Assumption 1. We consider only such replacement policies F where with probability 1 
a) there exists only a finite number of replacements in every finite interval, 
b) there are not two or more replacements in the same moment. 
According to the assumption to nearly every co is assigned the trajectory 

{Yt, t ^ 0}, being not left continuous at time of the transition and not right continu­
ous at time of the replacement. In what follows we denote by 

a0, <7l9 cx2, ... 

the moments in which the trajectory is not continuous, 

Yf = Y,_,t > 0 ; Y o = Y0;Y,+ = r r + , t ^ o , 

Ej the mathematical expectation in a process without replacements under the condi­
tion i0 = J, 
D the set of couples (i, +j) meaning admissible replacements, 

A = { fo;+ j)eD}. 
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The reward from the process is defined by the following sets of numbers: 
Q(i), iel the reward per a time unit in state i; r(i,j),i,jeI the reward from 
transition (i,j), we set r(i,i) = 0; v(i,j),i,jel the reward from the replacement 
(/, +j), w9 set v(i, i) = 0. 

A stationary replacement policy f is given by a function f(j) defined on a subset 
If cz J and taking values in J such thatfQ') e Dj for j e If,f(j) 9- J. The replacement 
policyfis the prescription to realize instantaneously the replacement^' -*f(j) whenever 
the transition in state j occurs. No replacements are made in states j $If. Let us 
make yet 

Assumption 2. (/, +j) e D, (j, + k) e D => (/, +k)e D or / = k, 

v(/,I) + v(ffc) ^ v(/,k). 

2. The mean reward per a time unit from the process 
with only one isolated class of recurrent states 

Let RT be the mean reward from the process up to the time T, in accordance with 
the previous definitions 

RT = j Q(Y,) At + X [r(Y;„, YJ + v(Yff„, Y+)], <rN g T < «-w+1. 
0 « = o 

In the sequel we use the statements (6) —(8), given in [4]: If the state space of the 
Markov process contains only one recurrent class (eventually the transient class)^ 
then there exists the mean reward per a time unit 

lim ^Ej(RT) = 0, j = l , 2 , . . . , r , (6) 
T->oo 1 

independent off Moreover, the limits 

l i m [ £ , ( R r ) - 0 T ] = wO), (7) 
T->oo 

are finite and 

tij) w0) + ® = Qti) + Z M, k) [r(j, k) + w(k)l j = 1, . . . , r, (8) 

0 is uniquely determined by (8), w(l), ..., w(r) up to the additive constant. 
For the rest of the paper we assume the state space of the process under arbitrary 

considered replacement policy to contain only one recurrent class and eventually 
the transient class. Iff e If then (8) takes the form 

KJ) *(j) + e = Q(j) + tx(j) buf(j)) + w(f(j))l 
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which being modified to include fi(j) - oo, 

Hj) ~ v(j,f(j)) + w(f(j)). 
Iff $If then from (8) 

w(1) I Kh fe) + 6) = D(j) + X ix(j, k) [r(J, fe) + w(k)l 
k±j k*j 

We have thus established the system of equations for determining the mean reward 0 

V(J, A/ ) ) + w(f(J)) - W(f) = 0, f G J,, 

CO) + I /*0\ fe) L>0\ fe) + w(fc) - w( j)] - 6) = 0, J # I,. 
k*j 

Theorem 1. The system (9) determines 0 uniquely, w(i), ..., w(r) up to the additive 
constant. 

