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In this paper are studied the set I' of all directed convex subgroups of a (partially)
ordered group G and the set 4 of all convex subsemigroups of G* that contain 0.
There is given (Theorem 2.1) the isomorphism ¢ between the sets I and 4 ordered by
inclusion (¢p: Ael' > A €A, ¢ ':SeAd— <(S>erl). Then I', 4 are isomorphic
complete lattices whose properties depend on properties of an order of G (there are
considered Riesz groups and /-groups).

The other section concerns the set I'y < I' of all o-ideals of an ordered group G
and the set 4, 4 of all convex invariant subsemigroups of G* that contain G (if need
be the set 4 in which invariancy in G is made up for invariancy in G*). In Theorem
3.1 is proved: a restriction of the mapping ¢ (from Theorem 2.1) on I', is an iso-
morphism between I', and 4, . There holds again that I'; , 4, are isomorphic complete
lattices. If G is directed, we can obtain similar results for I'; and 4} . In particular,
we can obtain results for Riesz groups and /-groups.

In accordance with these results now follows the known correspondence in an
I-group G between [-ideals and invariant convex subsemigroups of G* that contain 0.

1. In this section we shall remind some basic concepts and relations. G will always
denote a (partially) ordered group [G, +, <] and G* will denote the positive cone
of G that is the set of all elements a€ G, a = 0. If 4 is a subset of G, then G™ n 4
will be denoted by A*. For each subgroup 4 of G, 4 is an ordered group [4, +, £]
and A" is the positive cone of 4. A subset 4 = G is convex in G if a, be A, x€ G,
a £ x £ b imply that x € A. As is known, a subgroup 4 is a convex subgroup of G
ifand only if A" is a convex subset of G*. G is directed if U(a, b) + O foreacha,be G,
where U(a, b) = {x€ G:a £ x,b £ x}. G is directed if and only if G = G* — G*.
It is known too that G is directed if and only if for each a € G there exists y € G* such
that g < y. .

A directed convex normal subgroup of G will be called an o-ideal of G. If G is
a lattice-ordered group (notation: /-group), then a subgroup A of G which is also
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a sublattice of the lattice G, will be called an I-subgroup. A convex normal [-subgroup
will be called an l-ideal.

Remind also the concept of a Riesz group ([4], I. V. 13). We shall call G a Riesz
group if G is directed and if the following is satisfied: For any elements a,, a,, b,, b,

in G such that a; £ b; (i = 1, 2;j = 1, 2) there exists ¢ in G such that a; £ ¢ < b;
(i =1,2;j=1,2). Each /-group is evidently a Riesz group; but there exist Riesz
groups which are not /-groups. 2

2. In this section we shall investigate a relation among directed convex subgroups
of an ordered group G and convex subsemigroups of G* that contain 0.

If 4 is an arbitrary subset 0 &= 4 < G, we shall denote A — A4 by A4 and {4 will
always denote the subgroup of G, generated by A.

Lemma 2.1. (SIK [5]) If G is an ordered group, S a convex subsemigroup of G*
containing 0, then ()™ = S.

Proof: Let xe(S)*. By our assumption x = y, — y,, where y,, v, € S. There-
fore y;, = y; — y, = x 2 0 and since S is convex, x € S. Hence (S)* < S. The con-
verse is evident.

Lemma 2.2. If G is an ordered group, S a convex subsemigroup of G* containing 0,
then S = (S>.

Proof: Let x;, x, € S. Then there exist a,, b, , a,, b, € S such that x, = a, — b,,
x, = a, — b,. Therefore

Xy —Xxy=a; —b; +b,—a,=a,+b, —b,—b, +b, —a, =
(@, + by) — la, + (= by + by + by)].

Furtherrﬁore, b, +b, = —b, + b, + b, = 0 and since S is convex, —b, + b, +
+ b, € S. That is to say x; — x, € S, and hence S is a subgroup of G. Thus {(S)> < S.
The converse is evident.

Lemma 2.3. Let G be an ordered group, S a convex subsemigroup of G* containing 0.
Then (S)* = S.
Proof: Lemma is an immediate consequence of Lemmata 2.1 and 2.2.

