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Summary

The object of investigation in this paper is a Markov process with rewards under
a stationary replacement policy as described in [3]. In Theorem 1 we derive a system
of equations for establishing the mean reward from the process. The maximal reward
is characterized by Theorem 2 and in its proof there is described the Howard’s
iteration method (see [1]) for finding the maximal reward and the corresponding
optimal stationary replacement policy.

1. Basic definitions and notations

Let a homogeneous Markov process with rewards {X,, ¢ = 0} (see [3]) describing
the evolution of a system in state space 7 = {1, 2, ..., r} be defined by exit intensities
(D), ..., u(r)), 0 <p(j)£o0, j=1,...,r and by a stochastic matrix P =
= | pG, /) II%, j=1, p(i, i) = O of transition probabilities in the moment of the exit.

We constitute a matrix of the so called transition intensities M = | u(i, j) %=1
where u(i,j) = p(i) p(i, j) for i # j, p(i, 1) = —pu(i),
JEi

The system being in state i at time ¢ passes during the infinitesimal interval (¢, ¢t + dt)
into state j with the probability u(i, j) dr.

Consider a situation, where the development of the process can be influenced
by an action called replacement (sec [3]). Under a replacement of type (i, +j) we
mean the instantaneous shift of the system from state / into state j. The information
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on the evolution of the process up to the n-th state change is given by the sequence
of states visited

i09i17i27"',in—l’fn:j5 (2)
by the corresponding sojourn times

tostistay s lyoy,s 3)
and by the sequence
00501502, eees Oy, 4)

where d,, = 0 if the system was left i,, without interference and §,, = 1 if the passage
from i, into i,,., was the result of a replacement.
For the history of the process up to the n-th state change we use the notation

w, = [iO’ t07 50’ i17 tl’ 5]; cees in—lf tn—ls 611—1; in ’
and the complete history of the process is given by a sequence
o = [io, to, 803 irs 11, 045 -]

A replacement policy (see [3]) is a decision, for all possible sequences (2)—(4) and
all states j, on how long the system will be left in j without shifting (maximal sojourn
time) and in what state it is to be shifted. Since we do not want to exclude the random
choice of these quantities, we identify a replacement policy with a sequence of func-
tions

F = {"F(t|»,)}, k=1,2,...,r;n=0,1,2, ... 5)

"F(t/w,) is the probability that the maximal sojourn time in i, will be less than ¢
and that the eventual shift will be into k # i,. We make

Assumption 1. We consider only such replacement policies F where with probability 1

a) there exists only a finite number of replacements in every finite interval,

b) there are not two or more replacements in the same moment.

According to the assumption to nearly every w is assigned the trajectory
{Y,, t = 0}, being not left continuous at time of the transition and not right continu-
ous at time of the replacement. In what follows we denote by

04,071,035, ...
the moments in which the trajectory is not continuous,
Yy =Y,_,t>0;Y, = Yo Yt+ =Y,,t20,
E; the mathematical expectation in a process without replacecments under the condi-
tion iy = J,
D the set of couples (i, +/) meaning admissible replacements,

D; = {j: (i, +j)e D}.
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The reward from the process is defined by the following sets of numbers:
0(i), ieI the reward per a time unit in state i; r(i,j), i,je I the reward from
transition (i, ), we set r(i,i) = 0; v(i,j), i,je I the reward from the replacement
@G, +j), wo set v(i,i) = 0.

A stationary replacement policy f is given by a function f(j) defined on a subset
I, = I and taking values in I such that f(j) € D; for je I, f(j) # j. The replacenent
policy f'is the prescription to realize instantaneously the replacement j — f(j) whenever
the transition in state j occurs. No replacements are made in states j¢ /.. Let us
make yet

Assumption 2. (i, +j)e D, (j, +k)e D = (i, +k)e D or i =k,
v(i, j) + v(j, k) = v, k).