Proof, a) For simplicity assume If = {1, ...J — 1},J _ r. Let M denote 
the matrix of the system (9). The matrix M constructed from the matrix M by leaving 
the last column out, is the quasistochastic matrix of rank r — \. Thus the system of r 
homogeneous equations with r unknowns 

x'M — 0, x' = (x , , ..., xr) 

has non-zero solutions forming the vector modulus of rank 1. It follows from [5], 
page 194 that every solution x except for multiplying of a constant is the stationary 
distribution of the process with the matrix of transition intensities M. Not all states 
j,j + I, ..., r in this process can be transient ones. Therefore the system 

x'M = 0, x ' = (xx, ..., xr) 

has a single zero solution, since with respect tc the above the (r + l)-th equation 

— Xj — Xj +1 — ... — xr = u 

cannot be fulfilled otherwise. This implies that the rank of the matrix M equals to r. 
b) Let us suppose 0, w(l), ..., w(r) to be another solution of (9). Subtracting (9) 

from the corresponding equations we obtain 

w(f(j)) - w(f(j)) - w(J) + Hj) = 0, yeI f , 

£ ti(u fe) [w(fe) - w(fe) - W(j) + w(j)] - e + & = 0, jt If. 
k±j 

If, say, -0 + 0 < 0, then for j $ If from (10) 

max [w(k) - vv(fe)] >w(j) - w(j). 
k 

As by Assumption \f(j) $ If, this relation holds for allfe /, which is a contradiction. 
We proceed analogously in showing the impossibility of ~0 + 0 > 0. 

Thus 
0 ^ 0 . 
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Denoting w(k) - w(k) = w(k), k e I, we get from (10) 

w(f(j)) - w(j) = 0, JElf 

E tih *) w(k) + K/>I) *0') = 0, j £ I,. 

In a matrix notation for xj = w(j)jel, the system (11) has the form 

Mx' = 0, x = (xl9 ...,xr). 

The solution of the system (11) forms a vector modulus of rank 1 containing vectors 
having all components equal. That is 

w(j) = w(J) - w'O) = c, je I, 

where c is an arbitrary constant. The proof is thus complete. 
Let Of denote the mean reward per a time unit from the replacement process 

under the stationary replacement policy f Let us introduce the maximal reward 

0 = max {0f}. 
f 

The replacement policy/ is called optimal, if 0 = Oj. The maximal reward is cha­
racterized by Theorem 2. 

Theorem 2. 0 is the single possible number to which w(l), ..., w(r) is to find so 
that 

max {vO, k) + w(k) - w(j), k e Dy, Q(J) + 

+ I tij, k) ir(j, k) + w(k) - w(j)-] -0}=O, je L 
k*j 

If/is such a replacement policy that the maximum in the compound bracket is reached 
for j e Ij by the expression v(j, f(j)) + w(f(j)) — w(j) and for j $ Ij by the expression 
@(j) + H ViJ* k) [rO, k) + w(k) — w(j)~] — 0, then f is the optimal stationary replace-

ment policy. 
Proof. We prove first the existence of the solution of (12) by the Howard's 

iteration procedure. Choosing an arbitrary stationary replacement policy f0 we 
successively determine the stationary replacement policies fi9 ...,f, as follows: 

a) We solve the system of equations 

VO, fnU)) + WJWU)) ~ "nil) = 0, je Ifn, 
(13) 

Q(j) + lriJJ<)lr(j,k) + wn(k)-wn(j)l-On = 0, jtlfn. 
k*j 

We put thereby wn(j0) = 0, where j0 belongs to the (single as assumed) recurrent 
class Ji with respect to the matrix Mn = \\ fin(i,j) \\r

iJ=1 of the transition intensities 
under the policy /„. By Theorem 1 On is uniquely determined by the system (13), 
wn(\), ..., wn(r) up to the additive constant. 

149 



b) For all j E I we successively determine 

max {v(J, k) + wn(k) - wn(j),keDj; g(j) + £ /j(J, fc) [r(J, fc) + wn(k) - w„(J)] - 6>„} 

The policy fn + 1 is determined as follows: 
If the maximum for a fixed J e / i s reached by the expression 

Q(j) + I K i , fc) [ r t t fc) + vvn(k) - w„(J)] - 6>n, 
k*j 

we choose 

In the contrary, when the maximum is obtained by the expression 

v(J, k) + wn(k) — wn(j) for any k e D7, we choose 

i* e / /n + i ' fn+lU) = fc-

Here the choice of k = fn(J) is preferred. 
c) If the policy f n + 1 does not possess the property required by Assumption 1, 

namely, thatfn+1(J) $ Ifn + l for a l l je / / n + 1 , we change it to the policyfn + 1 as follows: 
in those states jelfn+l, where fn + l(j)elfn + l, we take fn + 1(f) = f , + 1(fn+1(J)), in 
others jelfn+i we havef/+1(J) = f n + 1 0 ) . 