Now, let G be an ordered group. We shall denote the set of all directed convex
subgroups of G by I'. Similarly we shall denote the set of all convex subsemigroups
of G* containing 0 by 4.

We can prove the following theorem:

Theorem 2.1. Let G be an ordered group. Then the mapping ¢ of the set I into the
set of all subsemigroups of G* defined by Ap = A" for each A€ I is a isomorphism
of the ordered set I’ onto the ordered set A. (I', A are ordered by inclusion.) The in-
verse:mapping @~ ' is the mapping \y : A — I' defined by Sy = {S for each S € 4.
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Proof: Let 4 e I'. We shall show 4™ € 4. Clearly, 0 e A*. Since A is a convex
subgroup of G, A* is a convex subsemigroup of G*. Now suppose that 4, Be I’
and A* = B*. 4™, B* is the positive cone of A, B respectively implies (by the
direction) 4 = A" — 4", B = B* — B* and hence 4 = B. That is to say ¢ is the
injection of I' into A. Now consider arbitrary S € 4. Thus S is convex in G* and by
Lemma 2.3 (S)* = S. Therefore {(S) is convex in G. And since the ordered group <S>
is generated by its positive cone, {S) is directed ([4], I. II. 1) that is (S> e I'. And
since {(S) @ = S, ¢ is a bijection of I' onto 4.

Show that y = @~ '. If AeT, then A" €4, (A*) eT. Since 4 is directed, A4 =
= (A*). Thus Apy = A"y = (A*> = A. Similarly Sy = (S)> @ = (S)* = §
for S e 4. Finally it is evident that ¢ is an isomorphism between the ordered sets
I' and 4. '

Theorem 2.2. Let G be an ordered group. Then A ordered by inclusion is a complete
lattice (in which the intersection is an infimum).
Proof: Let {S; : i € I} be an arbitrary system of convex subsemigroups of G* that
contain 0. Then
(1 oeNsS;
iel

(2) N S; is (as a non-void intersection of convex subsemigroups) a convex sub-

ieJ
semigroup of G* . G* is the unit in 4.

The following theorem is an immediate consequence of Theorems 2.1 and 2.2.

Theorem 2.3. If G is an ordered group, then I' ordered by inclusion is a complete
lattice isomorphic to the complete lattice A.

Consider now the case where an ordered group G is a Riesz group.

Lemma 2.4. A directed group G is a Riesz group if and only if it holds: If a € G
satisfies 0 < a < by + ... + b, where 0 < b, (i =1, 2,...,m), then there exist
such elements a;e G that 0 < a;, < b; (i=1,...,m) and a =a, + ... + a,. (See
[4], I. V. 13))

Theorem 2.4. Let G be a Riesz group. Then I ordered by inclusion is a distributive
sublattice of the lattice of all subgroups of G. )

Proof: (1) Let A, Be I'. Since A, B are convex, 4 n Bis also convex in G. Let x,
ye A n B. Since A, B are directed, there exist ae A, b€ B such that x < a,y £ «q,
x < b,y £b. Since G is a Riesz group, there exists an element ¢ € G such that
xZc¢,y<c,cLa,c=<b And since A, B are convex, ce A n B. Thus 4 n B is
directed. Therefore A N BeT.

(2) Let 4, BeT. Let x, ye (A4, B>. We can express x, y in the form x = «; +
+ ... +a,y=8 + ...+ B, where ;e A, (i=1,....,n),A4;, = Aor B, A; + A;,,
(i=1,...,n—1). Similarly for:; (j = I, ..., m). Consider the set {o;} of all sum-
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mands of x and the set {f;} of all summands of y. Since 4, B are directed, there exist
elements y, € A, y, € B such that y, € U ({o;} v 4, {f;} 0 4,0), y,€ U{o;} n B,
{B;} n B, 0). We can suppose that it holds o, €A, By € A, n = m. (In the other case
we can add zeros.) Then

x=oy 0+ oo, Sy, o+ ™ =y
y=PFtBht Bt B Sy A+ L+ =X

where y'9 is equal y,, 7, alternately (i = 1, ..., n). Therefore (4, B) is directed.

