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ALGEBRAIC PROPERTIES OF PHASES
OF THE DIFFERENTIAL EQUATION y” = ¢() y

IRENA RACHUNKOVA
(Received on 4. March 1977)

This paper is devoted to the description of the algebraic structure of the set of
phases of the second order ordinary linear differential equation y” = ¢(t) y.

Basic concepts and relations used in this paper are taken from [1], where they are
defined and proved. For completeness we give below a brief summary of them.

We shall consider a both-side oscillatory differential equation

Y =q)y, )]

where the carrier g(z) is a continuous function on the interval (— oo, o), that is,
q(t) e C°. Let u(t), v(t) be a base of the differential equation (g), that is, a pair of
linearly independent solutions of (g). A function «, continuous on (— o0, c0) and
satisfying the relation

tan a(f) = u(2)/v(t) )

wherever v(t) # 0, is called the first phase of (g) corresponding to the base u(t), v(t)
(henceforth a phase of (g)). For every phase o of the differential equation (q) there
holds a e C3, a'(t) # 0 for t e (—o00, o0). The converse is valid, too. Namely, the
function a satisfying the property

aeC?® a(t)#0 forte(—o0, ©)
is a phase of the differential equation (g) where (g) is determined by the relation

q(t) = —{tana,t} = —{a,t} — (@ (1)?* =
= —(1/2) "’ + (3/4) (@"[a')* — (&)

Let t, € (— o0, ), and y be a nontrivial solution of (g), whereby y(t,) = 0. Let
¢(1,) € (— 0, o) be the first zero of the solution y lying on the right of ¢,. Then ¢
is called the basic central dispersion of the 1st kind of the differential equation (q)
(henceforth the basic central dispersion). Similarly, if @,(to) [@-alto)] is the n-th
zero of the solution y lying on the right [on the left] of #o, the function @,[¢_,] is
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called the n-th [ —n-th] central dispersion of the Ist kind of (q) (henceforth n-th
[ —n-th] central dispersion).

If o is a phase of the differential equation (g) and ¢ is the Ist kind basic central
dispersion of the differential equation (g), then Abel’s equation

a(p(1)) = at) + 7 sgn of

is satisfied on the whole interval (— o0, c0). Similarly the n-th dispersion ¢,, n =
=0, +1, £2, ..., satisfies

(@ (1)) = o(t) + nmsgna'.

Moreover, in [1], there are defined more general transformation functions than
central dispersions. There are dispersions of the Ist kind (henceforth dispersions) of
(q).

The set D, of all dispersions of (g) with an operation of composition of functions
forms a group. The set C; = D, of all central dispersions forms a cyclic subgroup
and the set S; = C, of all central dispersions with an even index forms a cyclic
subgroup which is a normal subgroup of D,. The factor group D,/S; and the
group L of all unimodular matrices of the 2nd order are isomorphic. (Unimodular
matrices possessing determinants equal to +1 or —1)

1. Let us denote the space of all solutions of (¢) by R, the set of all phases of (q)
by Q, the set of all integers by J. In [2], there was introduced a scalar product in R
as follows:

Let «(t) be an arbitrary fixed chosen phase of (g) and ¢(¢) be the basic central
dispersion of (g). Then the composition

o(t)

(f 9 = [ [¥@]) () g(n) dr, 2)

where f, g are arbitrary elements of R, ¢ an arbitrary element in j = (— 0, o), is
a scalar product in R.
The functions

ut) = sina(t)N| (1) |,  o(t) = cosa(t)N] «(1) | 3)

form an ortonormal base in R with respect to the scalar product (2).

Note. Throughout this paper a(z) will always denote the phase from (2) and u(t),
v(t) the base (3).

