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1. Introduction

A linear multistep formula (LMF)

k k k
2 AiVntj = h 2 ﬁ_iyrl;-}—j + h? 2 ij:,r’+_v' (F)
j i=0 j=0

Jj=0

useful in a numerical solution (with the step size /) of ordinary differential equations
is fully characterized by the so called “‘characteristic polynomials”

k

k k
W) = Yol 6Q) = .Zoﬁj@'j» W) = .;071‘4]-

Jj=0

The formula (F) is defined to be of order p iff the constants C;,

k k k
Co=Ya; Cr=3 ju;— B
j=0 j=0 j=0
k
C = Zo(ajj’ — Byt =i = Dyt THi, i=2,3, .
=

satisfy Cp = C; = ... = C, =0, C,,y # 0.
The formula of order p = 1 satisfies then Cy = Za; = o(1) = 0, C; = Zju; —

— Zf; = o'(1) = o(1) = 0 (the condition of consistency).

There are various concepts of the stability of formula (F) and their characteristics
to be found in the literature.
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Definition: The formula (F) is said to be stable (in the sense of Dahlquist, zero-
stable), if no root of ¢({) has its modulus greater than one, and if every root with modulus
one is simple (Dahlquist 1956, 1959).

It is well known (Dahlquist 1956, 1959 ; Henrici 1962) that this stability is a neces-
sary condition for convergency (when 4 — 0) of methods based on formulas (F).

In studying LMF with a fixed step / the so called “‘test equation™ " = Ay is often
used, whose solution y(x) = C exp (Ax) has the property | y(x) | = 0 when x - + «
for Re A < 0. Applying the formula (F) to this equation results in the difference
equation

k
> (a; = 2hB; — 22h*9) yur; = O,
j=0
whose characteristic polynomial (with ih = g) is
(5 9) = o0) — go(0) — ¢*«(©). (m)

Here the roots 7;(¢), i = 1(1) k of this so called “‘stability polynomial” determine the
behaviour of the discrete solution {y;} obtained by means of formula (F) with the
fixed A.

Definition: (Odeh—Liniger, 1971). Given a domain D in the complex g-plane,
a formula (F) is called Ap-stable if g€ D implies | n(q) | < 1, i =1(1) k (i.e. if the
discrete solution maintains the decreasing character of the continuous solution for
qe€ D).

This definition includes several stability concepts of various authors, such as

A-stability (Dahlquist, 1963) with D = {ge C : Re g < 0},

A(w)-stability (Widlund, 1967) with D = {q eC:|ln—argg|<a, 0<oac< 7;—},

Ag-stability (Cryer, 1973) with D = {ge R : g < 0},
A -stability (Odeh — Liniger, 1971) with D = {qe C: | q| > W > 0},
stiff-stability (Gear, 1971) with D = {ge C : Re g < K < 0} u

u{geC:K<Reg=ua, a>0; -0 <Img £ 0,0 >0}

It is well known that it holds for LMF with 7({) = 0:

— the maximal order of the stable formula is p = 2 for k even and k& + 1 for k
odd (Dahlquist, 1956);

— A, A(®), Ay, A -stable formulas are necessary implicit, i.e. ff, # 0 (Dahlquist
1963, Widlund 1967, Cryer 1973, Liniger 1975);

— the maximal order of an A-stable formula is p = 2 (Dahlquist, 1963);

— forallae(0, ~g—> there exist A(x)-stable formulas withk = p = 3,k =p =4
(Widlund, 1967);

— there exist 4,-stable formulas of arbitrary high order (Cryer, 1973);

A {
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— the polynomials ¢({), a({) of the A,-stable formula may have at most double
zeros on the unit circle (Cryer, 1973);

— for k £ 2, the classes of the A4- and A,-stable formulas coincide (Zlimal,
1975).

Concerning the LMF with 7({) % 0, it is known that

— order p of the stable formula satisfies p < 2k + 2 (Dahlquist, 1959);

— for k = 1 there exists the A-stable formula of order p = 4 (Loscalzo, 1969);

— the maximal order of an A-stable formula with & = 2 is p = 5; such a formula
is given by

40+ 3X) nsz = Wasr +30) — 22 + 3 h(ynsz — ya) +
FR[A+ )y +20 =0y (1 +x)3]=0, 0=xeR,

(Genin, 1974); these formulas are not stable in the Dahlquist’s sense.

