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ON PERMUTABLE QUADRATIC INVERSIONS 
IN PLANE WITH TWO COMMON SINGULAR POINTS 

JAROSLAVA JACHANOVA 
(Received 31. 3. 1970) 

This text refers to the work of S. S. Subramanyam "On Permutable quadratic involutions' * 
[1]. The author deals there with involutary quadratic transformations and conditions under 
which two or more involutions are permutable. In section 6.2 the author says that two quadratic 
inversions with two common singular points can be permutable if one of the common points 
is the centre for both inversions. Consequently any case is excluded where the centres of both 
inversions are different and the remaining two singular points of one inversion coincide with 
the remaining two singular points of the second inversion. But, even in such a case the 
quadratic inversions can be permutable. 

§ 1 . 

There are two types of quadratic involutory transformations (shortly quadratic 
involutions): 

A. A quadratic involution with three distinct singular points in which to each 
singular point there exists a corresponding principal line not passing through! it. 
This is a relationship of polar conjugated points with respect to the pencil of conies. 

B. A quadratic involution with three distinct singular points in which to one singu­
lar point (called the centre) there exists a corresponding principal line not passing 
through it and to each of the remaining singular points corresponds a principal line 
passing through it. This is a relationship of points which are polar conjugated with 
respect to the conic of invariant points and collinear with a centre of involution. This 
type of quadratic involution is called the quadratic inversion. 

Notation: 1(A) will be used to denote the transformation of the element A with 
the aid of the mapping /. The product I2 , Ix means to apply the involution I{ first 
and I2 next. J(ABC) implies a quadratic involution with the singular points A, B, C; 
if a quadratic inversion is in question, the centre is underlined: I{ABC). 

Theorem 1. A quadratic involution is uniquely determined if its singular points and 
a pair of self-corresponding points are given. (See [2]. page 616, theorem a) paragraph 
257.) 
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Let us first pay attention to some general properties of the permutable point 
transformations which will be used for two quadratic inversions later on. 

Lemma 1. Let A be an invariant point of the transformation T, and T' a transfor­
mation permutable with T for which the point A is not the singular point. Then T'(A) = 
= B will be an invariant point of the transformation T also. 

T(A) = A TT = T'T T'(A) = B TT'(A) = T(B)) that is 
T'T(A) = T'(A) = B J T(B) = B. 

Lemma 2. The product of two involutions is an involution if, and only if both 
involutions are permutable with each other. Any two permutable involutions together 
with their product and the identity form the Kleins four-group. 

w = rioir = (iry1. 

Lemma 3. Let I and V be two permutable involutions and a point C being singular 
for neither of them. Then for points 1(C) = A and I'(C) = B holds true: IT (A) = 
= rj(A) = B. 

Lemma 4. Any transformation permutable with either of the two given transformations 
will be permutable together with their product regardless of the order. 

TX.T2 = T2. Tt Tx . T3 = T3 . T, Tx . (T2 . T3) = (T. . T2) . T3 = 
= (T2 . TO .T3 = T2. (Tx . T3) = T2 . (T3 . Tx) = (T2 . T3). Tt. 

§3. 

There exist two possible cases for a pair of permutable quadratic inversions with 
two common singular points. In the first case one of the common singular points is 
the centre 'of both inversions (see [ll page 177, par. 6.2). In the second case just the 
centres of both inversions are different and the remaining two singular points are 
for both inversions common. A pair of permutable quadratic inversions with a com­
mon centre and with one more singular common point is called position I, and 
a pair of permutable quadratic inversions with two common singular points, neither 
being the centre of either inversion, is called position II. 

Theorem 2. Two quadratic inversions IX(ABlc) ana" h(AB2c) are m position I if and 
only if the third singular point of one inversion is the invariant point of the other 
inversion. 

Proof: 
1. Let IXI2 = I2IX, I2IX(BX) = I2(BXC) = BXC Thus there must be IXI2(BX) = BXC, 

that is I2(BX) = IX(BXC) = Bx. Analogous IX(B2) = B2. 
2. Let C = (1, 0, 0), A = (0, 0, 1), Bx = (0, 1, 0), B2 = (mx, m2, m3); I2(BX) = Bx, 

/j(B2) = B2 mxm2m3 4= 0. 
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Then I1(ABlc) w i l 1 be expressed by: 

QXX = m\x'2x'z 

Qx2 = m2m3x'xx'2 (1) 

QX3 = m2m3x'xx3 

and I2(AB2c) b y : 

QXX = mxx'2(m3x'x - mxx3) 

QX2 = m3x'2(m2x'x - mxx2) (2) 

QX3 = m3x'3(m2x'x - mxx2) 

Combining I2h
 a n d IJ2 gives in both cases the same result, namely a quadratic 

inversion I3(BIB2C) which can be represented by: 

QXX = mxx3(m2x'x — mxx'2) 

Qx2 = m2x'2(m3x'x - mxx3) (3) 

QX3 = m3x'3(m3x'x - mxx3) 

All the three inversions / . , I2, / 3 and the identity E form the Klein's four-group. 

