Sbornik praci Pfirodovédecké fakulty University Palackého v
Olomouci. Matematika

Irena Rachinkova
On the theory of phases of academican O. Bortivka

Sbornik praci Prirodovédecké fakulty University Palackého v Olomouci. Matematika, Vol. 14 (1974), No. 1,
63--75

Persistent URL: http://dml.cz/dmlcz/120033

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/120033
http://project.dml.cz

-

. "N S

1974 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM —TOM 45

Katedra matematické analyzy pFirodovédecké fakulty University Palackého v Olomouci.
Vedouci katedry: Prof. RNDr. Miroslav Laitoch, kandidat véd.

ON THE THEORY OF PHASES OF ACADEMICAN O:. BORUVKA

IRENA RACHUNKOVA
( Received on May 21st, 1973)

The present paper is concerned with investigating a space R of all solutions for the
second-order, linear, ordinary differential equation

Yy =q)y ‘ ' <q)‘

in a real domain. This equation will be thought of as its carrier g(¢) to be a continuous
function in an open (either bounded or unbounded) definition interval j = (a, b)
with ¢(¢) < 0 for each ¢ € j. Throughout, the differential equation (g) will be under-
stood to be oscillatory in j, i.e. any nontrivial solution of (¢) vanishes in both directions
to the endpoints a, b of j an infitely number of times. -
The opening section introduces a scalar product in R. The results obtained here
have been used in the second section to establish a 1-1 correspondence between the
dispersions of the Ist kind and the special affine transformations of R. Each coset
of the 1st kind dispersion factor group D, /S, has been proved to be a certain special
affine transformation of R, under simultaneous determination of a number of sub-
groups in it, generated by orthogonal transformations of R, i.e. by rotation and axial
symmetry. There is next presented a concrete example of a dispersion group generated

'

by rotation of R through an angle %

In the final section is shown a group of dispersions generated by rotation of R

n . . . T

through an angle 5 and by symmetry with respect to the axis enclosing an angle T :
with a basis vector of R. - .
The basic notations and relations of the transformation theory of differential

equations have been adopted from [1].
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1. Euclidean space R of all solutions of the differential equation (g).

Let a(¢) be an arbitrary fixed chosen 1st phase of (g) and ¢(¢) be the st kind basic
central dispersion of (¢). In the space R of all solutions of (g) we shall introduce the
following composition

@(t)

(i g) = f [T . £(). g0 e, )

where functions f, g are arbitrary elements of R, ¢ an arbitrary element in j = (a, b).
Theorem 1. The composition (1) is a scalar product in R. ,

Proof. Since a(t) € C; (i.e. with the 3rd order continuous derivation) and «'(f) # 0
for each t e (see [1, § 5, 5]), [«'(#)]* is a continuous real function in (¢, o(t)> < j
with values lying between two positive constants. An arbitrary function f(¢) € R has
derivatives to the second order and thus it can be integrated in the interval ¢, ¢(¢))
and so the function f2(7). The latter, by [3, § 2, 7], implies the proposition.

Remark 1. For a function o(?) there exists a base u(t), v(¢) € R such that

sina(t) -y = cosxt).
NELO] NEZ0)

and o(?) is the Ist phase of this base. (See [1, § 5, 7]).

u(t) =

@

Theorem 2. The base (2) is orthogonal with respect to the scalar product (1).
Proof.

(1) -

(u(r) o(1)) = f ()] A;Q(WQ G o
@(t) o ‘ '
o (t)

= f—i— sgna’ . sin20(t) d 2a(t) = l:—%sgn a' . cos 2a(r):l =

t

= %sgn a’ . (cos2a(t) — cos 2a(p(t))) = 0 for a(e(?)) = a(t) + . sgn oz’(t.").

Theorem 3. The base

2 sina(t) _ 2 cosar)
NP0 T Jla(1)]

is normed and orthogonal with respect to the scalar product (1).

u(l) =

1) @)
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Proof. An. orthogonality of the base (3) follows from Theorem 2. It suffices,
therefore, to prove the normalization. It is

@(t) . o(t)
cos 2u(7)

() uo))—— f ("‘;)[ O de = 2 sen o f 1200200 yeyar =

t =

_ sgna (1)) — at) — _1_ sgn o (sm 2a(¢p(t)) — sin 2oc(t)) =1

for a(u(t)) = «(t) + msgn o'(t).
Consequently, for the norm | u(t) || of a vector u(?)