We shall now show the correctness of the procedure in c). Let us suppose that 
fnU) $ Ifn for a l l je Ifn and the policyfn + 1 being constructed in the above described 
way. Further let 

J6I/n + l , fn+1(J) = kGI/n + 1, fn+1(k) = k'. (14) 

By the construction of the replacement policy f n + 1 it implies that 

v(k, k') + wn(k') - wn(k) ^ 0 

and therefore by Assumption 2 

v(f fc) + *„(*) - w«U) = v(J; fc) + v(k, k') + wn(k') - wn(j) g 

^ v(J, k') + wn(k') - wn(j). 

We see that the equality must hold here, because the expression v(f, k) + wn(k) — 
•" wn(j) is maximal (replacement j ~+ k under the policy fn + 1 in the state j) from all 
expressions 

v(J, 0 + wn(i) - wn(j), i G Dj. 

We are thus led to the conclusion that k' is equivalent to k for the state J, moreover 

v(k, k') + wn(k') - wn(k) = 0. 
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We can argue by contradiction that also k e I/n, k' = fn(k). Therefore there cannot 
occur the situation 

/„+i0) = k, fn+1(k) = k\ fn + 1(k') = k\ 

and therefrom also 
fn(k) = fe\ fn(k') = fe", 

which contradicts the assumption of the replacement policy/. For this it suffices to 
change the constructed policy in the way described in c). 

For thus constructed replacement policy f n + 1 then 

v(ff. + iO)) + wn(fn+10)) ~ wn(f) ^ 0, je//n+1, 

Q(j) + I tih fc) [Kf fc) + wn(fc) - wn(j)] - 0n ^ 0, j * / /n+1. ° 5 ) 

By Theorem 1 

v(ff„+10)) + wn+1(/n+1(j)) - wn+1(j) = 0, Je//n+1, (16) 

GO) + I Kf fc) [r0\ fc) + wn+1(fc) - wn + 10)] - On+1 = 0, j i Ifn+l. 
k^j 

Subtracting (15) from (16) we obtain 

wn+1(/n+10)) ~ wn(/n+10)) - wn+10) + wn(f) S 0, J e / / n+1 , (17) 

^ Mj\ fc) K+1(fc) - wn(fc) - wn+1(j) + wnO)] - 0 n + 1 + en ^ o, j $ I/n+1. 

In analogy with the proof of Theorem 1 we can verify the impossibility of 
0n - 0n + 1 > 0. Hence 

0,^02S ... ^en^ ... 

Because of only a finite number of the stationary replacement policies, there exists n0 

so that 
0,io = ®n0 + i = ••• 

Let Pn + 1 = || pn+i(hj) llf,y=i denote the matrix of the transition probabilities under 
policy fn+i. Then pn+i(fk) = p(f k) for J§-//n + 1. For n ^ w0 is from (17) for 

Ie/LI+i 
w„0) - wn+10) = r(j) + wn(fn+i(j)) ~ wn+i(fn+i(j)) = 

= Kj) + I P»+iO\ fc) K(fc) - wn+1(fc)], where r(j) ^ 0. 

fce/ 

From (17) we have further for j^/ / n + 1, n ^ w0, 

I > 0 ) P 0 \ fc) K(fc) - wn+1(fc)] - K 0 ) - wn+10)]/i(j) = o, 
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from where 

I PU, k) [w„(fc) - w„+,(fc)] + r(j) - wn(;) - wn+,(;), where rO) ̂  0. 
**; 

Hence for all j e I, n ^ n0, 

w„(j) - wB+i(;) = r(j) + £ pn+i(j, fc) [w„(fc) - wn+ .(*)], r(j) g 0. (18) 
kel 

We now show that it follows from (18) 

wn(j)^ wn+1(j), jel,n = n0. (19) 

Introduce the shortened notation 

II a,+i(U) llu=i = II Pihj) llu=i = P, P" = II P ( " U J ) llu=i. 