2. The mean reward per a time unit from the process
with only one isolated class of recurrent states

Let Ry be the mean reward from the process up to the time T, in accordance with
the previous definitions

T N
RT = jg(},t) dt + Z [r(YU_,n Yq,.) + v(Yo,,’ Y;:,):L ON é T < GN+1‘
0 n=0
In the sequel we use the statements (6)—(8), given in [4]: If the state space of the

Markov process contains only one recurrent class (eventually the transient class),
then there exists the mean reward per a time unit

;m%&mg:e, j=1,2,..,r (6)
independent of j. Moreover, the limits
Gim [E/(Ry) — ©T] = w(), )
are finite and
1 w(i) + 0 = o(j) +k;,- uG, B [rG. k) + wk)],  j=1,..,r, ®)

@ is uniquely determined by (8), w(1), ..., w(r) up to the additive constant.

For the rest of the paper we assume the state space of the process under arbitrary
considered replacement policy to contain only one recurrent class and eventually
the transient class. If j € I, then (8) takes the form

HPDw(i) + @ = o(j) + n() [v(, FG)) + w(fGN];
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which being modified to include y(j) = oo,

w(j) = v(, S(7) + w(f())).
If j ¢ I, then from (8)

W) X uis k) + € = o(i) + L 10 0 [, k) + wl)]-
Jj #J
We have thus established the system of equations for determining the mean reward @

VU SG) + w(f() —w(i) =0,  jel,

o) + T UG DI K) + 90 = ()] - © =0, ¢, )
J

Theorem 1. The system (9) determines @ uniquely, w(l), ..., w(r) up to the additive
constant.

Proof. a) For simplicity assume I, = {l,...,j — 1}, <r. Let M denote
the matrix of the system (9). The matrix M constructed from the matrix M by leaving
the last column out, is the quasistochastic matrix of rank r — 1. Thus the system of r
homogeneous equations with r unknowns

xM =0, X = (X{, ..., X,)

has non-zero solutions forming the vector modulus of rank 1. It follows from [5],
page 194 that every solution x except for multiplying of a constant is the stationary
distribution of the process with the matrix of transition intensities M. Not all states
j,j + 1,...,rin this process can be transient ones. Therefore the system

xXM =0, x = (x;, ..., %)
has a single zero solution, since with respect tc the above the (¢ + 1)-th equation
—=X; = Xjyqy — o — X, =0

cannot be fulfilled otherwise. This implies that the rank of the matrix M equals to r.
b) Let us suppose @, w(l), ..., W(r) to be another solution of (9). Subtracting (9)
from the correspondirg equations we obtain

wlf() = w(f(G) — w(j) + w(j) =0,  jel,

ST = FR) = () + W]~ 0 + =0, I, 10
#J

If, say, —0 + @ < 0, then for j ¢ I, from (10)

max [w(k) — w(k)] >w(j) — w(j).
K

As by Assumption 1 () ¢ I, this relation holds for all j € I, which is a contradiction.
We proceed analogously in showing the impossibility of —© + 6 > 0.

Thus B
0= 0.
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Denoting w(k) — w(k) = w(k), k e I, we get from (10)
w(f(j) — wi) =0, jel;
Y u(j, Ky wk) + pG, NWH=0,  j¢l,.

k#j

(11

In a matrix notation for x; = w(j), j € 1, the system (11) has the form
Mx’' = 0, X = (X1, ..., X,).

The solution of the system (11) forms a vector modulus of rank 1 containing vectors
having all components equal. That is

w(i) =w(i) =w(i) =¢ Jjel,
where c is an arbitrary constant. The proof is thus complete.

Let O denote the mean reward per a time unit from the replacement process
under the stationary replacement policy f. Let us introduce the maximal reward

0 = max {0,}.
s

The replacement policy f is called optimal, if & = ©3. The maximal reward is cha-
racterized by Theorem 2.

Theorem 2. @ is the single possible number to which w(l), ..., w(r) is to find so

that

max {v(j, k) + w(k) — w(j), ke Dj; o(j) +
; . _ . ~ , 12
+k2 uj, k) [r(j, k) + w(k) — w(j)] — @} =0,  jel 12
#J
If fis such a replacement policy that the maximum in the compound bracket is reached
Sor je I by the expression v(j, f(j)) + Ww(f(j)) — W(j) and for j ¢ I by the expression
e(j) + ¥ u(j, k) [r(j, k) + w(k) — w(j)] — O, then f is the optimal stationary replace-
K#j

ment policy.

