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§1. INTRODUCTION

O. Boruvka in [2]—[5] and F. Neuman in [6] investigated characteristic (or
Floquet’s) multipliers of a differential equation (q): »” = ¢(t) y with z-periodic
function g, g € Cp, R = (— o0, o), oscillatory on R by means of the dispersion of (q)
in case of real characteristic multipliers or by means of a (first) phase of (q) in case
of complex characteristic multipliers. In [3] and [5] it has been proved that all the
equations from a block [q] have the same characteristic multipliers called the
characteristic multipliers of [q].

This paper presents necessary and sufficient conditions for the n-periodicity of the
carriers of equations in the block [q] and in the inverse block [q] ! and the relations
between the characteristic multipliers of both blocks. The main results are in § 4

§2. DEFINITIONS, NOTATION AND BASIC PROPERTIES

We consider differential equations of the type

y' =qt)y, qeCyg, (@

oscillatory on R (i.e. every nontrivial solution of (q) has an infinite number of zeros
to the right and to the left of ¢, 7, € R). The function g is occasionally called the
carrier of (q).

A function a, is called the (first) phase of (q) if there exist independent solutions u
and v of (q) such that

tg a(t) = %((% for all te {te R, v(t) # 0}.
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For every phase of (q) we have:

xeCp, o(1)#0,

" ” 2
q(t) = —{a,t} — o«'%(t), where {oa, 1} = @ () - }_(a (t)> . The set of all phases
2/(1) 4\ a(d)
of y" = —y together with the composition rule form the group € called the funda-
mental group. The function ¢t + a is an element of € for every a,ae R and ¢ €€ if
and only if there exist numbers a;;, i,j = 1,2, deta;; # 0 such that tge(t) =
_Gulgttdn holds for every 7 € R, where the righthand side of the formula is

az tgt + a,;
meaningful. Another group is the group of elementary phases $ formed by elementary
phases, that is, by those phases « where a(t + n) = a(t) + n.signa’; E= §.

Let t, € R, n be a positive integer and y be a nontrivial solution of (q) such that
¥(to) = 0. Denote ¢,(to) (¢ _,(to)) the n'™ zero of solution y lying to the right (to the
left) of t,. Then the function ¢,(¢p_,) defined on R is called the 1°* kind central
dispersion with index n (with index —n) of (q). In what follows we briefly say the
dispersion of (q) in place of the 1°* kind central dispersion with index 1 of (q) and
instead of ¢, we sometimes write only @. The dispersion ¢ satisfies:

ijs

peCr, ot)>t, @()>0, QO@_,(t)=¢_,00() =t
@,(t) = @O ...0 @(1), teR.

B —
n

Between every phase o and the dispersion ¢ of (q) there holds the Abel’s relation

a0 () = a(t) + n.signe’.

For more details see [1].

We say that (q) and (q*) are associated and we write (q) ~ (q*), if there exist
a phase o of (q) and ¢ € € with «*, a* : = ¢ O ¢ being a phase of (q*). The associativity
relation of equations is reflexive, symetric and transitive. Consequently it defines
a decomposition on the set of all equations of type (q) oscillatory on R. The elements
of the decomposition are called blocks (see [2], [3], [5]). The block containing (q)
will be denoted by [q]; (q) € [q]. If « is a phase of (q), then €x€ = {¢,0 « O ¢,;
¢, € €, ¢, € €} are the phases of all equations from [q]. Herefrom it follows

[q] = {(@®; g*(t) = =1 + (1 + qO &(t)) £*(1), e €€}

(see [2], [3])

We say that (q) is inverse to (q) if there exists such a phase « of (q) that the function
a~! is a phase of (q) (see [2], [3], [5]). If (q) is an inverse equation to (q), then (q)
is an inverse equation to (q). Generally there exists an infinite number of inverse
equations to (q). There are exactly those equations whose phases form the set o~ '€
i.e. a block of differential equations. This block is denoted by [q]~* and is called
the inverse block of the block [q]. The blocks [q] and [q]~* have the following
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characteristic property: Every equation from [q] is inverse to all equations from [q] ™!
and vice versa every equation from [q]~' is inverse to all equations from [q].
Consequently, [q] is the inverse block to [q] ™. If « is a phase of (g), then[q]™* =
={@;g*®) = =1 —= (1 + qoa”r0e(®) («™ 0 &t))?, e €C}.