The necessary and sufficient conditions for A-stability (as conditions on the coeffi-
cients f3;, y;) are discussed also by Liniger (1968) for k < 2, ©({) = 0 and by Li-
niger — Willoughby (1970) for k £ 2, ©({) £ 0. The connections between 4,- and
A ,-stability are also discussed by Liniger (1975).

The present paper deals with necessary and sufficient conditions for 4, A4,
A -stability of the formulas (F) with & < 2. The main results are given in theorems
1,2, 5, 6 and 7. It is shown here that for the formulas (F):

— the regions of A4,, A-stability for the one step formulas of the second order

coincide, the region of A4 -stability includes the next part of the g-plane;

— any one-step A,-stable formula of the third order (with one exception) is also
A- and A -stable;

— the two-step formulas of the sixth order are not A4,, 4,-stable;

— there are 4,, 4,-stable two-step formulas of the fourth and fifth order which
are stable—or more precisely: the 4,, 4-stable formula of the fourth order
may be unstable (the double root { = 1 of g({); see example 8 in 3.3), whereas
the Ay, A, -stable formula of the fifth order is stable.

2. One—step formula

Ya+1 = Vo= h(Boy, + Bivns1) + hz()’oy;: + ')’1)’:-’+1)‘ (F1)
The conditions C; = 0, i = 1(1) 5 take here the form
i=1 1= B0+ By,
i=2 1= 2By + 290 + 2v15
i=3 1= 3B, + 6y,,
i=4 1= 4B, + 12y4,
i=S5 1 = 58, + 20y,.
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Solving the test equation y’ = Ay by applying formula (F 1) we get
Yarr = [ + gBo + ¢*p0)(1 = By — %)) ¥u-
The formula (F 1) is then Ap-stable iff
|1+ qBo + ¢ |/l 1 — gBy — ¢y, | < 1 for all g e D.
2.1 It is known that the formula of the maximal order p = 4,
with f, = f; = %,yo = —y; = %, ie.

1 ) .
Yn+1 — Vn = (yn + yn+1) + (.}n + yn+l)’ CS = —“-'7"2’(’)“, (F 174)

is A-stable [A(a)—stable for all « 6(0, g) s Ao-stablc]. However, this formula is
not A4, -stable for

| 1 1 , 1 1 ’
im | 0= lim ([ 1 2 g+ —qg?) =1,
tim il =t (15 30 s ) (1= Foe ) -

2.2 For one-step formulas of the third order with the parameter y, we get from
C;,=0,i=1, 2, 3—after some calculation—the general expression

2 , { , 1 " ”
Yne1 — = hl:( + 2)’1))’1. + (? - 2)’1) yn+|] + hz[(“()‘ + V))yn + nynﬂ]v

C,=— (% + 4«,,>/24. (F 1,3)

Remark: a) for y, = —1/12 we get C, = 0 and the formula (F 1,4) from 2.1;
b) for the formulas with a small local truncation error the values of y, should be
taken near the value —1/12.

Using the formula (F 1,3) in the test equation )’ = Ay, we get the reccurrence
relations for the discrete solution {y,}

2 1 1
Ynr1 = {[1 + (T + 2v1>q + (? + v;)qz]/[l + (-; + 2%)6/ - mz]} Y
q = Ah. -
Theorem 1. The formula (F 1,3) is

a) A,-stable iff vy, < —1/12,
b) A-stable iff y; < —1/12,
c) Ag-stable iff y; £ —1/12.

(1 , . ‘
Proof. a) lim lyn+]/ynl— '6*"‘?1 fro) <1 iff < —=1/12.

lal=»
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b) The proof follows by using the maximal modulus principle when investigating
the A4-stability conditions on the imaginary axis; a similar result —but with somewhat
another choice of the parameter —is given by Liniger — Willoughby (1970).

c) A,-stability of the formula (F 1,3) for y, < —1/12 follows from its A-stability
(the direct proof can be easily obtained). For y, > —1/12, we have lim | y, /v, | >

> 1; the A,-stability condition for sufficiently small ¢ < 0 is no:};lglled.
Corollaries
1. The formula (F 1,3) with y, = —1/12 is A(x«)-stable for all « € (O, %)
2. Any Ay-stable formula (F 1,3) is 4-stable; it is also 4 -stable for y, < —1/12.

Formula examples.