I u() || = /@), u@®) = 1.
Likewise /(v(2), (1)) = | v(?) | =

We can summarize the previous results in the following

Theorem 4. The vector space R of all solutions of (q) with the composition (1) is an
Euclidean space. The base (3) is a orthonormal base of this space.

\'

2. Orthogonal transformations of the space R.

Let D,/S; be the factor group, where D, is the group of the 1st kind dispersions
of (g) and §; the subgroup of all central dispersions with an even index. Further,
let p be a linear mapping of R onto itself. This is a generating mapping of exactly
one coset Z; € D[S, . (See [1, § 20, 4, 1].) Choose a base u, v in R. Then p(u) = U.
p(v) = V, where U, V is also a base in R. Conversely, any dispersion X, from a coset
generated by the mapping p, transforms the base U, V' to a base u, v: '

ulxg o, vIxd
JIxo T Xy

(See [1, §21,2.2]). Taken from the point of view of vector space transformations,
the dispersion X is thus a linear transformation of R acting as the inverse mapping
of the mapping p.

Linear transformations of a vector space with transformation matrices possessing
determinants equal to +1 or —1 are termed special affine transformations. Linear
transformations of a vector space with transformation matrices possessing determi-
nants + 1 are termed proper, special, affine transformations. S

The following Lemma is obvious:

Lemma 1. All special, affine transformations with a mapping composition constitute
a group isomorphic to the group of all unimodular matrices (of the 2nd order). All
proper, special, affine transformations constitute a subgroup of this group. -
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Theorem 5. The factor group D[S, is isomorphic to the group of all special, affine
transformations of R. The subgroup of all direct dispersion cosets is isomorphic to the
group of all proper special affine transformations of R.

Proof. The group D,/S, is isomorphic to the group of all unimodular matrices
(see [1, §21,6]). From this and from Lemma 1 follows the proposition of our
theorem.

It is immediate that each dispersion of the same coset &, € D,/S, is, from the
vector space transformation point of view that special affine mapping of R, cor-
responding to &, in the isomorphism of Theorem 5. Consequently and for simplicity,
we shall call this coset of dispersion directly the affine transformation of R.

Restricting our considerations to scalar product-preserving transformations only,
gives a subgroup of the special affine transformation group formed by the orthogonal
transformations. The relative matrices are called orthogonal. (They possess the
property A . A’ = E, where A’ stands for a matrix transposed to the matrix A). If
the determinant of an orthogonal matrix is equal to —1 and + 1, the relative trans-
formation is called the proper orthogonal transformation or the rotation of the space
and the axial symmetry of the space, respectively.

The following theorem is an immediate consequence of previous considerations.

Theorem 6. In the group D[S, exists a subgroup ®, formed by exactly all ortho-
gonal transformations of R.

Note. Throughout this paper ®, will denote the group of all cosets of dispersions
that are orthogonal transformations of R; rot ¢ will denote a rotation through an
angle ¢ and similarly sym ¢ will denote a symmetry with respect to the axis enclosing
an angle ¢/2 with the vector x of the base x, y of R. '

Theorem 7. In the group ®, exists a normal subgroup 9, (with index 2) of all
dispersion cosets acting as rotations of R. $, consists of exactly all direct dispersion
cosets of ®, .

Proof. Let us consider a mapping rot ¢. Then a primary base x, y is mapped onto
the following base X, Y by

X=Xx.cos¢ — y.sing

. 4
Y=x.singp + y.cos¢ x .()
The inverse transformation take the base x, y into a base X, Y by

X=x.cos9 + y.sing = x.cos(—¢) — y.sin(—9) )

Y= —x.singp +y.cos¢p = x.sin(—¢) +y.cos(—¢) .

The transformation (5) is rot (—¢). The matrix of this transformation belongs
exactly to one coset &', of direct dispersions, because its determinant is equal to +1.
Conversely, for each coset of direct dispersions of &, there always exists a correspond-
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ing matrix of the transformation (5), because only such orthogonal matrices have
a determinant equal to +1.