Proof. We prove first the existence of the solution of (12) by the Howard’s
iteration procedure. Choosing an arbitrary stationary replacement policy f, we
successively determine the stationary replacement policies £}, ..., f, as follows:

a) We solve the system of equations

v(.iv .f;l(j)) + Wn(f;x(.])) - W’,,(j) = 0’ je If,,,

o)+ T DG+ ) = ] = 0, =0, gl D

We put thereby w,(j,) = 0, where j, belongs to the (single as assumed) recurrent
class I, with respect to the matrix M, = | (i, j) ||} j=, of the transition intensities
under the policy f,. By Theorem 1 @, is uniquely determined by the system (13),
w,(1), ..., w,(r) up to the additive constant.
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b) For all je I we successively determine

max {v(j, k) + w,(k) — w,(}), ke Dj; o(j) +kZ 1(j, k) [r(G, k) + wo(K) = wo(j)] — ©,}
y

The policy f,+ is determined as follows:
If the maximum for a fixed j € I is reached by the expression

o(j) +k};_u(j, k) [r(j, k) + wo(k) — w,()] — @,
we choose '
JE L. -
In the contrary, when the maximum is obtained by the expression
v(j, k) + wy(k) — w,(j) for any k € D;, we choose
jelp,,  firi) =k

Here the choice of k = f,(j) is preferred.
c) If the policy £, ., does not possess the property required by Assumption 1,

namely, that f, . ,(j) & I, forall je I, , we change it to the policy f, . as follows:
in those states je I,  ,, where f,. (j) el , we take f1,1(j) = for1(fus (), in
others je I, we have f,+1(j) = fo+1())-

We shall now show the correctness of the procedure in c). Let us suppose that
f(j)¢1,, for all je I, and the policy f, ., being constructed in the above described

way. Further let
jeln.»  fari)=kely ,  foni(k) =K. (14
By the construction of the replacement policy f, 4 it implies that
vk, k') + wy(k') — wa(k) 2 0
and therefore by Assumption 2
v(js k) + wak) = wo(j) S V(i k) + vk, k') + wo(k) — w,(j) £
S V0 K) 4 wa(k) — wi())-

We see that the equality must hold here, because the expression v(j, k) + w,(k) —
— w,(j) is maximal (replacement j — k under the policy f,+; in the state j) from all
expressions

V(j, l) + Wn(l) - Wn(j.)s i€ DI"
We are thus led to the conclusion that k' is equivalent to k for the state j, moreover
vk, k) + wy(k') — wy(k) = 0.
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We can argue by contradiction that also k€ I, , k' = f,(k). Therefore there cannot
occur the situation

Jor1(J) = K, Joe1(k) =K, Jor1(k) = K,

and therefrom also

fll) = k', fulk) = k",

which contradicts the assumption of the replacement policy f,. For this it suffices to
change the constructed policy in the way described in c).
For thus constructed replacement policy f,+; then
V(s fus 1)) + wullfus () — wi()) 2 0, jely .,

Q(J) +k§"u(j, k) [r(j5 k) + W,,(k) - Wn(j)] - @n ;. 01 J¢ Ifn+1 * (15)

By Theorem 1

V(J, far 1) + wys 1 (for1()) — woi1(j) = 0, J€ If,,Hs (16)
Q(]) +kZII(1, k) [V(j, k) + Wn+1(k) - Wn+1(j)] - @n+1 = 0’ ]¢ Ian'

Subtracting (15) from (16) we obtain

Wa i 1(for 1) = w(fos:1()) — W () + w,(j) £0, Jely s (17)
Z N(]S k) [Wll+ l(k) - wn(k) - Wn+1(j) + W,,(j)] - @n+1 + 6n = 0’ jé Ifn+x'
kK=j
In analogy with the proof of Theorem 1 we can verify the impossibility of

@, — 0, > 0. Hence
0,£0,< ..