Theorem 3. Two quadratic inversions IX(ABCi) and I2(ABc2) are in the position II if 

and only if 1X(C2) = I2(CX) = D3 holds true. The product of both inversions gives 

the quadratic involution J3(ABDi). 

Proof: 

1. If P is an arbitrary point of the line AB, different from poits A, B, then I2IX(P) = 

= I2(CX) and IJ2(P) = IX(C2) hence, if IJ2 = I2IX then IX(C2) = I2(C\). 

2. If for any given inversion Ix the inversion I2 changes IX(C2) and Cx, then I2IX 

and IJ2 are quadratic involutions with the same singular points A,B,D3 possessing 

the points Cx and C2 as a self-corresponding pair; consequently I2IX = IJ2 = 

= JMABD\)' (Theorem 1.) 

Let A = (0, 0, 1), B = (0, 1,0), Cx = (1, 0, 0), C2 = (mx, m2, m3), then the inver­

sion Ix can be expressed by: 

QXX = ax2x3 

QX2 = x'xx2 a #= 0 (4) 

QX3 = XXX3 

In the inversion I2(ABC2) the point B = (0, 1,0) must correspond to the line BC2 

having the equation m3x'x — mxx3 = 0 and the point A = (0, 0, I) must correspond 
to the line AC2 having the equation m2x'x — mxx'2 = 0 that is, it holds: 

QXX = b(m2x'x — mxx'2) {m3x'x — mxx3), 

QX2 = (m2x'x - mix'2)(alx'1 ~ a2x3), (5) 

QX3 = (m3x'x - mxx'3) (bxx'x - b2x2). 
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This is a quadratic transformation if it holds bmx 4= 0, axmx — «2m3 % 0, b«m. — 

— bzm2 4= 0. To the line AB corresponds the point C2 = (mt, m 2 ' w3)» that is: 

gmx — bm\x'2x3, hmx 4= 0 that is a2 = />m2, 

om2 = a2m«X2X3, b2 — bffl3, 

gm3 = l>2miX2x3, 

If we wish to obtain an involution, it must hold furthermore a\ = bt. Hence, the 

inversion I2 is given by equations: 

QXX = b(m2x\ — mxx2) (m3x\ — mxx3), 

Qx2 = (m2x\ - mxx2) (aLx\ - bm2x'3), (6) 

£X3 = (m3xi — mxx'3)(atx\ - bm3x'2), 

!X(C2) = (am2m3, mxm2, mxm3). /«(С2) = / 2 (С . ) 
12(0.) = (Ьтгт3,а1т2,а1т3), [я. = 

Thus, the inversion /2 will be expressed as follows: 

•9X. = «(m 2 xi — m.x 2 ) (m3x\ — mxx3), 

QX2 = (m2x\ — mxx2) (mxx\ — am2x3), amt 4= 0, (7) 

QX3 =• (m 3xi — mxx3) (mxx\ — am3x2), A = m\ — am2m3 =j= 0. 

Compounding/ 2 / j = / i / 2 : 

^x- = (m t xi — am2x3) (mxx\ — am3x2), 

QX2 = (m.xi — am2x'3) (m2x\ — mjX2), ^mj 4= 0, (8) 

QX3 SB (m x xi — am3x2) (m3x\ — m . ^ ) , A 4= 0. 

This is the quadratic involution J3(ABoi), where D3 = (am2m3, mxm2, mxm3). 

Theorem 4. Two quadratic inversions I1(ABCl) and I2(ABC2) are in the position II if 

and only if the polars of points Cx and C2 are pairwise coincident with respect to the 

conies of invariant points ax,a2. 

Proof: The conic ax of invariant points of the inversion I. can be represented by 

equation: 

x\ + ax2x3 = 0. (9) 

The conic a2 of invariant points of the inversion I2 (starting from relation (6)) can be 

represented by equation: 

axx\ - bm3xxx2 — bm2xxx3 — bmxx2x3 = 0. (10) 

The polar of the point C. with respect to er, and that of point C 2 with respect to a2 

can by represented by equation: 

x . - s O . (11) 
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The polar of the point C2 with respect to ax by: 

2mxxx — am3x2 — am2x3 = 0, (12) 

and the polar of the point Cx with respect to a2 by: 

2axxx — bm3x2 — bm2x3 = 0. (13) 

Since one pair of polars (11) coincides in any case, we prove the theorem for polars 
(12) and (13) only. 

