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SEMI-ORDERED GROUPS 

JIŘÍ R A C H Ů N E K 
(Received April 121 1978) 

From the point of view of the relation theory, the notion of a lattice is based on 
order felations. Likewise the notion of weakly associative lattices is based on semi-
order relations, that is on reflexive and antisymmetric binary relations. (For the basic 
properties of weakly associative lattices see [2] and [5].) 

In this paper we show some properties of semi-ordered groups, whereby a semi-
ordered group is a group with a semi-order relation such that the group binary oper­
ation satisfies the monotony law. In particular, there are studied some properties 
of H>tf/-groups, i.e. of such semi-ordered groups (G, +, g ) where the semi-ordered set 
(G, g ) is a weakly associative lattice. 

1. Basic definitions and examples 

A semi-order of a set A is any reflexive and antisymmetric binary relation en A. 
If g is a semi-order of A, then the pair (A, g ) will be called a semi-ordered set 
(so-set). Let (G, +) be a group and let (G, g ) be a so-set. Then the triple (G, +, g ) 
is called a semi-ordered group (so-group) ifa^b implies c + a g c + b and a + d ^ 
g b + d for all a, b, c,de G. A so-group is directed if for each a,beG there exists 
ce G such that a, b g c. Then, evidently, for each a,beG there exists de G such 
that d S a,b.lf(G, +, g ) is a so-group such that (G, g ) is a wa-lattice (see [2], [5]), 
then (G, +, <j) is called a weakly associative lattice-group (wal-group). A so-group 
(G, + , S) is called a tournament-group (to-group) if (G, g ) is a tournament. 

If a semi-order of a group (G, +) is transitive, i.e. if (G, g ) is an ordered set 
(po-set), then (G, +, g ) is an ordered group (po-group). It is evident that if a wa/-group 
(G, +, S) is also a po-group, then (G, <) is a lattice and so (G, +, g ) is a lattice-
ordered group (l-group). Analogously, if a /o-group (G, +, g ) is also a po-group, 
then (G, g ) is a linearly ordered set and (G, +, g ) is a linearly ordered group (o-group). 

Let (G, +) be a group and let (G, g ) be a so-set (a po-set) such that a ^ b implies 
a + c S b + c for all a, b, c e G. Then (G, +, g ) is called a right so-group (a right 
po-group). 



Example 1. Let us consider a group (G, +), where G = {0, a, b, c, d, e) and addi­
tion is defined as: 

+ 0 a Ъ c d e 

0 0 a b c d e 

a a 0 d e b c 

b b c 0 a e d 

c c b e d 0 a 

d d e a 0 c Ъ 

e e d c b a 0 

We define the binary relation = on G: 0 g c, a <̂  b, b g e, c <, d, d <i 0, e <i a 
and x <i x for each JC e G. Let us show that (G, +, <I) is a right sO-group which is 
neither a sO-group nor a right pO-group. It holds: 

0 <; c and a = 0 + a<,c + a = b, b = 0 + b<;c+b = c, 
c = o + cgc + c = d, d=o + d<;c + d = o, 
c = 0 + c_:c + e = a; 

a <i b and 0 = a + a = b + a = c, d=a + b<;b + b = 0, 
c = a + c:gb + c = a, b = a + dgb + d = c, 
c = a + c:_b + c = d; 

b ^ e and c = b + a = c + a = d, 0 = b + b<£c + b = c, 
# = b + c<:e + c = b, c = b + d<Ic + d=a, 
d=b + c<:c + e = 0; 

c <i d and b = c + agd+a = c, c = c + b:gd+b = a, 
d=c + c<id+c = 0, 0 = c + d<id+d=c, 
a = c + e<^d+e=b; 

d=0andc = d+a = 0 + a = a, a = d+b = 0 + b = b, 
0 = d+c^0 + c = c, c = d+d<i0 + d = d, 
b = d+eg0 + c = c; 

e ^ a and d=c + aga + a = 0, c = e + b:ga + b = d, 
b = e + c^a + c = c, a = e + d<ia + d=b, 
0 = £ + c:_a + c = c. 

Therefore G is a right sO-group. But G is not a sO-group, since a = a + 0 $ a + c = 
= e. Moreover, G is not a right pO-group since 0 = c, c ^ d and 0 :g d. 