”

h. ' h? ”
Lo Yns1 = Dn ‘—‘6“(}’1. + Syni1) — l_z_(yn + 3Vu+1)s Ca =36
h ’ ’ 1 2. n ]
2. Yn+1 _yn=_3‘(yn +2yn+1)_?h Y+t C, —72”4

(here lim y,+,/y, = 0—the so called L-stable formula).
h oo , P 1
3. Yo+t — Vn = TS_(7yn + 8yn+1) + ‘3_0_(2.)’.11 - 3}‘"+1)7 C4 = ?()H .
2.3 One-step formulas of the second order can be obtained by choosing the parame-
ters By, y; and calculating the remaining coefficients from the conditions C; = 0,
i = 1,2. We obtain the formula

’ ’ 1 " ”
Yus1 = Yu = h[Boyn + (1 = o) yust] + hz[('? + Bo = %)yn + ‘/:J‘mJ’

1
C3=~6~(—2+3/30—6~,',). (F 1,2)
Remark: a) for 8, = —;- y; = 0 we obtain the trapezoidal rule known to be
A, A,y-stable but not 4 -stable;
2

b) we get the formulas of the third order with the parameter for 8, = 2y, + 3

Applying formula (F 1,2) to the test equation )’ = Ay, we obtain the reccurrence
relation for the discrete solution

Yns1 = {[1 + Bog + (——%— + Bo — w)qz]/[i (1 =Bo)a - vlqz']} Yur 4= 2h.

Theorem 2. The formula (F 1,2) is
L - i 1 1
a) Ag-stable iff (o, 7)€ D}, = {(ﬂo» 1) 3[ﬂ0 <z >N < -+t T'ﬁo]

, 1 T
or [ﬁo Z 5> -7 T 3*/’0]}~
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1 1
b) Asstable iff (B, 7)€ Dy = {(ﬁo, 37 S0 5+ 2 S o < 7};

¢) Ag-stable iff it is A-stable.

Remark: the regions DY, D} are given in fig. 1.

ﬂ 5
X
Déo
NS
q§ /301 Ao
,\ 0,5 0,5
P
\< \g 1 \§
’& Dé § D§§
AN
N N

. 1 .
Proof. a) lim|y,c1/Val = 170/7: | = |(——2—-+ Bo — y1>/y1| <1 iff —-1<

lg|— o

1 L . . . .
< (__.5 + By — yl>/y1 < I; this inequality is valid exactly in the domain DL

given above.

b) Using the maximum modulus principle, we can investigate only the fulfillment
of the A-stability condition on Re ¢ = 0. We find it fulfilled exactly for (8,, y,) € D}.
This result—also with somewhat another choice of parameters related linear to
Bos 71 —is given by Liniger — Willoughby (1970).

c) The A-stability of formulas (F 1,2) for (8,, y,) € D& follows from their A-stabil-
ity. We obtain the region Dj in investigating the conditions of 4,-stability in case
71 £ 0, By = 1 (the denominator in the reccurrence relation is positiv for (f,, ;)
€ D§). In the remaining three possible casses (B, < 1, y; > 0), (Bo > 1, y; = 0),
(Bo > 1, yo > 0) the denominator may have negative roots g and the fraction
may be unbounded in the neighbourhood of such roots. Denoting the denomina-
tor considered by ¢(g) = 1 — (1 — B,) g — v:14% its roots by ¢; = [1 — B, +
+ (= D' A= 29), i = 1,2, 4 = (1 — Bo)* + 4y, we obtain:

1. With (B, > 1, y; > 0) or (8, < 1, y, > 0) one root g; is positive, the second
is negative; in the neighbourhood of the negative root the condition | Y, 1/Va| < 1
does not hold.

2. With y; £ 0, B, > 1 the condition of A4,-stability is not valid
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1
— because of disturbing the condition f, = 5 if 4 #0,

— because of the negative double root of @(q) if 4 = 0 (the fraction |y, (/|
is unbounded in the neighbourhood of this root).

Formula examples

2

1. Yor1— Vu=hypss — —;«h VYt 1s C, =1/6 (Taylor’s formula)

"

4 1 ”
2. yn+1_yn=hyn+1_?hz(yn+2yn+1 > C4=1/24
h , , K, p
3 V1 = Vn = ?(ZJ’:. + 3ype1) + W(yn — 2Yn+1)s C, =1/120

ho, o, .
4 Vur1 = Ve =5 Ont ) + 50 —yaen), G =5/12
3. Two-step formula of the type considered is

Yotz — (A + @) ypuy +ay, =
= h(Boyy + Biyn+1 + BaVns2) + R(o¥n + ViVu+1 + V2Vn+2) (F2)

Applying (F 2) to the test equation y’ = Ay we obtain a difference equation whose
characteristic polynomial (“‘stability polynomial” of (F 2)) is

n(¢; q) = o) — go(0) — ¢*x(Q) =
= (= Bag =124 = (L + a+ Biq + 1,49 { + (@ = Bod — 70a?) (2
A -stability

Theorem 3. a) (Implicitness of the A -stable formulas).