Notation. The function f~! denotes the inverse to f. For an integer n, n # 0
/™ denotes the function fOfo ...0for f 'O f o ..0f ! according as n > 0

u —-n

orn <0.

§ 3. CHARACTERISTIC MULTIPLIERS
OF MN-PERIODIC DIFFERENTIAL EQUATION (q)

In this and the following paragraph we investigate only differential equations of
type (q) whose carries are n-periodic functions on R.

Lemma 1 ([2], [3]). If the carrier of (q) is m-periodic, then the carriers of all
equations from [q] are n-periodic, too.

Lemma 2 ([2], [3]). Let o be a phase of (q). Then q(t + ©) = q(t) for t € R if and

only if
ot + ) = €0 at),
where ¢ € €.

There is associated an algebraic equation s> — As + 1 = 0 to every equation (q)
with a n-periodic carrier in the Floquet theory. The constant A4 is given by: 4 =
= @i(x + n) + ¥'(x + m), where x € R denotes an arbitrary number and @, ¥ are the
solutions of (q) satisfying the initial conditions #(x) =1, @'(x) =0, 9(x) =0,
©'(x) = 1. We denote the roots of the algebraic equation, the so-called characteristic
multipliers of (q), by ¢,, 0—,. Evidently g, . 0_; = 1. Next (q) admits independent
solutions « and v satisfying either

u(t + ) =g, . u(t), ot +m) =¢_.v(), )
or
u(t + 1) = o, u(t) + v(t), vt + 1) =0,.00), =1 )

The characteristic multipliers ¢, ¢ of (q) can be calculated by means of a phase
or by the dispersion of (q) as shown in the next two lemmas below

Lemma 3 ([2], [3], [5]. Let ¢ be the dispersion of (q). Then (q) possesses the real
characteristic multipliers ¢, 0_, if and only if there exist x,x € R and a positive
integer n:

Oa(X) = x + 7.
In this case
e = (=D)"(@,(x)*, o= %1
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The number x in Lemma 3 is called the 1 kind determining number of type n of (q).

Lemma 4 ([3], [5], [6]). Equation (qQ) possesses the complex characteristic multi-
pliers e** 0 < a < 1 if and only if there exists a phase o of (q) with

a(t + 7)) =alt) + (@a+ 2n)n
where n is an integer.
The number a (0 < a < 1) in Lemma 4 is called the 2nd kind determining number
of type n of (q). The equation (q) is said to be of the category (i,n) (i = 1,2; n an
integer), if the i** kind determining number of type n of (q) occurs.

Remark. If (q) possesses a phase a: a(t + m) = a(t) + (a + 2n) n where n is an
integer and 0 < a < 1 then it follows by formula ¢(¢) = {&, t} — o’?(¢) that q is
n-periodic. This fact will be particularly utilized in proving Theorems 4 and 5.

In the theory of blocks of differential equations there plays a basic role the result
given in

Lemma 5 ([3], [5], “the law of inertia of characteristic multipliers”). All equations
(q) with n-periodic carriers which are contained in the same block, are of the same
category and have the same characteristic multipliers. All such equations have or have
not all solutions n-periodic or m-halfperiodic.

From the above lemma it follows that we are justified to the following definitions:
We say that the block [q] has the characteristic multipliers ¢, , 0, if 0,, 0, are the
characteristic multipliers of an (and then of every) equation from [q]. We say that
[a] is of category (i, n) (i = 1, 2; n-integer), if (i, n) is the category of an (and then of
every) equation from [q].