Example 2. As is known from the theory of pO-groups, a group admitting a linear 
order (i.e. if it is an 0-group) is torsion free. In the ease of abelian groups, this con­
dition is also sufficient. (See [4].) E. Fried proved (in [3]) that the class of all groups 



admitting tournament semi-orders is essentially larger than the class of all 0-groups. 
For example, a torsion group admits a tournament semi-order if and only if it con­
tains no element of order 2. We shall show a concrete construction of a tournament 
semi-order for the cyclic group of order n, where n is an arbitrary odd positive integer. 

Let n > 1 be an odd number and let (G, ©) be the cyclic group of the numbers 
0, 1, ..., n — 1 with addition © modn. (+ and — means addition and subtraction 
of integers, ^ and < denote the relations "to be less than or equal to" and "to be 
strictly less than" in the natural ordering of integers, and <x, y} = {z e Z; x ^ 
<; z ^ y) for x, y e Z.) 

We define -< on G as: 

(I) 0<yoye(l9 ±Z±\foral\yeG 

z -< 0 o z є ( — - — , n — 1 ) for all z є G 

(II) Let 0 < x ̂  H 1 . Then 

x <yoye(x + 1, — - h x ) for all y eG 

z <xoze( — - h x, n — 1 ) u <0, x — 1> 

(III) Let n ~ 1 < x < n - 1. Then 

x <yoye(x + l,n - 1}KJ (o, x - — ) for all yeG 

z <xoze(x — , x — 1 ) for all zeG 

), " * - 1 

z < n - l o z e ( — - — , n — 2 ) for all z e G 

Prove that the relation < = ( < u = ) i s a tournament semi-order of the group G. 
The reflexivity is trivial. We prove the antisymmetry. 

1. Since n ^ 3, we have 1 g — - — < — - — ^ n — 1, thus ( 1 , —-^— ) n 

/ n + 1 t 

n ( — r — , n - 1 



2. Let 0 < x : g i L _ L . Then x + 1 ^ JL—L + x < - ~ i - + x £ n - 1, 

therefore (x + 1, - ^ — + x ) n (-^—— + x, n - 1 ) = 0. Simultaneously 

X + 1, -r— + X ) n <0, x - 1> = 0. 

3. Let — - — < x < n - 1. Then 0 < x -— < ; X - 1 < X + 1 < I H - 1 , 

hence <x + 1, w - 1> n ( x ^—, x - 1 ) = 0. Moreover 0 < x ~ -—-— < 

n - 1 
< x -— <s x — 1, therefore / o , x - ^L-_—\n (x - --L——, x - l \ = 0. 

4. If 0 < -̂ LZ-L - l < ILzL <; n - 2, then /o, iLZ± - A n 

n / —--—, n — 2 \ = 0. By the definition of -< we obtain the antisymmetry. 

Next we show that _-< is a tournament semi-order. 

1. It is clear that A , ^ l L \ u / n + 1 , n - A u {0} = {l,... ,/t - 1}. 

2. In the case 0 < x g — - — , we have (x + 1, — - — + x ) u 

u / ü + L + X ( П _ i \ u < o , x - l>u{x} = {!,...,«- 1}. 

„ -| / ft I 1 

3. For — - — < x < n — \ there is <x + 1, n - 1> u (o,x - — ) u 

U v ~ ~ 2 — ' x "" 0 u W = 0> —» w "" 0-

4. It holds /o, n ^ - A u / ^ L Z ± , n - 2 \ u {n - 1} = {1, ...,/*- 1}. 

Finally we prove that a _< b => a © c •_< 6 © c for all a, ft, c e G. Let a, ft, c e G, 
a <fr. 

1. Let a = 0. Then 1 ^ 6 g J__zi_. 

la) Suppose 0 < c <; — - — . Then a + c = c, c+l=b + c = — h c. 

But this means (by (II)) that a ® c < b ® c. 

1/0 Let — ^ — < c < n - 1. Then a + c = c, c+l<6 + c. Hereby either 

i + c _ n - 1 or H = 6 + c < f- c. In the second case it is b ® c < 

< !LZ— + c - n, i.e. b ® c < c - - ^ r — . Hence by (III) a® c <b ® c. 

8 



n — \ 
\y) Let c = n — 1. Then a + c = c, n_b + c_ — h n — 1. This means 

that 0 _ b © c _ n ~ 1. - 1, therefore by (IV) a © c < b © c. 

2. Let b = 0. Then -_-±-~ _ a _ n - 1. 

2a) Suppose 0 < c _ n — 1. Then b + c = c, — - — + c < a + c_«—1 + c. 

Let n _ n - 1 + c. Then a © c _ c - 1, and so by (II) a © c -< b © c. 

