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TWO APPLICATIONS OF AN INTEGRAL FORMULA

ALOIS SVEC
(Received March 14, 1977)

We are going to present two consequences of a general integral formula presented

in [1].
1. Harmonic mappings of Riemannian manifolds

Be given a Riemannian manifold (M, ds?), dim M = m. In a suitable domain
Uc M, let us write (i,/, ... =1, ..., m)

ds? = Y (o), (1.1
o' being linearly independent 1-forms on U. Then there are on U 1-forms o/ such that
do' =Y 0’ A0, ol + ol =0; (1.2)

J

the forms w} are uniquely determined by (1.2). The components of the curvature
tensor be introduced by

dof = Y of A o] — IR} 0" A 0, Ri, + R = 0; (1.3)
k
they satisfy the symmetry relations
Ry + Ri‘m =0, by = R:«ij’ Rly + R:‘lj + jok =0. (1.4)

Let vy, ..., v, be the field of orthonormal frames on U dual to the field of coframes

!, ..., o™ Denote by K(v;, v;), i # J, the sectional curvature of the 2-plane {v;, v;};

of course, K(v;, v;) = R};.
Further, be given another Riemannian manifold (N,d¢?), dim N = n, and
a mapping f: M — N. Consider a neighbourhood V < N such that f(U)< V and

there are 1-forms ¢* (a, f, ... = 1, ..., n) satisfying
do® =Y (9" (1.5)
Let
= fret =Y Afw), 1= f*er. (1.6)



The exterior differentiation of (1.6,) yields
Y (d4f = Y Ajo] + ¥ Al Ao =0, (1.7)
i J ]

and, according to E. Cartan’s lemma, we get the existence of functions A4j; on U

satisfying
da; — Z Ajo] + Z Al = Z A A% = A% (1.8)

A furhter exterior differentiation implies
Y (45 - ZA?ka)',‘» - ;A of + ZA”‘L'ﬁ)Aw" =
J
=1y Z ARy~ Y A?A}Aksl,ya)w A o, (1.9
ik B,v,d
S5, being the components of the curvature tensor of (N, do?). Thus there are functions
AF, such that
dA; — Z Ajol — Z Afof + }: Alay = Z Ao, AR = A%, (1.10)
Ay — A = Z AR — Z A"AVA"SW (1.11)
Let us consider on U the 1-forms
Z A“Afjwj, Z AiA%e’. (1.12)
a, i, J a, i, j

It is easy to see that the forms (1.12) are globally defined over all of M. The usual
*-operator be defined by

*0' = (=)ol A AT AT A L A", (1.13)
ie,do:=w'A ... AO" = 0 A *0.
Now,
d*xg@, = 2{(A )+ A%A j,-j}do,

a,i,j

d* @, = ) (A5A}; + A34];) do,

a,i,j

(1.14)

and, according to (1.11),
d*(py — @2) = ¥ {(45)" — A543, + Z ACAIRY — Y AZALATA’SE ) do. (1.15)
B,v.0

a, l,]

Let us turn our attention to the geometrical interpretation of the above introduced
invariants. Let pe U = M be a given point. The Euclidean connection on M or N
resp. is given by

Vm =3 w'v;, Vo, =) olv;  or
i J (1.16)
Vin =Y ¢w,,  Viw, =) ¢lw, resp.;
a [



here, w,, ..., w, is the dual basis to ¢!, ..., ¢". Evidently,
df(0) = Aiw,. (117

Let ve T,(M) be a non-zero vector. Choose a curve y:(—¢,¢) - M such that
7(0) = p; let s be its arc and v its tangent vector at p. Denote by y* = foy: (—¢, &) =
— N the corresponding curve. Then it is easy to see that

V*n VZm L(v)
—C _df { — )= =L 1.18)
ds? f,,( ds® ) [v]? ’ (
where | v |* = ) (w'(v))* and
L(v) = A5{(p) 0'(v) 0’(v) w,(f(p)). (1.19)

This gives the geometrical interpretation of the quadratic mapping
L :T,(M)— T;,(N). (1.20)

Let L(.,.) be the corresponding bilinear mapping.
At p, let us choose an orthonormal frame v;, let w, be an orthonormal frame at Ap)-
Then

L(v;, v;) = Afw, (1.21)
and the expressions
‘_Zj!L(v,-, o) | =“Za(A‘?,- 2 liZL(vi) |2 =u};j:4?.»A7,- (1.22)
do not depend on the choice of the frames v; and w,. In the same way, the vector
t=3 L(v) (1.23)
is invariant; the mapping l
t: M - T(N), t(p) € Tr(p(N) (1.24)

is the so-called tension field. The mapping f': M — N is said to be harmonic if £ = 0
for each pe M.

