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In this paper we shall concern ourselves with a differential equation

V' =qt)y, qgeC§, j=(—00,0). (@

Throughout, the equation (q) will be understood to be oscillatory on both sides on j
(which implies every nontrivial solution of (q) with infinitely many zeros on each of
the intervals (— oo, @) and (b, o), a€j, b €)).

We now recall some definitions and results adopted from the monograph [l] that
will be of need below. Trivial solutions of (q) will be always from our considerations
eliminated.

Let n be a positive integer, x € j and y be a solution of (q) such that y(x) = 0.
If ¢,(x) denotes the n-th zero of the y lying to the right of x, then ¢, is called the
Ist kind central dispersion (from now on only the central dispersion) with the index n
of (q). Instead of ¢, we write ¢ which is called the basic dispersion (of the Ist kind)
of (q).

Let (4, v) be a basis of (q) and w its Wronskian (w = wv’ — u'v). Then r(t): =
= Vul(t) + v¥(t), tej, is called the (first) amplitude of the basis (1, v) and every
function «, x € C}), satisfying the equation tg o(r) = %g;— wherever v(¢) # 0 is called
the (first) phase of the basis (u, v). Let us say that o is a phase of (q) if there is
a basis (u, v) of (q) possessing the function o as a phase. If o is a phase and r the

amplitude of the basis (v, v) with the Wronskian equal to w then a'(t) = - d

12(1) ’

1ej.

75



Let ¢ be the basic dispersion and « a phase of (q). Then

) xeC?, «/(t) + 0 onj,
1 O(m(t) 3 O("(t) 2 " )
i - + (=) =) =4q(t), te],
. i ) ~ 0=
(i) o) =¢ogo..op(), peC;, 9'(t) 0 on j,
N ———
n
(v) %o @) = o(t) + nusgne, tej,

(v) o, is a phase of (q) if and only if there are the numbers a,,, a;,, a1, 222>
det (a;;,) # 0 such that

agtga(t) + ag,

tg (1) = ay, tga(t) + as;

for all ¢t for which both sides of the last formula are meaningful,

(vi) If 2 is a phase of the basis (1, v) of (qQ), w = uv’ — uw'vthenr, r(t) := \/—-—% >
ot

tej, is a solution of the equation

-
2

].H — q([)r + E; .
r
Theorem. Let g€ C}, ¢'(t) % 0. Let next a be a phase and ¢ the basic dispersion of ().
Then there exists a positive integer n such that ¢ (t) = t + = if and only if it holds:
q(t + m) = q(1), 1€j, )

TAO 4 a0

Proof: a) Let for a positive integer n ¢,(t) = t + =, t €j. Let « be a phase of the
basis (u, v) of (q) whose Wronskian is equal to w. Following (iv) we have

sin® a(s) ds = tej. 2

a(t + n) = a(t) + nusgna’,  tej, 3)
and according to (vi)
R w? .
(1) = q(1) (1) + *r?(*t; ) tej, #
for r(1) := ‘/——“Z tej.
(1) \/ 2
From the formula ¢(t) = (t) ~<a,j(l.),,>2 — o&'2(t) and o'(t + 7) =
a'(1) 4 \d(r)

= 4'(t) that follows from (3), we get (1).
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On multiplying out both sides of (4) by 2r’ we get after an elementary modifica
tion the equality

) =a0 0y - (). el

and integrating this from ¢ to ¢ + = we have

r2(t + n) — r(2) :’:["q(s) (F*(s)) ds — w (7;1?;) Ztt) ) ,  tej. (5

The functions gr?, r, r' are periodic with the period n which follows from (1), (3)
and from the definition of the function r. Next we have

t+m t+n

_[ q(s) (r’(s)) ds = — _f q'(s)r’(s)ds,  tej,

and with respect to (5) (r2 = —l‘; , also
o

rg'(s) .
j; 0) ds=0, tej. (6)

Let us note that o in (6) is an arbitrary phase of (¢). We will utilize this fact to the
proof of (2). Let x # 0 and o, € C;’ a function such that tg o (¢) = x? tg a(t) for
all ¢ for which tg a(t) has been defined. Then «, is a phase of (q) as follows from (vi)

1
(a“ =_—=Xa,=4 = 0 ). Next we have
22

2
X
a(t) = o'(1), tej,x+0,
1) cos?a(1) + x* sin” aft) @ /
Since
t+n v
0= _[ M - L > J 90 (cos?a(s) + x*sin® «((s)) ds
t o(s) x* 1 o(s)
for every x # 0 and hence also
t+mn t+m 1
j q( ) cos’ a(s)ds = —x* | ﬂ;(i)— sin a(s) ds,
t o(s)

it is necessarily

‘}" q ( ) sin® a(s) ds = 0, t}".g{f} cos’ a(s)ds = 0, tej.