§4. CHARACTERISTIC MULTIPLIERS OF BLOCKS [q]
AND [q]7*

If g is a n-periodic function then it follows from Lemma 1 that all equations from
[q] have n-periodic carriers as well. However, it doesn’t generally follow that an
(and by Lemma 1 every) equation from the inverse block [q]~* has a n-periodic
carrier. Since we investigate the characteristic multipliers of blocks [q] and [q] ™"
we must also assume the carriers of equations from [q] and [q] ™' to be n-periodic.
If « is a phase of an equation from [q] then the above assumptions are with respect
to Lemma 2 satisfied exactly if

alt + ) =g, 0a(t), o~ (t+m) =0 all), teR,

where ¢ € €, ¢, € €.

In the next five theorems we now give necessary and sufficient conditions for the
carriers of equations from [q] and [q] ™' to be n-periodic. Further we will investigate
the relations between the characteristic multipliers of [q] and [q]~*. Theorems 1, 2
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and 3 are dealing with the characteristic multipliers of [q] being real, while Theorems
4 and 5 are concerned with the characteristic multipliers of [q] being complex.

Theorem 1. Let the carriers of equations from [q] and [q]™" be n-periodic and let
(1, n) and (1, m) be the categories of [q] and [q]™*, respectively. Then n = m = 1
and both blocks have the same characteristic multipliers. If further all solutions of
equations of at least one from [q] and [q]™" are n-halfperiodic, then this applies to all
solutions of equations from the second block, too.

Proof: Let the carriers of equations from [q] and [q] ™! be n-periodic and (1, n)
and (1, m) be the categories of [q] and [q] ", respectively. Let « be a phase of (q),
sigha’ = 1 and let ™! be a phase of (q); (q) € [q]~'. Then

alt + 1) =¢,0a(t), o '(t+m)=c0a"(t); ¢&¢¢€€C
and
a0 e(t) =alt) +n, o 'Oe(t) =a"l(t) + n.

Consequently ¢ and ¢, are the dispersions of (q) and (q), respectively. By assumption
the equations (q) and (q) have real characteristic multipliers g, and ¢, (¢ = +1),
respectively, and therefore by Lemma 3 there exist such numbers x and x, that

) =x+mn,  &x)=x +1
and
0, = (=" "(x)"?,
0, = (=D". "), o= %L

From oa(x + 7)) = a0 e™(x) = a(x) + nt we get for x:= a(x) (x = a” (%))
a(x + m) = a(e”(¥) + 1) = a(x) + nn =% + nn and from this « (X + an) =
= o~ !(X) + n. Further for any te R we have a 10 ¢,(t) = a~(¢t) + n, hence
especially for ¢ = ¥ we geta ™1 O &,(%) = «~ }(X) + = which together with o™ }(% + nn) =
=o (%) + n gives &(¥) =% + nn. Let n > 2. Then ¢,(t) >t + 7, thus also
e™(t) > t + n contrary to /(x,) = x; + n. Therefore n = 1 and &,(X) = X + 7.
From this follows m = 1 and x is the 1st kind determining number of type 1 of (q).
From the equalities 0O &(t) = a(t) + n, a ‘0 e (t) =a1(t) + 7, e(x) = x + 7,
£(X) =X + n, ¥ = a(x) we obtain

§(x) = d(x)  _ d(x)
o’ 0 g(x) o(x + 1)
G@ =@ _goalon® ol@+m _abtm 1
! Vo g () o' oa }(X) a'(x) d(x) e

Hence ¢, = 9-,, 0 = +1. The blocks [q] and [q] ™" have the same characteristic
multipliers and the same category (= (1, 1)).

Let all solutions of equations at least of one from the blocks [q] and [q]~" be
n-halfperiodic (because of n = m = 1 they cannot be n-periodic). For definiteness let
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tkis hold for all solutions of equations from [q]. Then all equations from [q] have
the same dispersion equal to ¢ + 7. Consequently a(¢ + n) = a(z) + = and thus also
2~ Y(t + n) = a”'(¢) + n. Then the equation (q) has the dispersion equal to ¢ + m,
hence all its solutions are n-halfperiodic and it follows from Lemma 5 that even all
solutions of equations from [q]~! are n-halfperiodic.