When (F 2) is A-stable, 1({) = 0 implies B, # 0, ©({) £ 0 implies y, # 0.

b) We have in case of 1({) = 0 : (F2) is A-stable iff |o; | < 1,i = 1(1) k;

in case of T({) = 0 : (F2) is Agy-stable iff |1;| <1, i = (1) k,

where o;[t;] are the roots of the polynomial o({) [t({)]-

In case of 7({) = 0 the proof was given by Liniger (1975) and Odeh— Liniger
(1971). The proof in case of ©({) % 0 is analogous:

a) for the normed polynomial n({; ¢) with y, = 0(yo # 0) we have
lim| (@ — Boq — 709*)/(1 — B29) | = +c0; both roots n;(g) couldn’t be bounded

lq)— 0
for | g| —» + 0.

b) The proof follows from the continuous dependency of n;(g) on ¢ and from the
fact that lim n;(¢) = 7, i = 1, 2.

lg| =

In what follows we shall several times use the special case of the so called Schur —
Cohen criterion (which can be derived from the Hurwitz criterion—see for example

5it. [1]).
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Lemma 1. A/l the roots of the quadratic polynomial with real coefficients a,x*+
+ a,x + @y, a, > 0 lie inside the unit circle iff a; + a; + a5 > 0; a;, — ay > 0;
a, —a; + ap > 0.

Theorem 4. The formula (F2) is A-stable iff

Yo+ ¥i +12>0,  yo—7+712>0, 7y —9>0  fory, >0,
Yo+ 71+ 72 <0, Yo — 71 +72<0, Y2 =% <0 Jor y, < O.

The proof follows easily from lemma 1 and theorem 3.

A-stability. Genin (1974) showed a necessary and sufficient condition for
A-stability of a more general type of formulas (higher derivatives); it doesn’t possess.
the form of the condition for the coefficients of the formula. Jackson — Kenue (1974)
showed A-stability of the formula derived by Enright (1974)

2
1

h ’ ’ ’ ’ "
Yn+2 = Vn+1 =-4‘8_(_yn+20yn+1 +29yn+2)_~8_yn+2’ CS = _7/1440
No fuller analytic investigations in A-stability of formulas (F2) are known to the

author for the time being.

Ag-stability. The expression 1 — B,q — y,¢% in (n2) is positive for ¢ — 0; when
a, — 0, the modulus of one of the roots of the quadratic polynomial a,x* + a,x + a,
tends to infinity, so that the positivity of the expression 1 — ,q — 7,42 is necessary
for A,-stability of (F2). The necessary and sufficient conditions of A4,-stability of”
a consistent formula (F2) can be written using lemma 1 and some calculations in the
form

A. 1= Byg — 19> >0,
B. (@a—1)g— (o +7: +72)9> >0,
C. l—a+ (Bo—P2)qg+ (o—729>>0,
D. 2(1+a)— (B, — B+ Bo)q — (32— 71 + o) 4> > 0.
Lemma 2. Let ax® 4+ bx + ¢ be a quadratic polynomial with real coefficients,
a®> + b* 4+ ¢2 > 0; then

ax> +bx+¢>0 forall x<0 iff a

b

20, cz0,
=0

or b* — dac < 0).
Proof is elementary.

Applying lemma 2 we can rewrite the necessary and sufficient conditions of
Ag-stability 4 — D thus

A. 7, 20;5(B, 2 00r B3 — 4y, <0);

B.1l+a=0;7 +79, +7, £0; except a=1,% + 71 +72=0;

C.1-a20;90—7y,20;[f,— oz 0or(f,— Bo)? = 4L — a) (yo — 75) < 0],

with the exception of a = 1, 7o = 72, Bo = Pa2-
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Dol +az20i7 =91 +7=0;
[ﬁz ~ B+ Boz0o0r (B, — By + ﬁ'o)2 + 81 +a) (y2— 71+ 7)< 0]§
with the exceptionofa = 1,9, — 9, + y0 = 0.