2. Let us consider the base u(¢), v(t). There exists the countable phase system
a,(t) =a(t) + nm, n =0, +1, +2, ... belonging to u, v. Moreover the phases

o (t) = alt) + 2kn, k=0,+1,+2,..
are proper phases of u, v and the phases

tpr1(t) = o(t) + 2k + D, k=0,%I1,£2,...
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are improper phases of u, v. The set of all proper phases of «, v will be denoted by 4.
A = {0y (t) = ot) + 2kn, kel}. 4)

Now we introduce the relation ~ in the set Q as follows: Let a;, o, € O, then
a; ~ oy iff there exists m e I such that «; — o, = 2mn. The relation ~ is an equi-
valence relation on Q and each class of equivalence 4; e O/~ consists of all proper
(improper) phases of the same base of (g). Denoting this base U, V, the class 4
will be called a class of phases of the base U, V.

Let us denote the set of the functions ¢ + 2k=n, ke I by S.

S ={t + 2kn, kel}.

Then we can write for 4;€ Q/~
A; = Sa;, (5)

where «; is an arbitrary fixed phase of A4;.
In particular 4 = Sa.

Note. The set Su; consists of all functions f(;), f€ S.

We shall introduce the relation ~ in the set Q. Let a;, o, € O, then a; ~ o, iff
there exists @,, € S; such that o,(¢,,) = o, nel.

Note. We shall also write a¢ instead of a(¢).

In analogy with Theorem 1.3 in [3] it can be proved that the relation = is an
equivalence relation on Q.

3. Proposition. The decompositions Q|~ and Q[~ coincide.

Proof. a) Let o; ~ o}, a;, a;€ Q. Then there exists k € [ such that a; = «; +
+ 2kn. Let ¢ = sgna;. From Abel’s equation o, = a; + ¢*2kn we obtain
®;¢.2x = a; and consequently a; = «;

b) Let a; & a;. Then there exists ¢,, € §; such that a;p,, = a;. Therefore o; +
+ &2nn = a; and so «; € Sa;. Thus o; ~ a;. Consequently any class A;eQ|~ can
be writen as

A; = So; = o8, o, € A; 6)

and for 4 € O/~ we have
A= Sou = aS,. @

4. Lemma 1. For each phase o, € Q there exists a dispersion X, € D, such that
oX; = a,.
Proof. By [1], a™!(x(r)) e D,. Therefore X; = a™'(a,(t)) e D, and aX, =

Lemma 2. Let oX; = o;, oY, = o; witho;, 0;€ Q and X,, Y, € D,. Then X;, Y,
lie in the same class of the factor group D[S, if and only if a; ~ «;.

Proof. a) Let X;, Y, lie in the same class of D,/S; which means X,S, = Y;S;.
Thena;S; = aX,S, = ozY1S = ;8 and thus a,¢,,, = ®;¢,,. Hencea; = «
therefore a; ~ a;

jPam—m)
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b) Let o; ~ «;. Then oS, = o;S;. This implies aX,S; = a,S; = a;§; = a¥S;.
Since o' # 0, XS, = Y,S,. Thus X, Y, lie in the same class of D,/S,.

Lemma 3. For each class A; € Q|~ there exists exactly one class &, € D1/S, such
that
aZy = A;. ®)

This lemma is an immediate consequence of those given above. Thus it holds also.

Theorem 1. There exists a 1 — 1 mapping ®: Q/~ — D[S, given in the following
way:
Let A;€ Q|~, then ®A;, = &, with X', € D,/S, satisfying (8).

Remark. Any class 4; € Q/~ can be expressed as follows:

A; = So; = ;S =aZ,, ©9)

where &', € D[S, satisfies (8) and o; € 4,.

5. Let ¥: D,/S, - L be the isomorphism considered in [1, § 21, 6]. In this iso-
morphism the group S; corresponds te the unity matrix E and the set S, of central
dispersions with an odd index corresponds to the matrix —E.

Let us consider a 1 — 1 mapping ¥Y®: Q/~ — L. Here the class 4 = Sa = S,
corresponds to the matrix E and the class 4 = {a(?) + (2k + 1) n, k € I'} corresponds
to the matrix —FE. We can introduce a composition of classes from Q/~ and D,/S,.
First we have to prove the following.

Lemma. If we compose any phase a; € A; and any dispersion X, € &'y we always
obtain a phase of the same class A;e Qf~.