The frames (vq, ..., v,) and (w,, ..., w,) at p and f(p) resp. are called adapted
to fif

df,(v) = Aw; fori = 1,...,min the case m < n and
df,(0,) = 4w, fora=1,..,n, (1.25)
df,(v) =0 forg =n + 1,..., min the case m > n.

Thus, we may always write (25,) setting w; = 0 for i > n. The adapted bases exist for
each couple (p, f(p)). In the adapted bases, we have

y ;A;‘A;R’;ﬁ =Y (4)* Y, K(v;, v)), (1.26)
a, i, J i Jj#Ei
)3 -,,Z aA;Aé’A,?A;?s;W, =25 (4,4, K*(w;, w)). (1.27)
AL g By, i#J



Further,
@1(0) = Y df(v)), L, v)),  @2(0) = {df(v), 1), (1.28)

J

¢, ) being the scalar product in Tyy(NV).
Choosing for each couple (p, f(p)) the adapted bases, we have the integral formula

j*(ﬁ% - @) = I{ZIL(visUj)lz_ [t]* +
oM Mo

+ Y (4)* Y K@), 0) =2 Y (A4,4))* K*(w;, w))} do. (1.29)
i jFi i)
Thus we get the following

Theorem. Let M, N be Riemannian manifolds and f: M — N a harmonic mapp-
ing. Let N have non-positive sectional curvatures and let M have, at each point
p €M and for each unit vector ve T,(M) the following property: vy, ..., Vp_y, 0
being an orthonormal basis of T,(M), we have Y K(v,v,) > 0. Let ; = o,

r=1,...,m—1

on the boundary M of M. Then fis a constant mapping.
2. Holomorphic curves in the Hermitian plane

Be given a Hermitian plane H? and let m : D — H? be a holomorphic curve,
D < % being a bounded domain. To each its point m(d), d € D, let us associate an
orthonormal frame {m, w,, w,}. Then we have the equations

dm = t'w, + w,,

dw, = ttw, + 2w, dw, = thw; + w,; 2.1

clearly (i,j,... = 1,2)
4+ 75 =0, (2.2)
dif =t/ A7, dei = A 1. (2.3)

Let us restrict ourselves to the tangent frames satisfying
2 = 0. (2.4)

By successive exterior differentiations we get the existence of functions
R,S,T,U:D — % such that

71 = Rt', . (2.5)

dR + R(t} — 2t}) = S7!, (2.6)

dS + S(<2 — 3t}) + 3R’Rt' = T, (2.7
dT + T(2 — 4t}) + 10RRST' = Ut". (2.8)

Let us consider another field of orthonormal frames

uy = ewy,,  up =e%wy; w0, f:D - & 2.9)



let us write

dm =o'y, duy = Qlu, + @%uy,  du, = @luy + @2us. (2.10)
Then it is easy to see that
ol = e "), 2.11)
pr=rti+ide, 92— idf, @)= N2, (2.12)
Write
@2 =Ro,, (2.13)
dR’ + R'(¢? — 2¢}) = S'o", (2.14)
dS’' + S'(@3 — 3¢}) + 3R?R'¢' = T'p", (2.15)
dT' + T'(¢3 — 4¢}) + 10R'R'S'¢" = U'g". (2.16)
Then
R = &®* bR S’ = G,
T = 4P, U= Py, @1%)
The mappings B® : T, — N,, be introduced by
B(zw;) = z’Rw,,  BWV(zw,) = z_3Sw2, 2.18)

BP(zw)) = *Tw,; ze®.

These mappings are invariant. Indeed: Let w = zw, = z'u,, then z’ = ¢”"*z and
Z2R'uy = z’Rw,; similarly for B®, Let S' = {we T,; (w,w) =1}, ie., S' =
= {zwy;|z|*> = 1}. Then B®¥(S") is a circle; the radius of B(S") is equal to | R |'/2,
the radius of B(S") is equal to | § |!/2, etc. The geometrical interpretation of the
mappings B® will be presented later on.