P° the unit matrix. Let Ix be the isolated class of recurrent states, / ' the transient 
class with respect to the matrix P. Let us write next 

n(j) = limp^\i,j). 
n-+Qo 

Then n{j) > 0 for j e Jj, n(j) = 0 for j e I'. 
Multiplying (18) by the numbers n(j), adding for ally e Zand applying the relation 

<fc) = I<0PO,fc) 
j 

we obtain 

Z *0) K O ) - wn+1(;)] = Z jrO) KJ) + Z ttW Ĉ n(fc) - wn+1(fc)]. 

We see now that there must be r(j) = 0 for j e Ix. 
Then (18) yields 

Wn(j) ~ Wn+1(j) = £ p( j , k) [W„(fc) - Wn+ -.(fc)], j G ^ , 

fce/ 

and on successive substitution we come to 

wn(j) - wn+1(j) = X p(m)(j, k) [w„(fc) - wM + 1(fc)], j e ^ , m = 1,2,... 

Letting rn-* co yields 

ww(I) - wfl + 10') = X <fc) K ( f e ) " wn+1(k)] = constant, j $ r 
fc * 

Further f0 e Ij and wn(j0) = iv„+10*0) = 0, from where 

Wn(j) = Wn+ l(j) for j 6 h . ( 2 Q ) 
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It is obvious from (18) and (20) that we can write forf e V 

w„0) ™ wn+10) = r(j) + £ p(j, fe) [w„(fe) - w„ + 1(fc)]. 
kel' 

Then 

w„0) " wn+1(j) =- rO) + E P(h fc) Kfc) + E P(2U k) [wn(fe) - wn+1(fc)], 
keT kel' 

and in the same manner further gives 

w„0) - wn+10) = I I p(m)0, fe)r(fe) + I p ( N + 1 ,0, fe)[w„(fc)- wn+1(k)]. 
m = 0 fceJ' feel' 

If k is the transient state of the chain formed by the states of the process considered, 
ao 

then the serie EP^O* k) converges forje J (see [2]). 
n = 0 

Because of this statement 

OO 

w „ 0 ) - w B + 1 0 ) = £ IP ( m )O, l0Kfc)^0 for jel'. (21) 
m = 0 kel' 

(21) together with (20) gives (19). 
It follows from (19) and from the finiteness of the set of the stationary replacement 

policies that m ^ n0 can be found where 

WmO) = Wm+1(f), . /€/-

Since Om = <9m+1, we can write by using (13) and the method of determining the 
policy f m + 1 

1. for jeI/m + 1 

max {v(f k) + wjk) - wjj), k e D,; g(j) + 

+ E tih fc) [KI, fc) + wm(fe) - wjj)] - Om} = 

= v(ffm+iO)) + wm(fm+ x(j)) - wm(f) = 
= v(ffm+10)) + wm+1(fm+1(j)) - wm+1(j) = 0. 