Proof. Let o;€ 4;, X; € ;. Then o X; = a;e A;. Now let a;~ a;, X; ~ X,
that is @y, = @, X;@2m = X;. Then o.X; = a;02,X,Q2m = %X 192(n4,, and
therefore o, X, € 4;.

Now we introduce the following composition

AZ = A;, (10)

where A4; is the class from @/~ containing the composed function o;X;, where a;
and X, are arbitrary elements of 4; and %', respectively.

6. In [2] there is determined a number of subgroups of the group D, /S, generated
by the orthogonal transformations of R, i.e. by rotation and axial symmetry. We will
show a connection between those subgroups and corresponding subsets of Q/~.
It holds (see [2]):

The set 4, < D, /S, of all classes of dispersions which are the orthogonal trans-
formations of R is a group; the set s, = %, of all classes of dispersions which are
the rotations of R is a normal subgroups of ¢,. For any natural n the set 0} of all
classes of dispersions which are the rotations of R through the angles 2mn/n (hence-
forth rot 2mnfn),m = 0, 1, ..., n — 11is a cyclic subgroup of #, of order n. Adjoing-
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ing the axial symmetry with respect to the axis enclosing an angle n/n with the vector u
of the base u, v (henceforth sym =n/n) to the cyclic group 0%, then the orthogonal
transformation group J ] consisting of elements rot 2mn/n, sym mnjn, m = 0,1, ...,
n — 1, is obtained. 07 is a normal subgroup of 7.

7. We shall need the following

Lemma. Let A;e Q/~, %, € D,/S,. If Y&(4,) =M and Y&, = N, then
YO(A,X,) = MN.

Proof. By p. 4 Lemma 3, there exists %, € D,/S; such that 4; = a%, and
Y%, = M. Thus A, &, = o &, where %, 2, € D,/S,. Since ¥ in an isomorphism
D,/S, > L, Y%, %, =VY¥ Y%, = MN. Therefore ®¥(4,2';) = MN.

Theorem 2. Let us consider all bases of R obtainable from the base u, v by orthogonal
transformations. Denote the set of all classes of phases of those bases by G. Then

G =A%, A eG. (11)

Proof. G is the set of all classes of phases which the orthogonal matrices (in the
mapping Y®) correspond to.

a) Let A;€ 4,%,. Then 4; = A%, where %, €9,, which means that Y%, is
an orthogonal matr’x. Moreover 4; € G, thus Y®4; is also an orthogonal matrix.
Therefore by the foregoing lemma ®¥4; = V(4. ¥,) = P¥YAY¥,. The product
of two orthogonal matrices is also an orthogonal matrix and thus 4;€G.

b) Let A, € G. Then Y& A, is an orthogonal matrix. By p. 4 Lemma 3, 4, = aZ,,
where &, € D,/S,. But ¥4, = Y%, and so Y&, is an orthogonal matrix. Thus
Z,€%, and hence 4, €0¥,. Let A;€G. Then A; =0, with &, €¥,. Since ¥,
is a group, &,9, = 9,. Therefore aG, = aZ 9, = A%9,. A, €29, thus A, € A;9,.

Theorem 3. Let us consider all bases of R obtainable from the base u, v by rotations.
Denote the set of all classes of phases of those bases by H. Then

H=A#, AeH. (12)

Proof. H is the set of all classes of phases which the orthogonal matrices

(cosp —sin p

. correspond to. (p i 1 ber.
sin p cosp) rrespond to. (p is a real number.)

I

a) Let A;€ A;#,. Then A; = A%, where ¥, € #,, which means that Y%,

=(°.°Sp *S'“”). Since 4,e H, o¥d, = (9 ~5° ‘1). Therefore O¥A,
sinp cosp sing cosq

_[cos p —sinp\fcosq —sing\ _[(cos(p +q) —sin(p + q) Thus 4, H
~\sinp cosp/\sing cosg sin(p +¢) cos(p+9q)) T

cosp —sinp
sinp cosp/’

b) Let A, € H, i.e. YA, =
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Ay = a2y with &, e #, and hence 4, € adf’,. a#’, = A5 and thus 4, € A, .