2p) Let _ - I — < c < if - 1. Then b + c = c, n _ w ± + c _ a + c < 

< n - 1 + c, i.e. c - — ~ — _ a © * < c - l . Hence by (III) a® c <b ® c. 

n + 1 

2y) Let c = n — 1. Then b + c _ c, — h n — l _ a + c_2« — 2, there­

fore — - — _ a © c _ n — 2 and this means a ® c < b ® c. 

3. From 0 < a < — - — and from © < b < — - — it follows a + 1 < b < 
- 2 2 - -

^ n - 1 
_ _ - - + < , 

„ i 

3a) Suppose 0 < c _ — - — . Then evidently 0 < a + c < b + c _ n — 1. 

3aa) Let a + c _ — - — . Then a + c + l _ b + c_ — - — + a + c and 

thereby (II) a © c -< b © c. 

3ab) Let — - — <a + c<n— I. Then a + c + l _ b + c_ti— 1. From 

this and from (III) it follows a ® c < b © c. 

3jg) Let n ~ 1 < c <n - L 

3/?a) Suppose ——— < a + c < n — 1. Hence a + c+l<b + c. Indeed, let 

n _ b + c _ n ~ * + a + c, i.e. 0 _ b © c _ a + c - U | 1 . Therefore by (III) 

a © c < b © c. 

3/?b) Let n _ a + c. Then n < b + c < — y — + n - 1, therefore 0 < b © c < 

< ILl i. This means 0 _ a © c < b © c < n ~~ 1 - 1. Thus by (I) and (II) 

a® c <b® c. 



n - 1 
3)0 Let c = n — 1. Then n = a+c<b + c = — h n - 1, and so 0 g 

n - 1 
= a © c < b f f i c = — 1. Hence by (I) and (II) a © c < b © c. 

4. Suppose 0 < a = — -^—, — ~ — < b < n - 1. Thus a + 1 = b =
 w ~ — + 

+ a. 
n - 1 

4a) Let 0 < c = — - — . Then 0 < a + c = n-1. 

4aa) If a + c <; — - — , then a + c + l = b + c = — - — + a + c, therefore 

by (II) a ® c < b ® c. 

4ab) Let — - — < a + c < n - 1. Then _i + c + l < b + c= —— h a + 
"-- __• 

n + 1 

+ c; therefore if n = b + c, then 0 = b©c = a + c — - . But by (III) 

a ® c < b ® c. ; 

4ac) Let a + c = n — 1. Then n g b + c = — - — + a H — = n — 1 + a, 
i.e. 0 = b © c = a - 1 =

 w ~ - 1. Thus by (IV) a ® c < b ® c. 

AHX r , n ~ I , - T M n — 1 n — 1 

4/?) Let — - — < c < n - 1. Then — - — < a + c < — - — + n - 1. 

b + c _S —^ h a + c, hence 0 = b©c = a + c — — - — . Therefore by (III) 

4/?a) Suppose a + c < n - 1. Then a + c+1=b + c. If n = b + c, then 
^ 71 - 1 

+ < - * - 2 -
^ © c -< b © c. 

4/3b) Let a + c = n - 1. Then n = b + c = — h a + c = — - — + n — 

n - 1 
- 1. Therefore 0 = b © c = — - — - 1, i.e. by (IV) a © c < b ® c. 

n - 1 
4/?c) Let n = a + c. Then a + c < — - — + 72—1, which means 0 = a © c < 

< —-3 1- Simultaneously n < b + c = — h a + c. This means 0 < 

n - 1 
< b © c = — - — + (a ® c). Hence by (I) and (II) a ® c < b ® c. 

n - 1 
4y) Suppose c = n - 1. Then n = a + c g —— h n - 1, and so 0 = a © 

© c = ———~ — 1. In addition there isn = a + c<b + cg — - — + a + n — 1, 

10 



n - 1 
therefore 0 = a©c<b©c = — - — + a - 1, hence a © c < b © c. 

5. Suppose ——— < a < n - l , 0 < b = ———. Then 0 < b = a - —-—•. 

5a) Let 0 < c = — y — • Then 0 < b + c = n - l . 

n — 1 n + 1 
5aa) Let — - — < a + c < n — 1. Then 0 < b + c = a + c— — - — . Hence 

by (III) a © c -< b © c. 

5ab) Let a + c = n - 1. Then 0 < b + c = a - — — - + c = (n - 1) -

- — i — = ^ - — - 1. Thus by (IV) a®c<b®c. 