Remark. The conditions of A -stability are included in the A4,-stability condi-
tions (see Theorem 4).

3.1 Retaining the free parameter ¢ in the formula (F2) and finding the coefficients
Bo>B1sBas Yo, V1, 2 from the conditions C; = 0, i = 1(1) 6, i.e.

i

=1 l—a=f0+ B + B
i=2, 3—a=28 +4p;, + 290 + 2y; + 27,
i=3, 7 —a=73f; + 128, + 6y, + 12y,

i , 15 —a =4p; + 326, + 12y, + 48y,

, 31 —a =58, + 808, + 20y, 4+ 160y,

, 63 —a = 6f; + 1928, + 30y, + 480y,
i=1, 127 — a = 7, + 448f3, + 42y, + 1344y,
(to calculate C5),

~.

I
AN AW N -

i

we obtain the sixth-order formula

Ynvy2 — (i - ”‘))",,-{rl +ay, =

] i ' ) ’ 1 ’
= 'ij(;i_(l()l — 1Ha)y,s, + 128(1 — a) ypyy + (11 — 10ia) y,] +
Il ’ " ”
+ ‘7";{0— (=13 +3a)yl s +40(1 +a)ynsq + (3 = 13a)yr],
Il —a

= 79450 ° F2,6
€= "150 (F2,6)
Remarks 1. We obtain the seventh-order formula for ¢ = 1 — see Jankovi¢

(1965) — which is unstable (the double root { = 1 of o({))
2

30 N,
Ynv2 — 2),'” 1 + Yn = h(yn +2 yn) + o) (yn+2 - 8.)’Yn+1 + yn)’
8 24

1

s = G0 450

2. We have the formula by Jackson-Kenue (1974) for a = 0

h , , , R " " "
Ynv2 = Yy = '7404(] ]yu + ]28)’,,4,] + 1O‘yn+2) + “2‘46(3.}’11 + 40yn+l - 13,“n+2) >
1
C, =

9450 °
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3. It follows from the expression for C; = (1 — @)/9450 that by no choice of two
values a’, a” of parameter a stable formulas with C; = —C7 (two-sided formulas)

are obtainable.

Theorem 5. The formula (F2,6) is not Ay, A,, — stable for any real value of para-

meter da.

Proof. a) The polynomial 7({) = (=13 +3a){®* + 40(l + a){ + 3 — 13a
doesn’t satisfy the necessary and sufficient conditions of 4 -stability given in Theo-
rem 3 for any real value of a.

b) Investigating the necessary and sufficient conditions of A,-stability (conditions
A — D) yields after some elementary but lenghty calculations

A. 240 — g(101 — 1la) — ¢*(—13 + 3a) > 0, Vg <0 iff a<13/3

B. —q[l—a+%q(1+a)]>0, Vg <0 iff a< —1

IIA

C.l—a—%q(1+(1)+]%(l—a)q2>0, Vg<0 iff -1 =ac=sl

D. 21 +a) ——%(a — 1)y +—2%(1 +a)g?>0 Vg<0 iff
a> (—188 + 5./15)/187 ~ —0,90179...

With respect to B, D there is no real value of a simultaneously satisfying the con-
ditions 4 — D.

3.2 Keeping besides the parameter a another free parameter y, in the formula (F2)
we obtain the following values for the remaining coefficients from the conditions
C,=0,i=1()5:

SIS i :
Bo =55 g ¢ + 972, Yo -——1*5(1 —a)+ 7,

8 23 7
By —-Ts—(l - a), =yt @ + 472,
.3l 1 C o1 4T
Fa=ta5 ~ g @ T G Fs‘(‘?,ff T 30?2)'

This finally leads to the fifth-order two-step formula

Yurz = (1L + @) ypyy +ay, =
, 5 11 , 8 , 31 1 ,
=h [(?4_ - _2'4“a + 3?2))’» + E_(I - a)yn+1 + (TEO ']'26"1 3y2>yn+2J+
1 1 ” 23 7 " "
+ 112[(“1—5* T Vz> In + (FO‘ Tt 472) Yner F szn+z]~ (F2,5)
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A-stability. Substitution into the necessary and sufficient conditions of A,-sta-
bility (Theorem 4) results in

1 1
1 . 1 .
—(a — > —(a —
15((1 1) >0 iy, =0, 75 (a—1) <0 if y, <0.
1 1
—%—(19 + 11a) — 2y, >0 ——66(19 + 11a) — 2y, <0

These conditions are satisfied exactly in the region

2,5 _ .
Dz -—{(a,yz). l<a<l, — 120 (19 + 1la) <y, < -0 (9+a)}
given in fig. 2.