Corollary 1.1f p = rot ¢, then it represents a generating mapping of exactly one
coset &y € 9, (9, is the group of Theorem 7) and &, = rot (—¢).

Theorem 8. Let p = rot ¢ and a(t)[ A(t)] be a first phase of a primary [new] base
of R. Then an arbitrary dispersion X, € &, generated by p takes the form X,(t) =
= A7 (a(2)), with .

a) A(t) = a(t) + ¢ + 2kn, k = 0, 1, ... whereby both a(t), A(t) simultaneously are
proper or improper, or

b) A(t) = a(t) + ¢ + Qk + 1) n, k =0, 1, ... whereby one of the phases a(t), A(t)
is proper and the other is improper.

Proof. Let
_ cos oft) _ sina(t) 6
o(t) = e/Iwl ——mx/la’(t)l ,ou(t)=eylw \/ o1 (‘)
be a primary base and
Vi = E./l w1 S8 A1) ’ W _sin A(t) -
(1) JIWI AW EJIW| —= JAO)] )
~ be a new base of R. (See [1,§5,3].)
Substituting (6) and (7) into (4) gives
cos A(1) cos a(t) sin a(t)
EJ|W =e/lw|l—7"= |w
I o =M, 0T BN TTT TRk
sin A(1) cos a(t) sin aft )
EJIW| ———= =¢|w| ———% +elwl. s Q.
I = e e G
The base v, v and U, V can be expressed in the form
wit) =¢e.r(t).sino(t)
u(t) = ¢.r(t). cos af?), @
U(t) = E. R(t).sin 4
(O] (t) . sin A1) . ©

V(t) = E. R(t) . cos A(t).

Since U, V are obtained from u, v by means of rot ¢, r(t) = R(t) and following (6)

and (7) then
Jiwl W]
JI@ o J14@0)]

for each tej.

Thus '
Ecos A(t) = ¢ . cos (a(t) + @)
E sin A(t) = ¢ . sin («(?) + ¢).
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a) E = ¢, that is to say both phases are simultaneously proper or improper, then
Aty = a(t) + @ + 2kn, k =0,1,...;

b) E = —e¢, that is to say one of the phases is proper and the other improper, then
Aty = a(t) + ¢ + Qk + 1) 7, k = 0, 1, .... Moreover, by [1, § 20, 3], a dispersion
X, e &, takes the form X,(t) = A~ *(a(t)).

. 2n . 2 .
Consider now an angle - where n is a natural number. rot — isa generator
. n . 2kn .
of the cyclic group O] the elements of which are rot P k=0,1,....,n— 1. Itis

. 2n . . .
valid next that rot e is a generating mapping for a coset &, € D,/S;, where &, =

2 2(n — 1
= rot(——nl><= rot Ln£> The above coset &', acts as generator of the

same cyclic group O}. The inverse element to the generator of the cyclic group,
namely, is the generator of the same cyclic group.

We recapitulate in the following

Theorem 9. Let $, be the group of Theorem 7. In $,, to each natural n exists

2k
a cyclic subgroup O of order n with elements rot —;}t— ,k=0,1,...,n— 1. The coset

2n
X,€9,, where ¥, = rot 7 generates the group OF .

Let p be a prime number and » a natural one. The group of all p"th roots of unity

. . . 2 .. 2m
for a fixed n is a cyclic group of order p" with an element a, = COs —— + 1sin—
p p

. . . 2k
(See [4,111, 3.10].) This group is isomorphic to the group P} of all rot——:i ,
p

2 '
k=0,1,...,p" — 1 and rot —7:— generates P7.
p

The group of the type p® as a union of an increasing sequence of subgroups <a,),
n=1,2,... is an Abelian infinite group and the set of elements a,, n =1, 2, ...

IS a system of generators of p®.