2. for j£Ifm + l 

max {v(f k) + wm(k) - wm(j), k e D,; e(j) + 

+ E MO, fc) [r(j, fe) + wm(fe) - wjj)] - <9W} = 

= <?(/) + EMO> fc) [KI> fc) + >vm(fc) - ™jm- em = 

= QU) + E MI, fc) [KI\ fc) + wm+1(fe) - wm+l(j)] - 0 m + 1 = o. 
fc9-j 
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We see that 
0 = 0m, vv(f)=wm(f), jel, 

is the solution of equation (12). 
Wre verify now that (12) determines 0 uniquely. 
Assume there exists 0^0 establishing (12), that is 

max {v(j, k) + w(k) - w(j), k e Dy, g(j) + 

+ I tij, k) [r(j, k) + w(fc) - w(j)] - <9} = 0, je I. (22) 

Let, say, 0 — 0 > 0 and let / be the replacement policy defined in Theorem 2. 
Then 

va/O')) + *(J(J)) - *U) = 0, jelj, (23) 

QU) + I tih k) [r(j, k) + vv(fc) - vv(j)] - 0 = 0, J* If. 
k=±j 

According to (22) 
v(j, /(j)) + w(fU)) ~ w(i) = 0, jelf, 

Q(j) + E tih k) [r(j, k) + w(fc) - w(j)] - 0 = 0, ; * I7. 
**1 

Subtracting this from (23) we obtain 

*(/(/)) ~ w(fU)) ~ Hi) + w(j) = 0, j e I7, 

£ tij, fc) [vv(fc) - w(fc) - vv(j) + w(j)] - O + 6) = 0, j$ Ij. 
k*j 

From this we deduce a contradiction 

max [vv(fc) - w(fc)] > vv(j) - w(j), j 4 lh 
k 

since f(j)$ If, it is 

max [vv(fc) - w(k)~\ > w(f(j)) - w(f(j)) = vv(/) - w(f), feI/5 
k 

which refutes 0 — 0 > 0. We proceed analogously in disproving 0 — 0 < 0, 
hence 0 = 6?. 

It is obvious that for an arbitrary stationary replacement policy / is Qf ^ © 
because in Howard's iteration method we started from an arbitrary stationary 
replacement policy and the mean rewards 0n = 0fn constructed a non-decreasing 
succesion. It still remains to verify that the policy/is an optimal stationary one. 

Theorem 1 tells us that the system 

vt t / ( / ) ) + MfU)) - MJ) = 0, jeIf, 
(24) 

Q(j) + I tij, k) [r(j, fc) + w(fc) - w(j)] - 0j = 0, ; £ J7,
 V ' 

**; 
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determines uniquely the reward Qj. Comparing (23) and (24) we obtain Qj = 0. 
Finally, I should like to express my gratitude to dr. P. Mandl, DrSc, for providing 

me with valuable expert advice and helpful criticism in writting this article. 
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Souhrn 

P R Ů M Ě R N Ý VÝNOS Z MARKOVA PROCESU 
S OBNOVAMI S J E D I N O U IZOLOVANOU T Ř Í D O U 

R E K U R E N T N Í C H STAVŮ 

PAVLA K U N D E R O V Á 

Uvažuje se Markovův proces s obnovami popsaný v [3] se stacionární strategií 
obnovy. Ve větě 1 je odvozena soustava rovnic pro určování průměrného výnosu 
z procesu. Maximální výnos je charakterisován větou 2, v jejímž důkaze je popsána 
Howardova iterační metoda (viz [1]) nacházení maximálního výnosu a odpovídající 
optimální stacionární strategie. 

Резюме 

С Р Е Д Н И Й ДОХОД ИЗ П Р О Ц Е С С А МАРКОВА 
С ВОССТАНОВЛЕНИЯМИ С Е Д И Н С Т В Е Н Н Ы М 

КЛАССОМ ВОЗВРАТНЫХ С О С Т О Я Н И Й 

РАВЛА К У Н Д Е Р О В А 

В работе рассмотрен процесс Маркова с восстановлениями определённый 
в [3] при использовании стационарной стратегии восстановления. В теореме 1 
введена система уравнений для определения среднего дохода за единицу вре­
мени. Максимальный доход характеризуется теоремой 2, в доказательстве 
которой описан итерационный метод Ховарда для нахождения максимального 
дохода и отвечающей оптимальной стационарной стратегии. 
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