7 1 — 1 

5ac) Let n = a + c, i.e. n = a + c<n— 1 -I — , and so 0 = a © c < 

W — 1 * r^, / X T / W + 1 / ^ X rZ+1 

< — - 1. Then 0 < b + c = a — + c = ( a © c ) + n — = 

n - 1 
= — - — + (a © c). Thus by (I) and (II) a ® c < b © c. 

n - 1 
5/?) Suppose — - — < c < n — 1. Hence n = a + c < 2n — 2. 

5£a) Let 0 = a © c = — y — . Then b + c = a - n 1" + c = (a © c) + 

71 + 1 77 — 1 / ^ x T , , . • 71 — 1 / ^ x ^ ^ ! - , 
+ n — = —— 1- (a © c). In addition — h (a ® c) = n — 1, which 

71 — 1 
means — - — < b + c = n — 1, thus a © c < b © c. Therefore by (I) and (II) 

a ® c <b ® c. 

n - 1 
5/?b) Let — - — < a ® c < n — 2. Hence, if n = b + c, then n = b + c = 

n + 1 , ^ s 7 7 + 1 . rt , . _ . . ^ . 7 1 + 1 

= a + c — = (a © c) + n - — - — and so 0 = b © c = (a © c) — . 

If b + c = n. — 1, then n_a + c<b + c + /i implies 0 ^ a © c < b + c . Thus 
by (III) a® c <b® c. 

5y) Let c = n — 1. Then —— h n — 1 < a + c < In — 2, hence — - — = 

7 1 + 1 

= a © c < n - 2. In addition / i < b + c = a + c — , therefore 0 < b © 

© c = (a © c) - n 1" •. Thus by (III) a © c -< b © c. 

п 



6. Let _ _ _ i - < a < n - 1, H——<b<n-\. Thus b - IL—L = a = 

g b - 1. Thus b - - ^ - ^ = a = b - 1. 

6a) Suppose 0 < c <̂  — - — . 

n — 1 
6aa) Let — - — < b + c < n - 1. Then b + c - 1 < I a + c<ib + c - l , 

therefore by (III) a ® c < b © c. 

n - 1 
6ab) Let b + c = n — 1. Then — - — < a + c<I« — 2 and this implies by (IV) 

a © c < b ® c. 

6ac) Letn = b + c < - ^ — + H - l,i.e.O <I b © c < ^ - ~ 1. If a + c <I 

<I n — 1, then (b © c) + n — <I a + c, which means (b © c) + — - — < 

<I a + c. Hence by (II) a ® c < b © e. 

6£) Let -^LZ— < c <I « - 1. Then n<:a+c<b + c<2n-2, i.e. 0 <I 

g a © c < b © c < n - 2 . Moreover, n<b + c<,d-\ — + c = (a © c) + 

+ H + n Z t thus 0 < b © c < l ( f l f f i c ) + ^~—. Therefore by (II) a ® c < 

<b® c. 

7. Suppose a = n — 1. Hence 0 < b = — 1. Furthermore 0 < c implies 

a + c = n — 1 + c , i.e. a © c = c — 1. 

7a) LetO < c ^ W ~ * . Then a © c < ~ ^ r — andO < b + c <I " ~ - 1 + 

+ c = - ^ — + (a © c). Thus by (II) a ® c < b ® c. 

Iff) Let ^—^— < c < n - 1. Hence ^ — — < I a © c < n - 2 . 

7/fo) Let a ® c = — - — , i.e. c — 1 = — - — . Then c = — - — and b + c = 

, 7 1 + l ^ n - l . r c + 1 , __ . , n — 1 n + 1 
= b + — - — <: — 1 + — — = (a © c) + — - — . Moreover — - — < 

< b + c. Thus by (II) a ® c < b ® c. 

12 



ipb) Let n „ 1 < a © c < « - 2 . If « = b + c, then n ^ b + c = - ^ — 

- 1 + c = (a ® c) + n 1 , i.e. O g b © c ^ ( a © c ) - n + - ^ — and so 

0 ^ b © c g ( a © c ) - n ~ 1 . Let b + c ^ n - 1. Then a@c = c - l < b + c. 

In both eases we obtain by (III) a ® c < b ® c. 
n - 1 

ly) Let c = n - 1. Then a + c = 2 n - 2 , n^b + cg — - — + « - 2. Thus 

a ® c = H - 2 and 0 ^ b © c <; ^—z— " 2- w = 5 m u s t u o l d , therefore — - — < 

< H - 2. Furthermore, b © c g -"-^ 2 = (n - 2) — = (a © c) -

- W 1" . Thus by (III) a®c<b®c 

n - 1 
8. Suppose b = n — 1. Then — - — ^ a ^ n - 2. In addition, 0 < c implies 

b + c = «— 1 + c, i.e. b © c = c — 1. 