With the properties of isomorphism of groups we can now express the following.
Theorem 10. Let , be the group of Theorem 7, p an arbitrary but a fixed natural
number. Further, let B < 9, be the group of all rot-%l:’—Tr ,k=0,1,...,p" — 1. Then
the union of sequence of the groups B, n = 1,2,... is an Abelian infinite group

2n
‘B‘f c 9 and the dispersion cosets rot —,n= 1,2, ... represent a system of gene-

ragors of BT.
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Now we are going to show a concrete example of a cyclic group with elements being
the rotations of R. '

Example 1. Let p = rot—_n— . Then p is a generator of the cyclic group O with

2
3 . . :
elements rot 0, rot —g— , rot , rot 5 n. Further p is a generating mapping of the coset
%,€e D,/S,, where &, = rot(—%). The mapping rot(—%) generates the same

1

cyclic group O% as also rot >

does. Let us look now at the elements of O} in more

detail.

rot 0: For the primary base x, y and the new base X, Y of the space R holds X = x,
Y = y. The transformation matrix

(10,

rot 0 generates the coset 9 and & ? = rot 0. For the first phases A(?), «(t) of the
bases X, Y, x, y holds

A@t) = a(t) + 2kn, where ¢ = E,
A(t) = a(t) + 2k + 1) n, where ¢ = —E.
rot%: x,y and X, Y satisfy X = y, ¥ = —x and the transformation matrix

. 01
- (_1 0) .
rot % generates the coset 21" and o i = rot (— —g—) . For A(t), a(z) holds

A(1) = (1) + ';“ + 2kn, where ¢ =E,

A(1) = o(1) +‘—215‘ +Qk+1)n, where &= —E.
rotn: x,y and X, Ysatisfy X = —x, Y = —, the transformation matrix

-1 0
’ E=< O—J'

rot n generates the coset 27 and Z7 = rot (—n) (= rot ).
Further .

A(t) = a(t) + 7 2kn, where ¢ = E,
Ay =a() + T 4 2k + 1)n, where &= —E. .
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3 . ) : .
rot—-n: x,y and X, Ysatisfy X = —y ¥ = —x and the transformation matrix

2
, 0 -1
I= (1 o)'
3 . . 3 in 3 n
rot — 7 generates the coset of dispersions 43" and 21" = rot| — > = rot — J.

2 2
For the first phases holds . )

3
A(1) = oft) + 57 + 2km, where ¢ =E,

A(t) = o) + %—ﬂ + (2k + ), where ¢= —E.

Axial symmetry of R.

\

.

We shall now return to the group 6, of all dispersion cosets that are orthogonal
transformations, i.e. either rotations or axial symmetry. The mapping sym % trans-
forms the base x, y onto X, Y in the following way:

X=x.cos¢ + y.sing

Y=x.sing — y.cosg. (10)
The inverse transformation transfers the base x, y onto a base X, Y by
X=x.cos¢ + y.sing
(11)

Y=x.singp — y.coso.

We now observe that the transformation of axial symmetry is an inverse mapping to
itself. The transformation matrix (11) belongs exactly to one coset of indirect dis-
persions (the determinant of the matrix is equal to —1).

Corollary 2. If p = sym —CP—, then p is a generating mapping of exactly one coset

of the Ist kind indirect dispersions. This coset is also sym%.
Theorem 11. Let p = sym% and let a(t)[A(t)] be a first phase of a primary

[new] base of R. Then an arbitrary dispersion X, € |, where p is a generating mapping
of ¥, can be expressed in the form X,(t) = A~ («(t)), with

a) A(t) = ¢ — a(t) + 2kn, k = 0, 1, ..., whereby both a(t), A(t) are simultaneously
proper or improper; or . : '

N )
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b) At) =@ — a(t) + Rk + 1) n, k =0, 1, ..., whereby one of these phases a(t),
A(t) is proper and the other is improper. '

Proof. Let (6) be the primary base of R and (7) the new one. Put (6) and (7) into
(10). We have

Bl A L eosa) [RLLUNNR
=W g = M gy 0 VI G o
E.Jl-W| ELALQ —olw] cos:x(t) —elw sma(t) 0s .

JIAQ)| NI INTOIN

Since the above mentioned transformation p is an axial symmetry, it again holds
r(t) = R(t) (see the expression of bases of the forms (8) and (9)), therefore

Jlwl 1w ) A
\/I <] = \/1 201 for each tej.