Ay-stability. The necessary and sufficient conditions of the A,-stability for
(F2,5) can be written (after some calculation) in the form

Ay, 205

1 1

14 400
B.1—a§0;—1—(9+a)+6y2§0;(a,y2)4= -1\
20 Ea

1
C.1-az0; (a, yz):):( 12)

1 2 1
— - > - -
{20 (1 +9a) — 6y, 2 0 or 36y; (1 +9a)y, 300 (7742 +694a +317)<0}:

D.1+a20; 60(19+11a)+2y220
a—1200r | 120y, > —19 — 11a + 2= D°
= 30(a + 1) ifg> —1

Solving the quadratic inequalities we get

: — — >
Ay, £0; {120 (3l —a)—-3y,=0or
49 —a — 4. /1009 + a) < 360y, < —49 ~ _
: V100 + ) 4 00T a) if a> —9]};
B.1-az20; = +a)+6y,<0: (a,7,) % 1
20 ’\¥).

1 12
C.1—az0; (a y;)#( 12)
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{—2%(1 +9a)— 67,20 or [3(1+9a) —2/3/80a* + 187a + 80 < 360y, <
< 3(1 + 9a) + 2/3~/80a* + 187a + 80 if 160a ¢ (—187 — /9369,

—187 + /9369), i.e. if a¢(—1,77..., —0,56...)]};
D.1+4a20:; —610—(194—11a)+2y220;

2
{a—1go or [120y2> —19—11a+3—((‘)1(7—_%]—)« if a > -9}}.
| Y.
|
|
[
\

'1.\\ 1
S~ a

.ED_S = D;/az/_//// ez W

A detailed analysis shows that the conditions 4 — D are simultaneously satisfied
exactly in the region D3'° of the (a, y,) — plane defined by the relations
(a—1)

2’5= . — ..S S - - A7
D? {(a,yz). 0.890833...<a <1, —19 11a+30(a+1)

<120y, £ -9 - a}

except for (a,y,) = (1, —1/12). The region D2 together with the region D% are
given in fig. 2. As can be seen now these two regions differs in the neighbourhood
of their boundaries only (see the defining conditions). So we have proved

Theorem 6. The A, Aq-stability regions of the formula (F2,5) in the (a, y,)-plane
are exactly the regions D%, D3® defined above ; none of these is a subset of the other.
The A, -stability of the formula (F2,5) implies its stability (in the sense of Dahlquist).

Examples of the A, Ao-stable formulas.

l.a=0;y, = —0,1; Cg = 11/7200
2

h ’ ’ ’ h ” ” n
Ynv2 = Vn+1 = m(_llyn + 64yn+l + 67Yn+2) - _6'6'(2}):1 + Yn+1 + 6yn+2)9
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2.a=1/2;y, = —0,1; Cy = 25/14400
_ 1,
Yn+2 7yn+1 +7yn_ 240

hZ

+ 120

3.a=0;y, = —1/8; Cg = 89/21600

h r ’
Yn+2 = Vn+1 = ﬁ(—Sy;, + 16y,+1 + 19yn42) —

4.a = —1/2;y, = =0,1; C4 = 83/28800;

Yn+2

5.a=-038;7y,

_7)’"“

1 1
5 In

—0,07; C¢ = 109/72000;

(—8_)/:: + 5y}:+1 - 12y::+2)9

120

(=77yn + 64yp41 + 133y542) +

2
B Ty 4 1yl + 150

2
h r ’ ’ h ~ " n”
30 (]lyn + 64yn+1 + 45yn+2) - 40 (Jyn+1 + 4yn+2)’

h p '
VYn+2 — 0’2y11+1 - 0,8_)/" = m—(73y; + 129yn+1 + 95yn+2) +

2

h ” " ”
+ W‘(Syn + Vn+1 — 7yn+2)'

3.3 Retaining the free parameters a, f;, 7, in the formula (F2) and calculating
the remaining coefficients from the relations C; = 0, i = 1(1) 4, we obtain

C5=3(])—'0(8—8a—-15[3,),
which leads to the fourth order two-step formula
Ynez = (L4 @) Yusr + ay, = ”[(7193“— —i%a —%ﬁl +%v;>y,. +