IIA

(0]

IIA

n

Because of only a finite number of the stationary replacement policies, there exists ng
so that
Oy = Opyit = -

Let P,y ; = || pus1(i.)j) I} ;=1 denote the matrix of the transition probabilities under
policy f,+1. Then p,.1(j, k) = p(j, k) for jé¢I,, . For n = ng is from (17) for
Jel,,

1+ 1

Wa()) = Wasr () = r(j) + wa(fas () — Wt 1 (fus (D)) =
=r(j) + Y Pur1(J, k) [Walk) — war1(K)], where r(j) £ 0.
kel

From (17) we have further for j¢ I, , n Z o,

Z u(j) p(j, k) [Wn(k) - Wn+1(k)] - [Wn(]) — Wpt 1(])] u(j) = 0,
k#J
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from where

Y PGy k) [Wak) = o 1(R)] + 7(3) = w,(j) — Wpss(j), ~ where r(j) 0.
k#j

Hence foralljel, n = n,,
WD) = Wi () = 1) + 3 PG ) k) = waia(R)], 1) S 0. (18)

We now show that it follows from (18)
W) S Wass(),  jeLnZ mo. (19)
Introduce the shortened notation
I PusaG D) ey = PG D Wy =P, P =] p™G D I =15
PO the unit matrix. Let 7, be the isolated class of recurrent states, I' the transient
class with respect to the matrix P. Let us write next
n(j) = lim p™(i, j).
Then n(j) > 0 for jeI,, n(j) = 0 forjel.
Multiplying (18) by the numbers 7(j), adding for all j € I and applying the relation
n(k) = 3, 7(j) p(j, k)

J

we obtain
2 1() [wu() = war s (DT = 2 7() r(j) + ;n(k) [wak) = W, 1 (R)].

We see now that there must be r(j) = 0 for je I,.
Then (18) yields

W,,(j) - wn+1(j) = k}:] p(.]s k) [Wn(k) - Wn+1(k)]’ jE ]1’

and on successive substitution we come to
Wa(J) = Wai1(J) = Zk_‘, P s k) [wi(k) — wnr1(K)], Jel,m=1, 2, ...

Letting m — oo yields

wo(J) = War1() = 3 m(k) [wi(k) = wyi1(K)] = constant,  jep,.
k

Further j, € I, and w,(Jo) = wa41(jo) = 0, from where

wo(J) = Wai () forjel,. (20
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It is obvious from (18) and (20) that we can write for je I’
Wa(J) = War1(J) = () +kEZI,P(j, k) [wa(k) = w45 (R)].
Then
Wal) = Waas() = r() + X s K (k) + 3 2 K onk) = was (],

and in the same manner further gives

N
Wa(J) = Wass(J) = Z_o kpr""’(j, ky r(k) +RZI,p‘N“’(j, k) [wa(k) = wyi 1 (K)]-

If k is the transient state of the chain formed by the states of the process considered,

then the serie Y. p™(j, k) converges for j e I (see [2]).
n=0
Because of this statement

o) = W) = 3 S PG R k) S0 for jel" o)

m=0 kel’

(21) together with (20) gives (19).
It follows from (19) and from the finiteness of the set of the stationary replacement
policies that m = n, can be found where

wm(]) = “’m-i-l(j)’ JEI

Since ©,, = 0,,,4, we can write by using (13) and the method of determining the
policy fo+1

L. for jel, ,,
max {v(j, k) + w,(k) — wa(j), k € Dj; o(j) +
+ Zki‘t(]’ k) [T(j, k)+ Wm(k) - W,,,(])] - @m} =

= v(jafm+1(j)) + wm(fm+1(j)) - W,,,(j) =
= V(j, fue:10)) + Wm+l(fm+l(j)) — Wnt1(j) = 0.

2. for j¢ I,
max {v(j, k) + w,(k) — wa(j), k€ Dj; e(j) +
+ TG TG, B) + wall) =] = O} =

= Q(J) +k§,.ﬂ(ja k) [r(j, k) + Wm+1(k) - Wm+1(j)] = 0Opy =0.
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We see that
0 =0, wj=w) Jel,

is the solution of equation (12).
We verify now that (12) determines @ uniquely.
Assume there exists @ # @ establishing (12), that is

max {v(j, k) + w(k) — w(j), ke D;; o(j) +
*Eﬁ‘( B rG k) + wil) = w(j)] - @} =0,  jel. 22)