Thus
E .cos A(t) = &.cos (¢ — a(t)),

E .sin A(t) = ¢.sin (¢ — a(t)).
a) E = ¢, i.e. both phases are simulta;neously proper or improper:
A(t) = ¢ — a(t) + 2knm, k=0,1,..;
b) E = —g, i.e. one phase is proper and the other is improper:
AD) =@ —at) + 2k + )7n, k=0,1, ...;
moreover, by [1, § 20, 3], a dispersion X, € &, satisfies X,(¢) = 4~ '(«(t)).
Theorem 12. Let n be a natural number. Adjoinihg the transformation sym -z— to (he
cyclic group OY of orthogonal transformations, then the orthogonal transformation
group I consisting ofeleh?ents rot?, k=0,1,...,n—1, sym inn—, k=0,1,...,
n — 1 is obtained. O is a normal subgroup of T},
Proof. a)
(cos ¢ sin (p) (cos Y sin ¢> _
sin ¢ —cos ¢/ \sin ¢y —cosy
_ <cos<pc05|// + sin @ siny cos ¢ siny — sin (pcos¢> _
sin ¢ cos Y + cos @ siny sin @ sin Y + cos ¢ cos Y

_ <cos (@ —¥) —sin (¢ — tlf)) :
sin (p —y) cos(p —y))’

-



. In mn .
then if we compose SymTe T7 and sym € I} (m, I integer numbers), we can
n
. 20 —m
obtain rot —gn—) neD}.
b) .

cos¢® sin @ cosy —sin Y\
sin ¢ —cos@/ \siny cosy/)

B (cosqzcosn// + sin @sinyy —cos @ siny + sin @ cos l//)

sin @ cosy — cos @ siny —sin ¢ sin Y — cos @ cos Y

_ (cos (¢ —¥) sin (¢ — )
“\sin (@ — ¥) —cos (¢ — y)

—2m

. In 2mn )
composing sym —- and rot —— we have sym

c) .
(cos ¢ —sin (p) (cosnp sin W) B
sin g cosg/ \siny —cosy)

_ (cos @ cosy —sin @siny cos ¢ siny + sin @ cos l[l) _
sin @ cos Y+ cos @ siny  sin ¢ siny — cos ¢ cos Y
_fcos(ep + ) sin (o + ¢)
N (sin (¢ + ¢) —cos (¢ + 111))

7 (I, m integer numbers).

’

—m

. 2In mn . 21 .
composing rotT and sym 0 we obtain sym 7 (I, m integer).

d) An inverse element to sym ¢ is again sym ¢ (for arbitrary ¢).
e) O} is a normal subgroup of T} because O] has an index 2.

Evidently each axial symmetry together with an identical transformation forms
a two-element subgroup with respect to the composition of transformations. The
following theorem describes a next type of subgroups of ®; containing axial sym-
metries.

'T-heorem 13. In the group ®, there exists a subgroup I of the 2n-th order for
each natural n. The elements of I} are rot?—iz, k=0,1,....,n =1 and sym %n—,
k=0,1,...,n — 1. The cyclic subgroup O is a normal subgroup of I . The elements
rot ZTH and sym % generate I

Let us show finally a concrete example of the groups described above.

Example 2. Let p = sym —Z— . Then the coset in D, /S, with the generating mapp-

.ingp is this mapping. If this transformation is adjoined to the group O} we obtain the
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. . \ m b4 3 T
group T with elements: sym 0, sym e sym 5 sym vy 7 and rot 0, rot 5 rot m,
3 . . .
rot 5 The elements of O have been described in the preceding example. Let us

now describe the remainder of the group I%.
sym 0: For the primary base x, y and the new base X, Y of the space R holds:
X = x, Y = —y. The transformation matrix

(29

sym 0 generates the coset %7 and herein #% = sym 0. For the first phases A4(z), a(t)
of the bases X, Y and x, y holds

A(t) = —a(t) + 2kn, where ¢ =E,
A(t) = —a(t) + 2k + 1), where &= —E.