Theorem 2. Let the carriers of equations from [q] be n-periodic, [q] have real
characteristic multipliers and (q) admit independent solutions u, v satisfying (1). Then
the carriers of equations from [q]'1 are m-periodic and [q]™" has real characteristic
multipliers if and only if there exists a phase o of (Q) where o O a is an elementary phase:
aOa(t + 1) = a0 at) + 7.

Proof: Let the carriers of equations from [q] be n-periodic, characteristic multi-
pliers of [q] be real and (q) admits independent solutions u, v satisfying (1).

a) Let « be such a phase of (q) that O o is an elementary phase. There exists
e€€: ot + 1) = €0 at). Let us put y(z) := 0O «(t), te R. Then ™! = a0 yp~?!
and because of y7!(t + m) = y~1(¢t) + n we have

a N t+ 1) =a0y Mt + 1) =aly () + 1) =0 a0y Ht) =0 a (1)

hence a”'(f + m) = €O o~ !(¢) and by Lemmas 1 and 2 the carriers of equations
from [q] ™! are n-periodic. Let o ™! be a phase of (q); (q) € [q] . From the formulas
a(t + m) = g0 aft), ™ 1(t + n) = €O a” () it follows that (q) and (q) possess the
same 1st kind central dispersion with index &, k& = sign o', equal to ¢ implying that
they have also the same dispersion. From Lemma 3 and from the assumption that [q]
has real characteristic multipliers it follows that even the inverse block [q] ™! has real
characteristic multipliers, as well.

b) Suppose now the carriers of equations from [q]~! are n-periodic and [q]~*
has real characteristic multipliers. Let o; be a phase of (q). By Theorem 1 the blocks
[q] and [q]~! have the same characteristic multipliers, the same category (equal
to (1, 1)) and all solutions of equations from [q] and [q] ™' are or are not z-half-
periodic simultaneously. Thus, according to the Theorem from [7], there exist
e€€, yeH: af' =e0a,;0y. Herefrom o, =y '0a;'0e™ ' =9y"'0e0 ;0
0y0¢& ! henceyO o, 0 & = 0 o; O 7. Consequently ;! =y0 «, 06,07 06 ' =
=90a; =y0& '0e0 a,. Let a :=¢0 a,. Then « is a phase of (q) and a™* =

=y0e 'oa thus a0 o =e0 7y~ ' €9, because H is a group and ¢, y~! are its
elements. This proves Theorem 2. ’

Theorem 3. Let the carriers of equations from [q] be n-periodic and (1, n) be the
category of [q. Then the carriers of equations from [q]~! are m-periodic and (2, m)

is the category of [q]™" if and only if n 22, m =0 and t + —:— is the dispersion of an

equation from [q].
Proof: Let the carriers of equations from [a] be n-periodic and (1, r) be the

category of [q].
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a) Let the carriers of equations from [q]~* be n-periodic and (2, m) be the category
of [q]™'. Let e**® 0 < a < 1, be the characteristic multipliers of [q]™* and (q) €
€ [q]™'. Then by Lemma 4 there exists a phase « of (g) such that a(t + 7) = «(t) +
+ (a + 2m) n. Now let o™ be a phase of (q); (q) € [q]. By Lemma 1 there exist
eeCe eC oalt + 1) =coalt), e '(t + m) =¢&,0a '(¢). It is clear that ¢ and ¢,
are the 1st kind central dispersions with index k, k = sign o', of equations (q) and (q),
respectively, &(t) = ¢ + (a + 2m) 7.

1. Let sign o' = 1. Then there exists a number x: &"Y(x) = x 4+ 7. Since
&t) =t + (a+ 2m)n we get e"(t) = ¢ + n(a + 2m) n, hence also

x+n=x+n(a+2mn and 1 = n(a + 2m).