The area element of m is given by

do =1it' AT (2.19)
The Hodge operator be introduced by
xtt = —jrt, %' =gl (2.20)
Let f: D — Z be a function. Then its Laplacian Afis given, as usually, by
Afdo =d = df. (2.2

The straightforward calculations lead to (n = 1)

d|R|* =2n| R|* 2 Re (RSTY), (2.22)
AIR IZn = 4l’l I R IZn—Z(n I S |2 _ 3 | R 14)’ (223)
d|S|>™ =2n|S|* ?Re {(ST — 3SRR?) '}, (2.24)



AISPP" =4n{| S| (| T1> = 16| SI* | RI* + 9n| R|°) =

—6(n — 1)| S| *| R|?> Re (S’RT)}. (2.25)
Especially,
AR =4(S|>=3|RIY,
AIRI* =8| RI’2|SI> = 3| R[Y, (2.26)
AISP=4TP 16| SI*IRI>+9|RI|°
and

A(SIP+4|RIMN=4(T|*> - 15|R|%. 2.27)

Lemma. Let S = 0 on D. Then m(D) is a part of a straight line of H2.
Proof. The equation (2.7) implies R = 0. QED.

Theorem. Let S = 0 on 0D and
3]RI*=|S|*> onbD. (2.28)

Then m(D) is a part of a straight line of H>.
Proof. Obviously, *d | R |*" = 0 on 4D. From the integral formula

0=[A|R|*dv (2.29)
M
we get, because of (2.26),
3|RI*=|S|> onbD. (2.30)
The integral formula
[#d[RI*=8[|RI’QIS|*=3|R[*dv (2.31)
oM M
reduces to )
0= [|R|°dy, (2.32)
M

and we get R = 0. QED.
The formulas (2.23), (2.25), (2.27) imply new characterizations of straight lines of
H?2. 1t is sufficient to suppose S = 0 on D and, for ex.,

14| RI®2 | T (2.33)
or
ITI?Z 8| RI*2ISI>—|R|Y » (2.34)

on D; see (2.27) and (2.26,).
Now, the geometrical description of the mappings B® is given in [1]. To do this,
let us consider H? as a space over m, i.e., H> becomes E*. Write

Uy = Wy, vy = iwy, U3 = Wy, vy = iy,
! = 0! 4 iv?, 2 = w® + io*, 2 = 0} + iof, (2.35)
1_ .2 2 _ .4
Ty = 1wy, 12 = w3,
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dm = o'v, + o* ,,
do, = 0lv, + 0iv; + of.,,
dv, = —wiv, — wiv; + wlt,,
dv; = —oiv, + oo, + wiv,,
dv, = —ofv, — 0jv, — olv,
and
o] = Rio' — R,0*, o} = R’0' + R,0?

with R, = Re R, R, = Im R. In E*, consider a general surface

dn = lel + szz,

dy, = Qf”z + ins + QTU‘M
dv, = —olv, + 0305 + 03v,,
dvy = —qux - ngz + o030y,
dv, = _QTU1 - Q;UZ - Q§U3
with
01 = ae' + a0>, 03 = ayo' + as0?,

of = bie' + b20’, 0} = byo' + by,
da, — 2“2@3 - b19§ =00 + O‘zQZ,

da, + (a; — a3) 0f — b0} = 20" + 307,
day + 2a,0} — by} = 030" + %402,
db; — 2by0} + a,0% = B0t + B0,

db, + (b, — b3)of + a0 = fro' + B3a?,
dbs + 2b,0% + az0% = B0t + B0

Then it is known [1] that, for

P = (a3 + a0, — a0, — a3y + by fy + bf, — b,f, — biB3) o' +
+ @0y + a0, — a0y — ayu3 + byfy + by, — b, — b,B3) 0%,

we have

ON

— {(ay — a3)* + 4a5 + (b, — b3)* + 4b%} (a,a, — a2 + byb; — b)) +

+ 2{by(a, — a;) + ay(by — by)}*] dv.
In our case, (2.42) is identical with

J*d[RI*>=[A|R|*dv.
ON N

[*® zlg[z(ozloc3 + %y — a3 — i + BBy + PPy — BE — BI) —

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.42)

(2.43)
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SOUHRN

DVE APLIKACE JEDNE INTEGRALNI FORMULE

ALOIS SVEC

V praci jsou vyloZzeny aplikace integralni formule [1] na teorii harmonickych
zobrazeni a na teorii kfivky v hermiteovské roving.

PE3IOME

ABA ITPUMEHEHUA
OJITHOU UHTEIPAJIBHOM ®OPMVIJIbI

AJIOVIC WIBEL]

B paboTe u3NararoTcs NPHIOKEHHS UHTErpasibHoi ¢GopMyisl [1] Ha Teopmio
TapMOHHMYECKUX OTOOPaXKeHHH M Ha TEOPUIO KPHMBBIX B IIPOCTPAHCTBAX DPMHTA.
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