By this we have proved statement of the Theorem in one direction,
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b) Let the phase « and ¢ satisfy the assumptions (1), (2), g€ C} and ¢’ % 0. The
function ¢ is periodic with the period = and therefore exists (uniquely) a phase &
of the equation y" = —y:a(f + n) = goa(t) ([2], §3.8). By the assumption

€ C}, q’ % Othus there exists an interval (4, u), where ¢'(t) # 0. By differentiating (2)

"(t+mn "(t "t+n t

Z’Et " n; = Z’ft: , :’((t n n; sinfa(t + n) = z'(t) sin? a(t) (tej) and
making use of (1) we get a'(f + 7) = o'(¢) and sin? a(f + n) = sin® a(t) for t € (4, p).
Therefore a(t + n) = a(t) + ¢, where ¢(5# 0) is a constant, sgn ¢ = sgn o’ and from
sin?(a(t) + ¢) = sin? a(t) then follows ¢ = nmsgna’ (n is a positive integer). So,
we have proved a(t + n) = a(t) + nnsgna’, te (4, w. From the last equality and
from a(t + n) = e oa(r) we get e(r) =t + nnsgno’ for ¢ from the open interval
with the end points o(4), a(u). By the Theorem in [1] p. 209 there is the phase ¢
uniguely determined by the values of ¢, ¢, ¢” at a point ty(ej). Therefore e(t) = +
+ nnsgna’ even for tej and from «(t + n) = a(f) + nnsgna’ and (iv) we have
¢,(t) =t + . This completes the proof.

Remark 1. There is ¢’ £ 0 on j in the assumptions of the Theorem. If g is a con-
stant (= k), then we can easily see ¢,(t) =t + n(fej) for a positive integer » if
and only if k = —n?.

Remark 2. The integral conditions (2) may be formulated in terms of ¢g. Then
these are more complicated.

Remark 3 A general form of the carrier ¢ of (q) having the basic dispersion
equal to ¢t + n has teen found in [1] and [3].

’
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KRITERIUM PRO URCENI LINEAKNICH DIFERENCIALNICH ROVNIC
2. RADU, KTERE MAJI CENTRALNI DISPERSL S INDEXEM n ROVNU ¢ + =

Svatoslav Stanék

V préci jsou uvedeny nutné a postaujici podminky, aby funkce 7 + 7 byla rovna centralni dispersi
s indexem n diferencialni rovnice (q): " = ¢(t)y, q€ C("_m_m). Tyto podminky jsou vyjadieny
pomoci funkce ¢ a prvni fize diferenciélni rovnice (q).
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Peszome

KPUTEPHUYM [Jid ONMPEAEJEHUSA JUHEWNHBbIX
AU DEPEHLUMAJIbHBIX YPABHEHUM KOTOPBLIE OBJIAJAIOT
LHEHTPAJIBHOM JUCNEPCUEN C UHJAEKCOM n POBHOM ¢+ =

CsartocnaB CraHek

B pa6orte ucnenyrorcs JuHeiHbie OuddepeHuManbHble YPaBHEHHsE BTOPOTO IOpsAKa  BUAA
@ :y" = q®)y, g€ C (0 —w, x)+ YKa3aHbl HEOOGXOAMMBIE U HOCTATOYHBIE YCIOBHA IIPH BBUTOTHEHHH
KOTOPBIX LEHTPalbHaA AUCHEPCHSA C HHAEKCOM n auddepeHInanbHOTO ypaBHeHUs (q) POBHA - 7.
DTH YCIIOBUS TMPENCTABJIEHLI [IPU MOMOLIM QYHKUMHM g M TepBoit ¢da3bl quddepeHunansHoro ypas-
Hewus (q).
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