From the last equality it follows: m = 0,a = 1 . Thus n = % = 2.
n

2. Let signa’ = —1. Then there exists a number x,: &™"(x,) = x, + 7. Since
gty =t+ (@a+2mmn, so is e7"Nt) =t — n(a + 2m) n, hence also x, + n =
=x, —n(a + 2m)n, 1 = —n(a + 2m). From the last equality it follows that

m = 0. Then, however, a = -—i < 0 which is contrary to 0 < a < 1.
n

Thus we have proved that (q) has the dispersion &(t) =t + an =t + —:— ,h =2,
m =0 and [q] ! has the characteristic multipliers eii—’:r and the category (2, 0).
b) Let n = 2 and ¢ + —Z— be the dispersion of some equation from [q]. For
definiteness let ¢ + % be the dispersion of (q). Further let « and a~! be phases of (q)
and (q), respectively; (q) € [q]~*. Then oc(t + ~Z—) = a(t) + f . sign o’ which leads
to a”(t + 1) = a () + % sign a’. Then, of course, ='W and (2, 0) are the

characteristic multipliers and the category of [q] ™!, respectively, as it follows from
Lemmas 4 and 5.

Corollary 1. Let the carriers of equations from [q] and [q]~" be n-periodic, let the
category of [q] be (1, n), and [q]~* having complex characteristic multipliers. Then

.1

n = 2,(—1)"is the double characteristic multipliers of [q], e™'™ are the characteristic
multipliers of [q]™" and (2, 0) is its category.

Proof: Let the carriers of equations from [q] and [q]~* be n-periodic, let the.

category of [q] be (1, n) and the characteristic multipliers of [q] ™! being complex.

Then by Theorem 3 yields: n = 2, (2, 0) is the category of [q]™* and ¢(¢) = + —7:7

is the dispersion of an equation from [ q]; for definiteness let ¢ be the dispersion of (q).
Then ¢,(t) = ¢t + = and from Lemma 3 it follows that the characteristic multiplier
of (q), and therefore that of [q] too, is double and equal to (—1)". In the proof of
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n
+il . -
Theorem 3 there has been even shown that e~ » are the characteristic multipliers
of [q] ™"

Theorem 4. Let a, b be rational numbers, 0 < a <1, 0 < b < 1. The carriers of
equations from [q] and [q]™" are n-periodic and the characteristic multipliers of [q]
and [q]™" are equal to e*"™ and e*™" respectively, if and only if at least one of the
Sollowing two conditions is satisfied:

. ® .
(i) a = 5 2n, where x = +1,n # 0 is an integer and there exists an elementary

phase y such that y(t + bn) = y(t) + bn and % .y(t) is a phase of an equation from [q].

(i) b = v 2m, where x = +1, m # 0 is an integer and there exists an element-

ary phase ¢ such that Q(Z + %) = o(t) + % and a. o(t) is a phase of an equation

Sfrom [q].

If the condition (i) is satisfied, the categories of [q] and [q] ™! are (2, n) and (2, 0),
respectively; if the condition (ii) is satisfied, the categories of [q] and [q]™* are (2, 0)
and (2, m), respectively.

Proof: 1. Let a, b be rational numbers, 0 <a <1, 0 <b <1, x = +1 and
n # 0 an integer such that a = % — 2n. Suppose next that there exists an elementary

1 .
phase y, y(t + bn) = y(t) + bn and 7 (t) is a phase of an equation from [q], for

definiteness let it be a phase of (q). Then also %.y(t) is a phase of (q) and

%‘ y(t + m) =%. @) + n) = %.y(t) + %n = —:— y(t) + (a + 2n) n. Therefore
by Lemmas 4 and 5 e* " are characteristic multipliers of [q] and (2, n) is its category.
Let the function y~*(bt), which is inverse to % (?), be a phase of (q); (q) € [q]~!.