We shall prove the convexity of (4, B>. Let ue G, 0 < u < x, where x € {4, B>.
We shall express the element x in the form x = «; + ... + «, as in the precedent.
Since A4, B are directed, we can suppose that o; (i = 1, ..., n) are positive elements
and x precedes their sum. By Lemma 2.4 there exist elements a;€ G such that
0ag,=o(i=1..,n and u=a; + ... + a,. Since A, B are convex, a,€ A
oraq;eB(i=1,...,n). Thus ue {4, B>* and hence {4, B) is convex. Thus I is
a lattice with a supremum <4, B> and an infimum 4 n B.

(3) We shall prove that the lattice I' is distributive. According to (1), (2), we have
to prove Cn <{4,B> £ {Cn A,Cn B) foreach A, B, CeTI. Let xe C n {4, B>.
Then x can be expressed in the form x = a; + ... 4+ o, as in (2). Without loss of
generality we may suppose that 0 < x. (Each element of the directed subgroup
C n {4, B) can be expressed by a difference of positive elements.) Since 4, B are
directed, there exist §, € 4, §, € B such that 6, € U({a;} n 4, 0), 6, € U({;} n B, 0).
Thus x < 8 + 6 + ... 4+ 8™, where §) = §, or §, (i = 1, ..., n). According to
Lemma 2.4 there exist elements ¢V, ..., g™ eGsuch that 0 < ¢ < 6V (i =1, ..., n),
x =1 4+ ¢ 4 ..+ ™. Since A, B are convex, e e dor B(i = 1,...,n). And
since 0 £ e < x,ePeC(i=1,...,n). Therefore xe (Cn A, C ~ B>. And thus
Cn<{A4,B>c{Cn A, Cn B).

The following theorem is a consequence of Theorems 2.3 and 2.4.
* Theorem 2.5. Let G be a Riesz group. Then A ordered by inclusion is a complete
distributive lattice (in which the intersection is an infimum) isomorphic to the lattice T .

Now, let an ordered group G be an /-group.

Lemma 2.5. If G is an I-group, then each directed convex subgroup A of G is a convex
l-subgroup of G and conversely.

Proof: Since 4 is directed, for a, b € A there exists ce A suchthata < ¢, b < ¢
Therefore a v b < c. Since A4 is convex, a v b € A. The converse is evident.

Consider now the set I'" of all convex /-subgroups of an /-group G. By [3], [6] I’

ordered by inclusion is a complete distributive lattice in which () 4, is an infimum of
iel

an arbitrary system {4, : i € I} of l-subgroups and <{4; : i e I is a supremum of this
system. By Lemma 2.5 is now I’ = I', thus in the case of an /-group, I is a closed
distributive sublattice of the lattice of all subgroups of G.
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3. Now, G be again an arbitrary ordered group. In this section we shall study the
same types of subgroups and subsemigroups as in Section 2 but they will be invariant
besides. First prove some lemmata.

Lemma 3.1. Let G be an ordered group. Then {G*> = G* — G™.

Proof: Evidently, G* is a convex subsemigroup of G* containing 0 and hence
by Lemma 2.2 the proof is completed.

Lemma 3.2. If G is an ordered group, then {G*> is a directed convex normal sub-
group of G.
Proof: Let xe G, ce {G*>. By Lemma 3.1 holds ¢ = a — b, where a, be G™.
We have
—x+@-b)+x=(-x+a+x)—(—x+b+x)=p—gq,

where p, ge G*, thus (G*)> is normal. By Lemma 3.1 (G*)> =G — G* and
hence {G*) is directed. (G*> = G~ ! is evidently convex in G.

Lemma 3.3. Let G be an (abstract) group. Then a non-void intersection of an arbitrary
system of invariant subsemigroups of G is an invariant subsemigroup of G.

Lemma 3.4. Let A be a normal subgroup of an ordered group G.
Then (1) A% is an invariant subsemigroup of G;
(2) A" is the positive cone of an order of G.
Proof:0e A" . A* = G* n A is by Lemma 3.3 an invariant subsemigroup of G.
Since A* £ G*, AT n = (4%) = 0.

Lemma 3.5. Let S be an invariant subsemigroup of an ordered group G, S < G*,
0eS. Then

(1) S is the positive cone of an order :< of G;

(2) <S> is normal subgroup of G and {S) is directed in the order <.