8a) Let 0 < c ^ - ~ * . Then n ^ b + c g w ~ * + n - 1, and so 0 = 

^ ^ © C = ±zJ__ i. 

n - 1 
8aa) If b © c = 0, then c = 1 and — - h l ^ a + c g n — 1, this means 

ft 4- 1 

T ^ a + cgn-1. Thus by (I) a © c -< b © c. 

8ab) Let 0 < b © c ^ -^—— - 1. If a + c <; n - 1, then -"—— + c = a + c. 

By this H ~ + c - 1 = a + c, therefore n " t * + (b © c) = a + c. Thus by (II) 

a © c -< b © c. L e t n ^ a + c ^ n - 2 + c. Then 0 ^ a © c g c - 2 = ( c - 1 ) -
- 1 = (b © c) - 1. Hence also by (II) a® c <b ® c. 

n - 1 
8/?) Let — - — < c < n - 1. Then n = a + c < 2« - 3, therefore 0 g a ® c < 

< n — 3. Moreover, — - — ^ b © c < n — 2. 

8/?a) Let a ® c = 0. Then a + c = «, and so 2 g c ^ — ^ — . This means 

n — 1 
l g c - U —o 1, thus by (I) a © c ~< b ffi c. 

13 



8£b) Let 0 < a ® c <, n 1 . Then (a ® c) + A - — = (a + c) - n + 

n - 1 . n - 1 n + 1 % J t , _ x , w - 1 
H — = — r h c — = c > c - \ and thus (a ® c) + — - — > 

.z ..-< z. --• 
> b © c. Furthermore ( a © c ) + l = (a + c)-n+l<;(n-2) + c - n + l = 
= c - 1 = b © c. Therefore by (II) a ® c <b ® c. 

8£c) Let - ^ — < a © c < n - 3 . W e knowthat — ~— <, b ® c. But — ^ — = 
.Z JL ** 

= b ® c cannot hold. Namely, in the other case a + c = a H — and thus 

a + c = a + — - — , and (a® c) — = a ® c, which implies n = -1. The­

refore — - — < b ® c holds always. In addition (a ® c) H ^ — = (a + c) — n + 

W — 1 n + l ^ n — 1 n + 1 i » ^ _ i _ ^ 
+ — - — = a + c — ;> — - — + c — = c - 1 = b © c, thus a © 

n — 1 
© c ^ (b © c) — , And since a <= n - 2 and n<;a + c<b + c<2n — 2, 

a © c < b © c. Hence by (III) we obtain a + c -< b © c. 

87) Let c = n - \. Then n ~~ - +n-\<La + c<=2n-3, hence — -

~\<^a®c<,n-3. I f n = 3, then a ® c = 0 and b © c = 1, thus a © c -< 
n — 1 n — 1 

-< b © c. If n > 3, then — - — <b@c = n — 2. Since — 1 ^ a © c, it is 

(n - 2) — <, a © c, thus (b © c) - — g a ® c. And since a ® c <, 

g n - 3 = (b © c) - 1, by (III) a © c -< b ® c. 

Example 3. Let (Z, + ) be the additive group of integers, " . _ " the relation "to be 
less than or equal to" in the ordinary sense. Let us define a relation " -<" on Z as: 

a :< b <=>df a <^b and b — a ^ 2. Then (Z, + , -<) is a wa/-group which is neither 
a tO-group nor an /-group. 

2. Semi-ordered groups 

Let G be a sO-group, G+ = {x e G; 0 <, x}. 

Theorem 1. a) If (G, + , <*) is a so-group, then G+ is an invariant subset with 0 
in G such that ae G+ and —aeG+ imply a = 0fOr each ae G. 

b) If(G, + ) is a group, P an invariant subset with 0 in G containing no non-zero 
element with its opposite element, then (G, + , ^ ) , where a <, b iffb — aePfor alia, 
b e G, is a so-group and G+ = P. 

14 



Theorem 2. A so-group (G, + , <i) is apo-group if and only ifG+ is a subsemigroup 
of(G, + ) . 

Proof. Let G+ be a subsemigroup of (G, + ) , a <i b, b <I c. Then b - a, 
c - b 6 G+ and c - a = (c - b) + (b - a) e G+, therefore a <i c. 