By assumption y(t 4+ bn) = y(t) + bn, where from y~'(t + br) = y71(¢) + bn.
Therefore (q) and [q]~' have the characteristic multipliers e*™* and the category
2, 0).

Let the condition (ii) be fulfilled. Completely analogous to the condition (i) we
prove that [q] has the characteristic multipliers e*" and the category (2,0) and
[q]™! has the characteristic multipliers ¢*" and the category (2, m).

2. Let the carriers of equations from [q] and [q]™! be n-periodic and let them
have the characteristic multipliers e*** and e*™", respectively; a, b being rational
numbers, 0 <a<1,0<b < 1.Thena=—ll€—,
and k, [ as well as r, s are comprime, positive integers. By Lemma 4 there exists

b=£with0<k<l,0<r<s

k _
a phase « of (q) and an integer n: a(t + n) = oft) + (T + Zn) 7. Let ™1 be a phase
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of (@); (q) e [q]~'. From the structure of the phases of (qQ) and from Lemma 4 then
follows the existence of ¢, e € and of aninteger m withe O a™ (¢t + 1) = e 0 a~'(¢) +

+ (-;:- + 2m> n. So we have eOa™1(t 4+ sn) =e0 a” 1(t) + (r + 2ms) m = (™' (t) +
+ (r + 2ms) n . sign ¢'). Consequently

a” 1t + sm) = a”1(t) + (r + 2ms) 7 - sign ¢’
and passing to the inverse functions we get to

ot) — sn = a(t — (r + 2ms) n.signe’),
hence
ot + (r + 2ms) = . sign &’) = a(t) + sm,
at + (k + 2nl) (r + 2ms) = . sign¢’) = a(t) + stk + 2nl) n. 3)

Further a(t + 7)) = a(t) + (% + 2n) 7 which yields

ot + sln) = o(t) + stk + 2nl) m. 4)
It then follows from (3) and (4) that
Is = (k + 2nl) (r + 2ms) . sign ¢’
and further
1 =(a+ 2n) (b + 2m) .signe'. (5)
From (5) it immediately follows that mn = 0, m*> + n® > 0.
a) Letm = 0. Thenn # O0and a = % sign &' — 2n. Let us put a;(¢) : = a 0 e~ 1(2),
t € R. Then «, is a phase of an equation from [q]. Fromo;(t + n) =00 ¢ '(t+n) =
=oa(e™(t) + n.signe) = a0 e (t) + n(a + 2n) . signe’ = o, (1) + % we obtain

b.o(t+m) =b.a(t) + n. So b.o,(t) is an elementary phase written as y, y(t) =
=b.o,(t). Furthere O a (¢t + ) = ¢ O a”!(¢) + br which gives « © ¢~ (¢ + bn) =
=a0e 't)+n, a(t+bn)=a,(t)+ 7 and 7yt + br) =b.oy(t + bn) =
=b.a,(t) + brn = y(t) + bn. This proves the existence of such an elementary phase

y(¢t) with y(t + brn) = y(¢) + brn and ~1b- y(t) is a phase of an equation from [q].
Evidently, (2, n) and (2, 0) are the categories of [q] and [q] ™", respectively.
b) Letn = 0. Thenm % Oand b = —i—. sign ¢’ — 2m. Let us put «,(¢) : = sign ¢’ .

.2 O ¢”!(t), te R. Then oy(z) is a phase of an equation from [q]. From the equal-
ities o, (1 + m) =signe’ . a O e~ (¢t + 1) =signe’ . ale”1(t) + n.signe’) = signe’.