Theorem 4. Let us consider all bases of R obtainable from the base u,v by the
transformations rot 2mnjn, m =0, 1, ..., n — 1. Denote the set of all classes of the
proper phases of those bases by O". Then

0" = 4,07, A,eO" (13)

Proof. Since O" is the set of all classes of phases which the orthogonal matrices
cos 2mnjn —sin 2mn/n
<sin 2mn/n  cos 2mn/n
inclusions O" < 4,07 and 4,07 < O" are analogous to the proofs of Theorem 3.

) correspond to (m =0,1,...,n — 1), the proofs of the

Theorem 5. Let us consider all bases of R obtainable from the base u, v by the trans-
formations rot 2mn[n, symmn/n, m =0, 1, ...,n — 1. Denote the set of all classes
of proper phases of thoses bases by T". Then

T" = A", A,eT" (14

Proof. Since T" is the set of all classes of phases which the orthogonal matrices

cos 2mnjn —sin 2mn/n cos mn/n  sin mnjn

(sin 2mnin  cos 2mn/n> (sin mn/n —cos mn|n
n — 1), the proof is analogous to that above.

)correspond to(m=0,1, ...,

Remark. G consists of theclasses 4 + p = {a(t) + p + 2kn,kel}andp — 4 =
={p — a(t) + 2kn,k eI} p is real.

H consists of the classes 4 + p, p real.

O" consists of the classes 4 + 2mnjn,m = 0,1, ...,n — 1.

T" consists of the classes 4 + 2mn/n and mn/n — A, m =0, 1, ...,n — 1 as follows
from [2, Theorem 8 and Theorem 11].

8. Let us consider the differential equation

"

Y= =y (-1

Denote the group of its increasing dispersions by E, the group of its central dispersions
by C and the group of its central dispersions with an even index by S. It holds

C=1{t+kn kell}, S ={t+ 2kn ker}.

We can introduce an equivalence ~ * in the set Q.
Let a;, o, € Q, then o; ~ *o, iff there exists k € I such that

o; — oy = km.

Moreover, a; ~ *a, iff there exists ¢, € C; such that «;0, = ¢,
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Theorem 6. Any class & ; of the decomposition Q/~* can be expressed as follows:
A = Coy = o;,Cy; = aZy, (15)

where o, € o/ ; and & € D,|C,.

Proof. (15) can be proved analogous to (9).
In particular &/ = A U 4 satisfies the equality

o = Co = aC;. (16)
By means of the matrix repitesentation we can prove
Theorem 7. Let B be the set of all classes of increasing phases of Q. Then
B = Eo. = aB,. amn

Phases of (g) can be understood as functions from C3(— oo, 00) with a derivation
different from zero. The set of all phases of the given equation and its significant
subsets can be characterized by the foregoing theorems with the aid of the subgroups
of the dispersion group of (¢) or with the aid of the subgroup of the dispersion
group of (—1). This approach to the set of phases can be even used to the conven-
ient classes of the higher order differential equations, since it is not based on the
definition of phase (1).
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SOUHRN

ALGEBRAICKE VLASTNOSTI FAZI
DIFERENCIALNI ROVNICE )" = ¢(t) y

IRENA RACHUNKOVA
V praci je provedena charakterizace jistych vyznaénych podmnoZin mnoZiny fazi
rovnice (g) pomoci podgrup grupy disperzi rovnice (gq), resp. pomoci podgrup grupy

disperzi rovnice (—1).
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PE3IOME

AJITEBPAUYECKUE CBOMCTBA ®A3
IUOGDPEPEHLIMAJIBHOTO YPABHEHMUS y” = q(f) y

MUPEHA PAXVHKOBA

B craTbe xapakTepu3yroTCs HEKOTOpble MHOXecTBa (a3 ypaBHeHus (¢) HOArpyn-
NaMH TPYNNbl AMCHEPCHH ypaBHeHUS (), M TOXe NMOINTPYNNaMu AWCHEpCH ypas-
HeHus (—1).
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