Theorem 3. Lct G = (G, + , <I) bc a so-group. Then the following conditions are 
equivalent: 

(1) G is directed. 
(2) G = {y - z\ a <i y, a <I Z} for each aeG. 
(3) G = { y - z ; j ; , z G G+}, i.e. G = G+ - G+. 
(4) For each xeG there exists yeG+ such that x <I y. 

Proof. (1) => (2), (4) => (2): Let a, b e G and let c e G+ such that b ^ c. We 
denote y = c + a, z = - b + c + a. Then < y - Z = c + a-- ( - b + c + a) = b and 
j = c + a^a, Z = - b + c + a^a. 

(2) => (3): Trivial. 
(3) => (4): Let x e G and y, z e G+ such that x = y - Z. Then >> = x + z ^ x. 
(4) => (1): Let a, b e G, de G+ such that a - b = d. Then agd+b, b <I d + b, 

thus G is directed. 

Let G = (G, + , <I) be a so-group, 0 ^ A .= G. Then we say that A is a convex 
subset of G if a <I x, x <i b imply x e A for all a,beA,xeG.A subgroup A of G is 
called a convex subgroup of G if A is a convex subset of G. 

Theorem 4. LetG = (G, + , <I) be a so-group, A a subgroup ofG. Then A is convex 
if and only ifO <i x, x <̂  a imply x e A for each a 6 A, x e G. 

Proof. Let a, be A, xeG, a <I x, x <I b. Then 0 <I —a + x, — a + x g; 
<I —a + b, thus —a + x e A and so x e A. 

Let (G, + , <I) and (G', + , rg) be so-groups. A mapping cp: G -> G' will be called 
a so-homomorphism (G, + , < ! ) - > (G', + , ^ ) if <P is a homomorphism (G, + ) -> 
-> (G's + ) and simultaneously cp is a homomorphism (G, <I) -> (G', g ) (i.e. a <i b 
implies a<p <i bcp for all a, be G). 

Theorem 5. Let G = (G, + , <I) be a so-group. Then a normal subgroup A ofG is the 
kernel of a so-homomorphism if and only if A is convex. 

Proof, a) Let cp: G -> G' be a so-homomorphism, 0' the zero-element in G'. Let 
us denote A = Ker cp. Suppose a e A, x e G, O r g x , x <I a. Then Qcp <I xcp, xcp <i 
5i a<p, i.e. 0' <I x<p, x^ <; 0', and thus xcp e A. 

b) Let A be a normal convex subgroup of G, G = G/A. Let us consider the relation 
"<I" on G defined as: 

x + A g y + A <=>df there exists a e A such that x + a ^ y. Let us show that 
this definition is correct. Suppose that x, xx, y, yx e G and that xt + A = x + A, 
y} + A = y + A. Then there exist b, c e A such that xx + b = x, yt + c = y, i.e. 
x! + b + a <i j!X + c. Therefore xX + (b + a — c) <I >>! and thus xt + A <I yX + A. 
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The reflexivity of 51 is evident. Let us show that 51 is antisymmetric. Let x,yeG, 
x + A^y + A, y + A^x + A. Then there exist a,be A such that x + a 51 y, 
y + b 5; x. By this y + b + a5lx + a, x + a ^ y, thus b + a 5; —y + x + a, 
—y + x + a 51 0. Since A is convex, — y + x + ae A. Therefore —y + xeA, and 
so x + A = y + A. 

Now, let x, y, z e A, x + A 51 y + A. Then there exists a e A such that x + a 51 
S y. Thus x + a + z^y + z and since A is normal, x + z + at :g y + z for al e A 
satisfying a + z = z + ax. Therefore (x + A) + (z + A) ^ (y + A) + (z + A). 
Similarly (z + A) + (x + A) <= (z + A) + (y + A). 

Finally, it is evident that the natural mapping v: G -> G/A is a sO-homo-
morphism. 

Note. The semi-order 51 of the factor group G/A defined in the proof of Theorem 5 
is called an induced semi-order. 

3. Weakly associative lattice-groups 

Now, we shall show some properties of wa/-groups. Let G = (G, + , g ) be a wal-
group. If a, be G, then a V b denotes the element ceG such that a 51 c, b 51 c and 
c ^ c ' for all c' e G satisfying a 51 c', b 51 c'. By the duality we define a A b. 

Theorem 6. If G is a wal-group, a,b,ce G, then 

1. a + (b V c) = (a + b) V (a + c); 
2.a + (bAc) = (a + b)A(a + c); 
3. a A b = - ( - a V - b ) . 