- . , ., _ .1
(@oe”(t) + an.signe’) = signe’ .0 0e () + an = o,(t) + an we obtain -
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.o(t) + m. Consequently %.al(z‘) is an elementary phase

8-

o (t + ) =
written as o, o(t) = —:l— o,(t). Further we have eOa }(t + n) =eO0a” (1) +
+ G+ 2mn=e0a () + %. sign ¢’ which givese 0 a™1(t + 1) =0 a”!(t) +
+ % . sign ¢’ which in passing to the inverse functions gives sign¢’. a0 ¢™* (t + {—f—):
= sign ¢’ . « O ¢~ '(t) + n equivalent to o, (t + %) = a,(t) + n. Herefrom

1 .
Q<f + %) = —‘11—. oc1<t + —Z—) =z-.rxl(t) + -Z— = o(t) + %. This proves the

existence of an elementary phase ¢, such that o7 + —Z—) =o(t) + % and a.o(?)

is a phase of an equation from [q]. Evidently, (2,0) and (2, m) are the categories
of [q] and [q] ™1, respectively.

Theorem 5. Let at least one of the numbers a, b be irrational,0 < a < 1,0 <b < 1.
The carriers of equations from [q] and[q] ™" are n-periodic and have the characteristic
multipliers e* " qnd ¢*™"  respectively, if and only if one of the two following conditions
is satisfied:

(i)a = T where x = + 1, m is an integer, and at is a phase of an equation

+ 2m
from [q].
(i) b = p -f2 , Where » = 1, nis an integer, and t|b is a phase of an equation
n
Sfrom [q].

If the condition (i) is fulfilled, the categories of [q] and [q]™" are (2,0) and (2, m):
if the condition (ii) is fulfilled, the categories if [q] and [q]~" are (2, n) and (2, 0),
respectively.

Proof: 1. Let a = 7%2-’:”— with % = +1, m being an integer; let at least one
of the numbers a, b be irrational, and let at be a phase of an equation from [q]
Then from Lemmas 4 and 5 and from a. (¢ + n) = at + an if follows that e*ier

are the characteristic multipliers of [q] and (2, 0) is its category. Further s . - is the

inverse function to xaf. Thus from %. t+mn) = x.—:;- + x.% = x.% +
+ (b + 2m) 7 we have: e*"" being the characteristic multipliers of [q] ™! and (2, m)
its category.

Let the condition (ii) be fulfilled. Completely analogous to the condition (i) we
prove that [q] has the characteristic multipliers e**" and the category (2, 1) anq
[q]7! has the characteristic multipliers e*™" and the category (2, 0).

2. Let the carriers of all equations from [q] and [q] ™! be n-periodic. Let etiar
and e*®" pe the characteristic multipliers of [q] and [q] ™", respectively, with 0 <

48



<a <1,0 <b < 1,and at least one of the numbers a, b be irrational (for definite-
ness let it be the number a). By Lemma 4 there exists a phase « of (q) € [q] «(t + =) =
= oft) + (a + 2n) m, with n being an integer. Let «~! be a phase of (q); (q) e [q] ™.

o

From the equalities o™ '(t + (a + 2n) n) = 2~ }(¢) + = and g(¢) = —~\_‘% +
1 t

+ —( — ((t))) a~Y7(t) it follows that the continuous function § is periodic also

with the period ar and since a by our assumption is irrational, we have g(1) =

= const. (= k < 0). Then, of course, \/ — k¢ is a phase of (q) and ":t:f is a phase

of an equation from [q]. Therefore there exist ¢ € €, ¢, € € and m being an integet

such that é;(\/jEt + \/——kn) = s(\/‘—_lzt) + (b + 2m)n, ¢ <\/i—_l: + \—/%) =
= & (f#-:> + (a + 2n) = and also &(t + \/fEn) =¢&t) + (b + 2m) =,

J—k

£ <t + ,\/f_:-) = ¢,(t) + (a + 2n) n. We now show that from the last two equalities
—k

it follows &(r) =signe, €y(r) =signe}, teR. From e(t + /—kn) = &(r) +
+ (b + 2m) n we have &'(t + /—kn) = ¢(1), hence ¢'(r) is a pericdic function with
the period /—kn. Hereby &(1) = ——— Auda2 T2l
(ayysint + a;,cost)® + (a,, sint + a22 cos 1)?
with a;;, (i,j = 1, 2) being appropriate numbers, det a;; # 0. Therefore, unless ¢'(z)
is a constant function, dn, d = +1, +£2, ... are all periods of this function. So, if
¢'(1) is not a constant function, there exists a positive integer d,: \/—k = d, . Then (q)

has the dispersion ¢(1) =t + _{n_ and it follows from the relation ¢, (t) =t + n
ay

and from Lemma 3 that (q) has the real characteristic multipliers contrary to our
assumption. Therefore &'(f) = const. (= /) and from {¢, t} — &'*(r) = —1 we have
h = sign ¢. Completely analogous it can be shown “hat ¢{(t) = signej, t€ R. So,