511

2 — e
+h [(48 48
L1, s
48 ' 48

1 1 " "
gkt ;fvl)y,. + Pidner

1 1 "
a+ Tﬁ: + —4"))1>yn+2]'

We have Cs = 0, C, = (I + a — 6y,)/720 for g, = 8(1 — a)/15; especially we get
the sixth order formula from 3.1 for y, = (1 4 @)/6 and B, = 8(1 — a)/15.
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A,-stability. The necessary and sufficient conditions of the A -stability (Theo-
rem 4) take for (F2,4) the form

—11 4+ 5a + 128, + 12y, >0 —11 + Sa + 120, + 12y, <O,
—%(l+a) +—:23—yl>0 : ——é—(l+a) +%V1 <0,
—l-a+gp ol T |-ta-aeis <o
-—-%—(1+a) —-;—y,>0 —%(l+a) -1y <o,

These conditions are satisfied exactly in the region
2,4 2 i 1
D =4<(a,B,,y):a> —1,8, < —3—(1 - a), ——4—(1 +a)<y, < Tz—(l + a)
drawn in fig. 3 with @ = 0 and @ = 1. When @ » — 1., the boundary of DZ* de-
generates in a half-line , < 4/3;fora = —1 the D%* is empty. We obtain A4 -stable

formulas of the fifth order for ae (-1, 1), #; = 8(1 — a)/15 and ——i—(l +a) <

<y < le—(l + a); the formula corresponding to y, = (1 + a)/6 is not A4_-stable,
as already shown in 3.1.

Ay-stability. The necessary and sufficient conditions of the 4,-stability of formula
(F2,4) can be written on substituting into 4 — D as follows

A. =11 + 5a + 128, + 12y, £ 0;

[39 —9a — 24p, — 36y, 20 or
39 9 1 3\ 11 5
(2?“4?“"7”1 ‘ﬂl) _<"TZ+”17“ * B +V')<°]~

1 3 1
B. 1 +agO, '—‘_8_(1+a) +??1§0: (aaﬁly‘yl)#<1,ﬂls_6“>

with arbitrary f;

1 1 5
C. l+az0; 3—(1_1'1)_-2_/31;0’ (a:ﬁlaVI):’:<lsO’“6—>;

2

{%(1 + a) a%y, >0 or <—§—(1 + a) _%y1> -
~at =50 -0 ) <of:
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D.1+a>0; —-~(1+a) v1<0 (a, Bys 1) #(=1,1,0);

{1—61—2/31 =0 or (1 —a—2B1)2+8(1+a)[—%(l+a)—%y,]<0}.

Discussing these conditions in more detail we find the region of A,-stability relating
to (F2,4) to be defined by

Dg4 {(a ﬁlayl) é élaﬂlé%(l_a),_‘i“(l‘i‘a)g)"lé‘l—l—z (1+a)}

2
u{(a,ﬁ,,yl):~1<a§1,;—(l—a)§;?,§—;—(l—a),
1[@—-a-28) Lo 1
[ ETEE AN PO

1 +a

except the points where (a, S, y,) = (1, Bi» 71—) with arbitrary f,. The interiors of

D¥* and D%* are identical for a = 1; they differ in the neighbourhood of f, = 2/3,
9, = —1/2 (left-lower corner in fig. 3) for ae (-1, 1). We have D3* = {(a, B, y,) :
a= —1,8, <1,y, =0}fora = —1. The regions D3** and D%* witha = —1;0;1
are plotted in fig. 3. We obtain the fifth order 4,-stable formulas for f; = 8(1 — a)/15,
(a, By, 1) € D3*; the sixth order formula corresponding to y, = (1 + @)/6 is not
Ag-stable. We summarize our analysis in

/

%
\ \\\\\\\\\\\\\\\\\ N\ \\\\\\\\\(\\\\\\\ a=-4 o Bo
pe
\\\\ a=0 \\\\
ALULLIUALITUTIRRT T

a=1

Theorem 7. The A, Ay-stability regions for formulas (F2,4) in the (By, y,)-plane
are exactly the regions D%*, D** described above. None is the subset of the other. For
a e (—1, 1) the corresponding formulas are stable (in the sense of Dahlquist). There are
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the fifth order A, Ag-stable formulas (F2,4) corresponding to the points of D%*,
D¥* with B, <~ 8(1 — a)/15.