Proof. 1. From b, c 51 b V c it holds a + b, a + c 51 a + (b V c) and thus 
(a + b) V (a + c) 5; a + (b V c). Let x e G such that a + b, a + c 51 x, Then 
b <I —a + x, c 51 —a + x, thus b V c :g —a + x and this implies a + (b V c) 51 x. 

2. Dually. 
3. Since - a , - b 51 - a v - b , - ( - a v - b ) <I a, b. Let xeG such that x <; 

51 a, b. Then - a , —b 51 - x , therefore - a V —b 51 - x , and so x 51 — ( - a V —b). 

Note. Now, the wal-groups evidently form a variety of algebras of the type 
<2, 0, 1,2) with two binary operations + and V, with one miliary operation 0 and 
with one unary operation — (.). 

Theorem 7. If (G, + , 51) is a so-group, then the following conditions are equivalent: 

(1) G is a wal-group. 
(2) For each g e G there exists gVO. 

Proof. (1)=>(2): Trivial. 
(2) => (1): Let a, b e G. Then [(a - b) V 0] + b = (a - b + b) V b = a v b. 
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Let G be a vwd-group, x 6 G. Let us denote | x | = x V — x. It is clear that — | x | = x, 
x S\x\. 

Theorem 8. If A is a convex subgroup of a wal-group G, a e A, x e G and if 0 = | x |, 
| x | ^ | a | or | x | ^ 0, | a | ^ | x |, then x e A. 

Proof. Let a e A, xeG, O g | x | , | x | ^ | a |. But then | x | e A. And since 
— | x | ^ x and x rg | x |, x E A. Similarly we can prove the case | x | _ 0, | a | g 

Let G = (G, + , _ ) be a wal-group, A a subgroup of G. Then A is called a wal-
subgroup of G, if A is a wa-sublattice of (G, ^ ) . A wal-ideal of G is any normal 
convex wO/-subgroup A of G which satisfies the following condition: For all a, b e A, 
x, y e G such that x ^ a, y ^ b there exists c e A such that x V y g c. (It is clear 
that if G is an I-group, A a normal subgroup of G, then A is a wa/-ideai of G if and 
only if A is an I-ideal of G.) 

Let (G, + , _ ) , (G', + , = ) be wa/-groups. A mapping cp: G -> G' is called a wa/-
homomorphism (G, + , <|) -> (G', + , ^ ) if simultaneously cp is a group homo-
morphism (G, + ) -> (G', + ) and a wa-lattice homomorphism (G, ^ ) -> (G', ^ ) . 
It is evident that each wa/-homomorphism is a sO-homomorphism. 

Theorem 9. If G, G' are wal-groups, cp : G -> G' a wal-homomorphism, then Ker cp 
is a wal-ideal of G. 

Proof. Let cp : G -> G' be a wa/-homomorphism and let 0' be the zero-element 
in G'. Let A = Ker <p. By Theorem 5 A is convex. Let a,b e A. Then (aV b)cp = 
= a<p V bcp = 0' V 0' = 0', thus a V be A. Let x, y e G, a, b e A, x <L a, y <* b. 

Then xcp ^ acp = 0', yep <^ bcp = 0', therefore (x V y) cp = x<p v y<p ^ 0' and so 
(x V y) cp v 0' = 0'. Let de A. Then [(x V 7) V d] <p = (x V y) cp v d<p = (x V y) cp v 
V 0' = 0', thus (x V y) V de A. This implies the existence of c e A such that (x V y) V 
V d = c and therefore x V y ^ c. 

Theorem 10. Let A, B, C, D be wal-groups and let a : A -> B, p : B -+ C, < 5 : A - > D 
6e wal-homomorphisms such that 3 is surjective and (Ker <5) a — Ker ft. Then there 
exists exactly one wal-homomorphism a* : D -> C such that the diagram 

a* 
D ->C 
t t 

* /» 

A >B 
a 

commutes. 
Proof. The existence of the unique group homomorphism a* is known. Let 

deD and let aeA such that a<5 = d. Then ( d v O ^ a * = (a<5 V 0Ab) a* -
= (a V 0 J <5a* = (a v 0A) a/9 = aa/3 V 0Aotp = a<5a* V 0 c = da* v 0Da*. (0Ai 0 c , 0D 

is the zero-element in A, C, D, respectively.) Then a* is a wa/-homomorphism. 