n .
sym =1 X,y and X, Y satisfy X =y ¥ = x and the transformation matrix is

J=((l)(l))

d h i . T
sym -~ generates the coset 3" and again #%" = sym T For A(t), a(t) we have

n
A(t) = T 1) + 2k, where &¢=E,
L
A1) = o ot) + (2k + 1)n, where ¢= —E.
. :
symz - % and X, Y satisfy X < _ y — ) and the transformation matrix
k=("19).
01
7 in
sym 7 generates the coset #i" ang 4" — sym ™ For A(1), a(r) holds
2 b
n
A1) = 5 (1) + 2kn, where ¢ =E,
n
A(r) = 2 2(f) + (2% + 1)n, where &= —E.
3 .
=71 X% t
sy? g%y and X, ¥ salisfy y _ —y, Y = —x and the transformation matrix

. ~d - 0—1.
-1 0
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3
s}’m%n generates the coset #i" and #%" = sym - 7. For A(?), a(f) holds

A() = %n — a(t) + 2km, where e=E,

A(t) = —?rn —aft)+(2k + 1)n,  where &= —E.
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Souhrn
POZNAMKA K TEORII FAZi 0. BORUVKY

IRENA RACHUNKOVA

V praci je zkouman prostor R viech feSeni obyéejné linedrni diferencidlni rovnice
2. fadu v realném oboru y” = ¢q(t) y, kde g(¢) je spojita funkce na otevieném intervalu
i = (a, b) (interval miZe byt ohranieny i neohrani¢eny) a g(t) < 0 pro kazdé re.
O rovnici y” = q(t) y se dale predpoklada, Ze je oscilujici na j.

V dvodni &4sti &lanku je v prostoru R zaveden skalarni soucin. Na zakladé tohoto
je pak v dalsi &asti uréena vzdjemné jednozna&na korespondence mezi disperzemi
1. druhu a specialnimi afinnimi transformacemi prostoru R. Je dokazéano, Ze kazda
ttida faktorové grupy D,/S, disperzi 1. druhu je jistou specidlni afinni transformaci
prostoru R. Zéroveii je v grupé D,/S, uréena fada podgrup generovanych ortogo-
nalnimi transformacemi prostoru R (tj. otoenim a osovou soumérnosti). Je pred-

veden konkrétni pfiklad grupy disperzi generované otoenim prostoru R o uhel ;

a zavérem je ukazana grupa disperzi generovani otoéenim prostoru R o uhel 5

o , p _ , n
a soumérnosti podle osy svirajici s vektorom baze prostoru R tdhel e
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Pesome
3AMETKA K TEOPUU ®A3 AKA. O. BOPYBKHU

UPEHA PAXYHKOBA

B craTbhe paccMaTpHMBAETCS MPOCTPATCTBO R BCeX pelleHHMH OGLIKHOBEHHOIO

nuHeRHOro uddepeHnanbHOrO ypaBHEHHs BToporo nopsiaka y'' = q(¢)y, rae
q(t) HenpepbiBHAs QYHKIHMSA Ha OTKPLITOM MHTepBase j = (a, b) (OrpaHH4YEeHHOM WIH
HeorpaHuyYeHHOM)  ¢(f) < O npu Bcex ¢ € j. YpasHeuue y'’ = ¢(t) y npeamonaraercst

KoJniebaroLUMM Ha UHTEpBaJe .

B mepBoif riaBe BBEAEHO CKajlapHOE MPOM3BEAEHHE B MPOCTPAHCTBE R.

B npanpHellueid rjaBe MOKa3aHO B3aUMHO OMNHO3HAYHOE COOTBETCTBHE MEXIY
JIMCTIEPCUSAMU MEPBOTO poAa M creuuaibHbIMU apdUHHBIMU MpeoOpa3oBaHUAMHU
npOCTpaHCTBa R. [Toka3sIBaeTCs, YTO KaX bl CMEXHBI Kiace pakToprpynmnst D, /S,
JMCIIEPCHit MEPBOro poaa ABJILETCA HEKOTOPBIM crienraibHbiM addUHHBIM npeobpa-
30BaHHeM npoctpaHcTBa R. B rpynne D,/S, Toxe onpeneneHo HECKOJIbKO MOCNENO-
BaTEJLHOCTEH MOATPYNN MOPOXIAEHHBIX OPTOrOHAJIBHBIMH MPeoOpa3oBaHUSIMH MPO-
crpactsa R. Kpome Toro nmokasausl ABa KOHKPETHbIE NPUMEPHI TAKUX MOATPYIIII.

«u
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