Formula examples.

l.a=0; B, =8/15;y, = 0; Cg = 1/720 (4,-stable, 4-stable)

h

’ ’ ’ h2 ” ”
VYo+2 — y,,+1 = _2_26_(—19.)'n + 128yn+l + 131yn+2) —W(’]yn + 23.vn+2)

2.a=0; B, = 8/15; y, = 1/12; C¢ = 1/1440 (4,-stable, not A-stable)
il ’ ’ ’ hz ” ” ”
Ynr2 = Vns1 = E(_yn + 32yn+1 + 29yn+2) + m(—yn + 10yn+2 - 9yn+2)

3.a=1/2; 8, = 4/15;y, = 0; C¢ = 1/480 (A4,, A, -stable) .

Vn+2 3 Yn+1 ?)’n =
= 169y 4 128y, + 28130 ,) — h—z(37y" +53)0,,)
480 n n n 480 n n+2
4.a= —1/2; fy = 4/5;y, = 1/24; C¢ = 1/2880 (A4,-stable, not A -stable)

1 1 h , , '
yn+2 - ‘i’yn+l + Tyn = E(9yn + 32yn+1 + 19yn+2) +

’lz ”n " "
+ m‘(h’n + 10yn+l - 17yn+2)

0; B, =5/8; y1 = —6/25; Cs = —11/2880 (A ,-stable, not 4,-stable)

h r’ ’ ’
Ynt2 = Yo+t = _2—0—(7(_61)}" + 125y, 1 + 136y,4,) —

2
2400

6.a=0,8,=1/2;y, =0; Cs = 1/720 (4,, A,-stable)
h , , h o, ,
Yn+2 = Va+1 = W(_yn + 9yn+2) - —4'8_(yn + 5yn+2)

hd
S
Il

(269y, + 576y, 1 + 319y,42)

7.a=0;f =38/15;y, =1/6; C;, = 1/9450; (A4,, 4,,-unstable)

h ’ ’ ’ h2 " " "
Yotz = Va1 = _2216(“))" + 128y, 41 + 101y, ,) + ’2*46‘(3)/,1 + 40y, — 13y442)

(Jackson —Kenue, 1974; see 3.1, example 2); stable in the Dahlquist’s sense.
8. We get A,, A -stable formula unstable in the sense of Dahlquist for a = 1,

B = —1/4,7, = 0.
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Shrnuti
STABILITA DIFERENCNICH FORMULI S DRUHOU DERIVACI

Jifi Kobza

V piedlozené préci se studuji nutné a postaCujici podminky 4, A,y, 4., — stability diferen¢nich
formuli s druhymi derivacemi tvaru (F). Ve vétach 1—7 se dokazuje, ze
— u jednokrokovych formuli 2. fadu splyvaji oblasti 4,, A4-stability, oblast 4 -stability je Sirsi;
— u jednokrokovych formuli 3. fadu je kazdd (s jednou vyjimkou) Ay-stabilni formule téz
A, A -stabilni;
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— existuji 4y, A -stabilni dvoukrokové formule 4. a 5. fadu, které jsou téZ stabilni podle Dahl-

quista;
— dvoukrokové formule 6. faddu nejsou A4q, 4, -stabilni.

Pesztome

VCTOMYUBOCTb MHOTOIATOBEBIX ®OPMVIJI
C BTOPBIMUM INPOMU3BOAHBIMU

Upxu Kob3a

B paboTe u3yuatorcst HEO6XOAUMBIE M TOCTATOYHLIE YCIIOBUs A, Ay, Ay, — YCTOMYMBOCTH MHOTO-
maroBeIx ¢GopMya ¢ BTOpbIMH npou3BoanbiMH THma (F). B Teopemax 1—7 mokassIBaercs, YTO
— Yy omHomaroBbIX (GOpMyJ BTOPOro Mopsiaka coBmagaroT obmactd Ay, A — YCTOMYMBOCTH,

065acTh A, — YCTOMYMBOCTH GoJiee mmpoKxas;

— Y OINHOIIATOBHIX (OPMYJ TPETBErO ITOPsAKA BCAKASA (C OMHUM HCKIIIOYEHHEM) A, — YCTORYMBAs
dopmyna sasnsercs Toxe A, A, — YCTOWYHBOI;
— CYWIECTBYIOT Ay, A, — YCTOM4MBBIE (OPMYJIbI YETBEPTOrO M MATOrO NMOPSAAKA, YCTOKYMBBLIE

no JanbKBUCTY;
— IBYXIIAroBble $OPMYJIBl MECTOro nopanka Ag, Ay — HEYCTOHYMBEL
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