17 



Theorem 11. If A is a wal-ideal of a wal-group G, then A is the kernel of a wal-
homomorphism. Moreover, if cp : G -> G' is a wal-homomorphism with the kernel A, 
then the mapping \jj : G\A -> G', defined by (x + A)\\J = xcp for all xe G, is a wal-
isomorphism. 

Proof. By the proof of Theorem 5, G/A is a so-group with respect to the induced 
semi-order. Let x, y e G. Then x + A, y + A tk (x V y) + A. Let zeG such that 
x + A,y + A^z + A. Then there exist a, be A for which x + a^z, y + b^z, 
i.e. — z + x S —a, —z + y^ —b. Since A is a wa/-ideal, there exists ceA such 
that ( — z + x) V ( — z + y) ^ — c. This implies — z + (x V y) g — c, hence (x V y) + 
+ c ^ z and thus (x V y) + A g z + A. But this means that (x + A) V (y + A) = 
= (x V y) + A, and so G/A is a wa/-group and the natural homomorphism v : (G, + ) -> 
-> (G/A, + ) is a wa/-homomorphism. 

Now, let <p : G -> G' be a wa/-homomorphism. Then by Theorem 10, the diagram 

G/K 

V 

.er ę -
cp* = 

t 
\i6 

( -+G' 

commutes, i/> is a wa/-homomorphism and (x + Ker (p) i\/ -= xvt/f = x(p 1G. = x<p 
for each x e G . 

Let G be a wa/-group. We denote the set of all wa/-ideals of G by i?(G). 

Theorem 12. Let G be a wal-group, A, Be£?(G), A _ B. Then B\Ae&(G\A) 
and the natural group isomorphism v : G/B -> (G\A)\(B\A) is a wal-isomorphism. 

Proof. By Theorem 10, the diagram 

* _ 
G\B VA~V >(G\A)I(B\A) 

VB VB/A 

G -G/A 

where vB, vA, vB/A are the natural homomorphisms, commutes and v is a wa/-iso-
morphism. 

Let G be a group, 0 ^ A _ G. Then [A] denotes the subgroup of G generated by A. 

Theorem 13. Let G be a wal-group, H a wal-subgroup of G and C a convex wal-
subgroup of G which is a wal-ideal of [H u C]. Then H n C e S£(H), H + C is a wal-
subgroup of G and the natural isomorphism v : H/(H n C) -> (H + C)\C is a wal-
isomorphism. 
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Proof. Since C is a normal subgroup of [H u C], [H u C] = H + C. Let x = 

= h + ceH+C. Then x + C = h + C, hence (x V 0) + C = (x + C) V C = 

= (h + C) V C = (h V 0) + C and this means x V 0 = (h V 0) + d, where de Cy 

therefore x V 0 e H + C. Thus H + C is a wa/-subgroup of G. 

Let h e H, c e H n C, 0 ^ h, h ^ c. Since C is convex in G, h 6 C and H n C 

is convex in H. Then it is evident that H n C e J^f(H). 

Let us consider the diagram 

H/(H П C ) -> (H + C)/C 

% п c vC 

I I - > H + C 
a — 1H.H + Í 

where v H n c , vc are the natural homomorphisms. Since (Ker v H n c ) !H,H+c = 
= ( H n C) l/f,H+c = Hn C c C = Kerv c , the diagram (by Theorem 10) com­
mutes and the group isomorphism v is a wa/-isomorphism. 
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Souhrn 

S E M I U S P O Ř Á D A N É GRUPY 

JIŘÍ RACHŮNEK 

Semiuspořádanou grupou se rozumí grupa s relací semiuspořádání, tj. s reflexivní 
a antisymetrickou binární relací, taková, že grupová binární operace splňuje zákon 
monotonie. V článku jsou ukázány některé vlastnosti semiuspořádaných grup, 
speciálně pak wa/-grup, tzn. semiuspořádaných grup (G, + , g ) takových, že (G, rg) 
je slabě asociativní svaz. 
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Резюме 

П О Л У У П О Р Я Д О Ч Е Н Н Ы Е Г Р У П П Ы 

ЙИРЖИ РАХУНЕК 

Полуупорядоченная группа — это группа с отношением полупорядка, т. е. 
с рефлексивным и антисимметрическим бинарным отношением, такая, что 
групповая бинарная операция выполняет закон монотонии. 

В статье показаны некоторые свойства полуупорядоченных групп, именно 
и!#/-групп, т. е. таких полуупорядоченных групп (С, + й), что (О, й) — слабо 
ассоциативная решётка. 

:20 


		webmaster@dml.cz
	2012-05-03T18:27:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