Let, say, © — @ > 0 and let f be the replacement policy defined in Theorem 2.
Then

v, F(G)) + w(f()) — w(j) =0, jelj, 23
o(j) +k§‘,u(j, ky[r(j, k) + w(k)y = w(j)] — @ =0, jé¢lI
According to (22)
"(];f(j)) + PV(f(J)) - W’(i) é 0; jEI__f)
o(j) +k;u(j, K[rG, k) + wk) —w()] =0 <0, jé¢l;

Subtracting this from (23) we obiain

WG = w(f() = w(i) + w() 20, jely,
k;u(j, k) [w(k) — w(k) = w(j) + w(D] = O+ 0 20, jé¢I;.

From this we deduce a contradiction
max [ — wk)] > w(j) — w(i),  Jj¢ I,
since f(j) ¢ I, it is
max [wlk) — wk)] > w(f(j) — w(f () 2 w(i) — w(i),  jely,

which refutes @ — @ > 0. We proceed analogously in disproving @ — @ <0,
hence O = 0.

It is obvious that for an arbitrary stationary replacement policy f is @, < o
because in Howard’s iteration method we started from an arbitrary stationary
replacement policy and the mean rewards @, = @, constructed a non-decreasing
succesion. It still remains to verify that the policy fis an optimal stationary one.

Theorem 1 tells us that the system

v, fO)) + w(f() — w(j) =0,  jely

o() + S 4G, TG, ) + wil) — w()] — @5 =0,  j¢r;, P
k%)
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determines uniquely the reward @;. Comparing (23) and (24) we obtain @7 = 6.
Finally, I should like to express my gratitude to dr. P. Mandl, DrSc., for providing
me with valuable expert advice and helpful criticism in writting this article.

REFERENCES

{11 R. A. Howard: Dynamic programming and Markov processes, New York—London 1960.

[2] P. Mandl: Rizené Markovovy Fetézce. Piiloha Zasopisu Kybernetika, roé. 5, 1969, Academia
Praha.

{31 P. Mandl: Some results on Markovian replacement processes. J. Appl. Prob. 8, 357—365 (1971).

{4] P. Mandl: An identity for Markovian replacement processes. J. Appl. Prob. 6, 348—354 (1969).

[5]1 T. A. Sarymsakov: Osnovy teorii processov Markova. Moskva 1954.

Souhrn

PRUMERNY VYNOS Z MARKOVA PROCESU
S OBNOVAMI S JEDINOU IZOLOVANOU TRIiDOU
REKURENTNICH STAVU

PAVLA KUNDEROVA

UvaZuje se Markovilv proces s obnovami popsany v [3] se stacionarni strategii
obnovy. Ve vété 1 je odvozena soustava rovnic pro uréovani primérného vynosu
z procesu. Maximalni vynos je charakterisovan vétou 2, v jejimz ditkaze je popsana
Howardova iteraéni metoda (viz [1]) nachizeni maximalniho vynosu a odpovidajici
optimaloi stacionarni strategie.

Pesrome

CPEJHUIl JOXOJ U3 MPOLLECCA MAPKOBA
C BOCCTAHOBJIEHMSAMU C EAVUHCTBEHHBIM
KJIACCOM BO3BPATHBLIX COCTOSIHU

PABJIA KYHIEPOBA

B pabote paccMoTpeH mpouecc MapkoBa ¢ BOCCTAHOBJICHMSIMH OIpeNEJIEHHbIH
B [3] npH uCnoJIb30BaHMK CTAIMOHAPHOM CTpAaTeruu BOCCTaHOBJIEHUS. B Teopeme 1
BBEJEHA CHCTeMA ypaBHEHUH 1UTA ONpelesieHUs CpelHEro JOXOJa 3a EIMHUIYY Bpe-
MeHU. MaKcuMaJibHblii JOXOJ XapaKTepu3yeTcsi TeopeMoi 2, B JOKa3aTeJbCTBE
KOTOpOM OIHUCaH MTeparMOHHbIM MeTox XoBapaa sl HAaX0XIEHUS MaKCUMAaJIbHOTO
JOXOAa ¥ OTBeYarouleil ONTHMAIbHOK CTAal{UOHAPHOU CTpAaTEruu.
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