1 .
it holds [k .signe = b+2m, - ’\ .signey = a+2n and also signe¢’.signe; =

= (a + 2n) (b + 2m), hence mn =0, m*> + n* > 0. If n =0, then a blgnjﬁjf;‘)_
and at is a phase of an equation from [q] and (2, 0) and (2, m) are the

categories of [q] and [q] ™!, respectively. If m =0, then b = — . sign(e O g,)

a+ 2n
and % is a phase of an equation from [q] and (2, n) and (2, 0) are the categories
of [q] and [q] ™", respectively. This completes the proof of Theorem 5.

Remark. If the carriers of equations from [q] and [q] ™' are n-periodic and e*ia=
and e*®" are the characteristic multipliers of [q] and [q] ™", respectively, wherein
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0<a<l1, 0<b<1 and at least one of the numbers a, b is irrational, then
follows from Theorem 5 that both numbers a, b are irrational.
From Theorem 5 immediately follows

Corollary 2. Let a, b be irrational numbers, 0 < a < 1,0 < b < 1. The carriers

of equations from [q] and [q] ™! are n-periodic and e*"" and e*™" are the character-
istic multipliers of [q] and [q]™", respectively, if and only if y" = —a*y or y* =
= —%ybelong to[q] and a = 745{2—m or b =?~:—2—{ where x = +1 and m, n

are integers.
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SOUHRN

CHARAKTERISTICKE KORENY BLOKU
A INVERZNIHO BLOKU LINEARNICH
DIFERENCIALNICH ROVNIC DRUHEHO RADU
S n-PERIODICKYMI KOEFICIENTY

SVATOSLAV STANEK

V préci jsou uvedeny nutné a postadujici podminky pro n-periodiénost koeficientl
diferenciélnich rovnic typu (q): y” = q(t) y, g € Cg, R = (— 00, ©0), které jsou oscilato-
rické na R a leZi v bloka [q] a v inversnim bloku [q] ™. Za pfedpokladu, Ze rovnice
v blocich [q] a [q]~! maji n-periodické koeficienty, jsou dale vySetfeny vztahy mezi
charakteristickymi kofeny obou bloki.
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PE3IOME

XAPAKTEPUCTUYECKHWE KOPHHU BJIOKA
U OBPATHOI'O BJIOKA JTUHEWMHBIX
AN®PEPEHLUAJIBHEIX YPABHEHUI BTOPOTIO
NNOPAOKA C n-TIEPUOINYECKUMU
KODOPOUNIIUEHTAMU

CBATOCJIAB CTAHEK

B pa6oTe MPUBOIATCS HEOOGXOMMMBIC M HOCTATOYHBIE YCIIOBHUS IUIS 7-TIEPHOIUY-
HOCTH Ko3(bdunuenToB B G10ke [q] u B o6paTHOM 6roke [q] ~! nudbdepennmanbHbx
ypaBHenuit Buma y" = q(t)y, qe Co, R = (—o0, o0) pelieHHs KOTOpPBIX KOJe6-
motcs B R. Wcienylorcss COOTHOIIEHHsT MEXOY XapaKTEPHCTHICCKUMM KOPHIMH
B 6iokax [q], [q] ™' npm ycmoBum uto nmpdepeHuManbHbIE ypaBHEHHMS B 060HX
6JI0Kax MMEIOT M-NepHoAuYecKre K03hPUIHeHTHI.
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