Proof: The proposition (1) is evident. According to (1) and Lemma 3.2, (S is

is an extension of the order <, therefore (S is also directed in the order <.

Let us remind that we have denoted by I' the set of all directed convex subgroups
of an ordered group G, by 4 the set of all convex subsemigroups of G* that contain 0.
Now, let I'y = {4 € I': A is a normal subgroup of G}; I'; is thus the set of all o-ideals
of G. Similarly, let 4, = {Se 4: S is an invariant subsemigroup of G}.

Theorem 3.1. Let G be an ordered group. Then the mapping ¢,: A, > A* €4
is an isomorphism of the set I, ordered by inclusion onto the set A, ordered by inclusion.
The inverse mapping @1 ' is the mapping - Se 4, - (S>eT,.

Proof: By Theorem 2.1 each AeI'y < I'is in a one-one correspondence with 4 "€ 4.
By Lemma 3.4 A* €4,, thus I';¢ < 4,. Conversely, by Theorem 2.1 arbitrary
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Sed; € 4 is in a one-one correspondence with the subgroup <S> eI'. {(S) is by
Lemma 3.5 a normal subgroup of G, therefore 4,¢~' < I';. An isomorphism of the
ordered sets Iy and 4, is now evident.

Theorem 3.2. Let G be an ordered group. Then the set A, ordered by inclusion is
a complete lattice in which the intersection is an infimum.

Proof: Let {S; : i e I} be an arbitrary system of elements in 4,. By Theorem 2.2
it holds ) S; € 4. Since S; (i € I) are invariant in G, [ S; is also invariant in G. Thus

ier iel

N S;e4,. G* is the unit in 4,.
iel

Corollary 3.1. If G is an ordered group, then I' | ordered by inclusion is a complete
lattice isomorphic to A, .

Now, let us denote by 4 the set {S e 4: S is an invariant subsemigroup in G*}.
The invariancy of S in G* means that x + s — xe Sand —x + s + x € S are valid
for arbitrary elements xe G*, se S. Evidently 4, < 4.

Lemma 3.6. Let G be a directed group. Then 4, = 4.
Proof: Let S be invariant in G* and let y € G, s € S. Since G is directed, y may be
expressed in the form y = x, — x,, where x,, x, € G". Therefore

VEs—pyp=((x; —x)+s—(x; —x3) =x;, +(=x, + 85+ x;) — xq,
and by the assumption it holds —x, + s + x, = s, € S. It holds further x, +
+ 5 —x;,=s,eSand hence y + s — y =s5,€S.

Therefore it holds:

Theorem 3.3. If G is a directed group and if the sets I'y, A\ are ordered by inclusion,
then the mapping @ (from Theorem 3.1) of the set Iy is an isomorphism of 'y onto 4 .

Corollary 3.2. If G is a directed group, then the set A\ ordered by inclusion is
a complete lattice in which the intersection is an infimum.

Now, let G be a Riesz group. Then I'; forms with respect to inclusion a distributive
sublattice in the lattice of all subgroups of G ([4], 1. V. 13). C]early, I, is also a sub-
lattice of the lattice I'. By Corollary 3.1 I, is a complete lattice.

Therefore it holds:

Theorem 3.4. Let G be a Riesz group. Then the set I'; ordered by inclusion is
a complete distributive lattice that is a sublattice of I.

Corollary 3.3. If G is a Riesz group, then the set A ordered by inclusion is a complete
distributive lattice in which the intersection is an infimum.

Now let us suppose that G is an /-group. By Lemma 2.5 o-ideals and [-ideals in an
I-group coincide. Therefore the following theorem is an immediate consequence of
Theorem 3.1.
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Theorem 3.5. Let G be an I-group. Let us order the set I'| of all l-ideals of G and the
set A by inclusion. Then the mapping v: I'y — A defined by Av = A" for each A€ T
is an isomorphism of T'| onto A .

79

Remark. The proposition v is a bijection of I’} onto 4] is proved in [4],
1. V. 5, partially also in [1].

