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Let’s have a differential equation
(@ ¥’ = q)y,
whose coefficient ¢(r) belongs to class C, in the interval j, where j is a bounded or
unbounded open interval and ¢(z) < 0 for every z¢j. Let y(r) be an integral of
differential equation (¢) defined in the interval ;. Let’s form a function

f(ty) = a(0)y(t) + AOY1)

and call it a linear combination of integral y(¢) and its derivative with regard to
the weighing function «(z), f(¢). Let these weighing furictions have the following
properties:

1° functions «(z), () belong to class C, in the interval j,

2° functions «(t), f(z) don’t change their signs in the interval j and at least

one of them has no zero point in the interval j,
3° if f(1) 4 O for every 7 <, let a function a@— be nonincreasing in the

()
interval j. If «(r) + 0 for every 1 ¢ j, let a function /;Eg be non-decreasing
in the interval ;.
Together with differential equation (q) we’'ll consider a differential equation
Q Y’ = Q0Y,

whose coefficient Q(¢) belongs to class C, in the interval jand Q(r) < 0 for
every ¢ € j. Similarly a function

F(t,Y) = ./ ()Y(t) + 4O)Y'(t)

is called a linear combination of integral Y(¢) and its derivative with regard to the
weighing functions .o7(z), 4(r). Let these functions have properties 1°, 2°, 3° in
the interval j.

Further we shall not take into consideration those integrals of (¢), (Q), which
are identically equal to zero in the interval j. Instead of ,,differential equation®
we shall say only ,,equation®.
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In further consideration functions a(r), A(z) resp. .%/(z), #(t) will be arbitrary
but firmly chosen weighing functions fulfilling properties 1°, 2°, 3° and in
functions f(z,y) resp. F(1,Y) will be y resp. Y mark an arbitrary integral of
equation (g) resp. (Q) defined in the interval ;.

Lemma: Let a function y(1) resp. Y(t) be given. Let numbers a, b € j, a << b,
be neighbouring zero points of f(t,y) and let F(1,Y) + 0 for every t € (a,b). Then

b

”m, NELY) - frsz% F, Y‘,] di +

n b
. f(ty) -, ]2 B

+ “f (ty) - e, Y) F'(t, Y)| dt =0 .

Equality (1) will be called the arranged Picone’s identity (see [1] pg. 186).

Proof: By direct calculation we easy find out that equality

[y e - @y e )| -
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always holds where F(z,Y) # 0. From results of [2] follows that f'(a,y) # O
and f'(b,y) +# 0 as well. But F(s,Y) # 0 in the interval (a,b) by assumption
and therefore for x,, x,, @ <~ X, < X, <~ b from relation (2) after integrating from
x, to X, we obtain

[é%{,’)(m, NG -~ 169 F6 )]

)

X2
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(3) -l een - FoPre]a+

X
Xs

F f [f'(g y) — 'lf*‘(((t’,);)) Ft, Y)rdt .

If e. g. F(b, Y) # 0, so the left-hand side of (3) has its limit for x, - b-and
this limit is equal to zero. If F(b, Y) =0 and then F'(b, Y) # 0, we have by
L'Hoéspital’s rule

X

. Xy y) L
lim 22 F(Xy Y) =
R, v) © 00 V)
Now it is evident that for x, > & the left-hand side of (3) has always its limit
equal to zero. Similarly we can find out that the same result takes place in the
case x, -» a.. From the preceding consideration we obtain the validity of (1)
and lemma is thus proved.

Lemma 2: Let functions f(t, ¥), F(t, Y) be given fulfilling in the interval j the
following condition

(4) F(tY) =kf(t,y),
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where k is a constant value different from zero. If
) A1) = pAt), A = pAO)
holds in the interval j, so then Q(t) == q(1), Y ==ry, where p, r are constan. values

different from zero and k — pr.
Proof of this lemma is evident.

Theorem: Let functions f(t, v), F(1, Y) be given fulfilling in the interval j the
following condition
'ty F'(LY)

© flt,y) = Rt Y) "’

Then cither between each two neighbouring zero points a, by, a -_ b, of function
f(t, y) there lies at least one zero point of each function F(t, Y) or the functions
1(1, y), F(t, Y) differ from each other only by a multiplicative constant value.
Tn this second case equations (q), (Q) under the assumption (5) are identical in the
interval j and integrals Y, y differ from each other onlv by a multiplicative constant
value.

Proof: There are two possibilities: either F(z, Y) = 0 for certain r < (a, b)
and then the first part of the assertion of theorem holds, or F(z, ¥) == 0 for
every ¢ € (a, b) and then by lemma 1 there holds the arranged Picone’s identity

b

o e o D]

b

| J[f'(t, ¥) :g’% F’(t,Y)rdt 0.

As the second term is non-negative and the first one is by (6) non-negative as
well, the Picone’s identity can hold only under assumption that both integrands
are identically equal to zero. Herefrom we get the condition

f'Ly)  flby) Y
F(t,Y) FY) F(Y)
that holds only if condition (4) holds, i. e.
F, Y) —~kf(t, y),
where k is a constant value different from zero. Now lemma 2 implies the validity
of the rest of the assertion of the theorem.

. Note: The preceding theorem is a certain generalization of Sturm’s
comparison theorem for the equations of Jacobi’s type. We obtain it by choosing
in relation (6) -<«/(7) — a(t) =15 #(t) = p(z) —0.

At the end of this paper I should like to express my gratitude to Prof. RNDr.
Miroslav Laitoch CSc. for his suggestion to investigate this problem and for
his valuable advice.
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SHRNUTI

O ISTEJ MODIFIKACII STURMOVE] POROVNAVACE]J VETY

MILOS HACIK

V prici st skiimané namiesto integralov y resp. Y diferencidlnych rovnic (g)
resp. (Q) linearne kombindcie tychto integralov a ich derivécii v tvare
() y®) + Ay resp. (1) Y() + 21 Y (1),
kde funkeie o, fi, .7, 4 spliiujt na intervale j vlastnosti 1°, 2°, 3°. V tejto stvislosti
sa prichadza k istej modifikacii Sturmovej porovnavacej vety.
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