As is known, (see e.g. [4], I. V. 5), the set I'} ordered by inclusion is a complete
infinitely-distributive sublattice of the lattice of all normal subgroups of an /-group G
and hence by[3], [6] the same is true of the lattice I'".

Therefore it holds:

Theorem 3.6. If G is an l-group, then the set A’ ordered by inclusion is a complete
infinitely-distributive sublattice of the lattice A.

Acknowledgement. The author wishes to acknowledge his indebtedness to Pro-
fessor F. SIK, for many suggestions that helped improve this presentation.
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SHRNUTI

USMERNENE KONVEXNI PODGRUPY
USPORADANYCH GRUP

JIRI RACHUNEK

V praci je studovana mnoZina I' vSech konvexnich usmérnénych podgrup (¢astecné)
uspofadané grupy G a mnoZina 4 viech konvexnich podpologrup z G* obsahujicich 0.
Je ukézan (véta 2.1) izomorfismus ¢ mezi inkluzi uspofadanymi mnoZinami I" a 4
(p: AeT - A*ed, p7': Sed— (S)eTl). I, 4 jsou pak izomorfnimi Gplnymi
svazy, jejichZ vlastnosti zavisi na vlastnostech uspotadani G. (UvaZzuji se Rieszovy
grupy a l-grupy.)
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Dalsi ¢ast se tyka mnoziny I'; < I viech o-idealil z uspofadané grupy G a mnoziny
A4, € 4 viech konvexnich invariantnich podpologrup s 0 z G*. Ve vété& 3.1 se doka-
zuje, Ze restrikce zobrazeni ¢ z véty 2.1 na I'; je izomorfismem mezi I'; a 4,. Opét
plati, ze I'y, 4, tvoii izomorfni Gplné svazy. Specidlni vysledky se opét dostanou pro
Rieszovy grupy a l-grupy. Dusledkem je znama korespondence v I-grupé G mezi
l-idealy a invariantnimi konvexnimi podpologrupami s 0z G*.

PE3IOME

HATPABJIEHHBIE BBITVIRJBIE HOITPVIIITBI
YHOPALOYEHHDBIX 'PVIILTT

UPXUMN PAXYHEK

B pabGoTte paccMaTpuBaeTCsi MHOXECTBO [/  BCeX BBHUIYKJIBIX HalpaBieHHBIX MOI-
Ipynn U3 (4acTUYHO) YHOPSIOuYeHHOH rpynnbl G U MHOXKECTBO A BCeX BBIMYKJIbIX
noxnosyrpynn us G+, conepxaiunx 0. [TokasbiBaetcs (Teopema 2.1) nsomopdusm ¢
MHOXeCTB I” 1 A yHOPAOOYEHHBIX OTHOLUeHHeM BKIroueHusi (@ : Ael — AT e 4,
¢ 1:Sed— (Syel). I', A 06pasytoT u30oMopPHble MOJHbIE CTPYKTYPbI, CBOKCTBA
KOTOPBIX 3aBHCAT OT CBOMCTB mopsiaxa Ha G. (PaccMmatpuBaroTcs rpymmnbl Pucca
u l-rpymmsr.) -

B nanpHefieii yacTy n3yuaeTcst MHOXecTBO Iy < [ BceX o-MaeasioB U3 YIOpsiio-
YeHHOU Trpynnsl G U MHOXECTBO A; & A BCeX MHBAPHAHTHBIX BBHIMYKJIbIX MOATOJLY-
rpymn ¢ 0 u3 G*. B Teopeme 3.1 noka3bIBaeTCsi, YTO CyKEHHE OTOOPAXEHMS (@ U3
Teopemsl 2.1 Ha I'y aBigeTcs uzomopbusmom Iy Ha A . I'y, 4, 0oOpa3yroT u3oMopd-
Hble MOJIHbIE CTPYKTYPbl. B YaCTHOCTH IoJiyyaeM pe3ynabTaThl [Jjisi rpynn Pucca
u l-rpynn. CreicTBUEM sIBJISETCSE M3BECTHOE COOTBETCTBHE B /-rpynne G Mexay
[-vaeanamMy ¥ MHBAPMAHTHBIMHU BbIMYKIBIMHK noamoayrpymnamu ¢ 0 uz G*.
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