1. Let Ix and I2 be in the position II. Then b — a,ax = w. hence the polars (12) 
and (13) coincide. 

2. Let the polars (12) and (13) coincide. Then ax = kmx, b = ka, by substitution 
into (6) we obtain (7). Thus, Ix and I2 are permutable. 

Since it holds: 

mx(x\ — ax2x3) + (mxx\ — am3xxx2 — am2xxx3 + am}x2x3) = 

= xx(2mxxx ~ am3x2 — am2x3). 

and the polar of (11) passes through the points A, B, the polar of (12) must pass 
through the points M, N, i.e. through another two common points of conies ax, a2. 
Thereby is determined another pair of quadratic inversions in the position II, namely, 
inversions f(MNCl) and I"MNC2). 

§4. 

We can readily find further inversions permutable with inversions Ix and I2, 
respectively. We now ask whether there exists such an inversion I3 permutable with 
both of the two permutable inversions or whether there exist even more such inver­
sions mutually pairwise permutable. 

Theorem 5. There cannot exist more than four quadratic inversions mutually pair-
wise permutable in the position II, of which any three form an Abe Han group of order 
eight. 

Proof: The inversion IMABC3) with the centre C3 = (yx, y2, y3) permutable with Ix 

has according to § 3. the form: 

QX{ = a(y2x\ - yxx'2)(y3x'x - yxx3), ayx =}- 0, 
QX2 = (y2x'x - yxx'2) (yxx'x - ay2x3), y\ - ay2y3 # 0, (7') 

QX3 = (y3x\ - yxx'3)(ylx'x - ay3x'2). 

If 73 is to be permutable with I2 it must hold according to theorem 3.: I3(C2) = I2(C3). 

h(C2) - (a(y2m{ - yxm2) . (y3mx - >>,w3); (y2mx - yxm2) .(y^mx - ay2m3); 
(y3m{ - yxm3) . (yxmx - ay3m2)), 
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I2(C3) = (a(m2yx - mxyг) . (mъyx - mxy3); (m2yx - mxyг) . (mxyx - am2y3); 

(m3yx - mxyъ) . (mxyx - c7m3y2)), 

/ ,(C 2 ) = / 2 (C 3 ) - Í > V " ' " "У2ПҺ = ""ЧУз ~ 
lyxmx - ay3m2 = am3y2 - mxyx 

o 1mxyx — am3y2 — am2y3 = 0, 

that is, the point C 3 is a point of the line 2mxxx — am3x2 — am2x3 = 0, which is the 

line (12). With the exception of intersections with the conies ax and a2 M, N and 

the intersection K with the line AB, each point of the line (12) is the centre of the 

quadratic inversion I3 which is in the position II with respect to both inversions Ix 

and f2. For the points M = (am2m3; m2(mx + V

; A); m3(mx — N/A)), N = (am2m3; 

m2(mx — V

; A); m3(mx + A)) we obtain no involutory mapping; for the point 

K = (O, m2, — m3) we get a linear mapping, a harmonic homology whose centre 

is the point K and its axis is the line CXC2. 

Thus the centre of another inversion permutable with the foregoing three inversions 

will lie on the line (12) and on the polar of the point C 3 with respect to the conic 

a2 (= the polar of the point C2 with respect to the conic a3), or on the polar of the 

point C, with respect to a3 ( = the polar of the point C 3 with respect to ax). However 

all the three lines will intersect in the single point C 4 because every cubic containing 

any eight simple intersections of two cubics will contain the ninth one as well, (see 

[2], page 423, theorem a, par. 170.) Let 

ax n a2 = {A, B, M, N] 

axna3 = {A, B, P, Q) 

a2n ax = {A, B, R, S), 

then the cubic kx = ax . RS, k2 = a2 . PQ, k3 = a3 . MN. 

The common points of the cubics kx and k2 are the points A, B, M, N, P, Q, R, S and 

the intersection of the line-pairs PQ, RS. As the cubic 7c3 likewise contains the first 

eight points, it must evidently contain also the ninth one lying on the line M N . 

Consequently, there now exists just another one inversion, permutable with those 

foregoing three. If C 4 =1= K, the inversion 1A(ABCA) is a quadratic one. C 4 =1= K => C 3 =# 

4= L>3, C 3 + M, N => C 4 4= M, N. The points C 3 and C 4 give rise to a point invo-

tion with invariant points M, N on the line (12). To the point K in this involution 

corresponds the intersection of line (12) with the connecting-line CX,C2, that is the 

point D3. 

For the results of the composition holds: 

II12 = 12IJ ~ I3(AflJ33)' 

h h = 1311 — *12Mfli92), 

1213 ~ h h — J\(ABDi) 

111213 ~ 14(ABC4)-

34 



Further relations among the particular involutions are given in the Cayley table 
below: 

L. 12 13 Һ II I2 Iз 
Һ E IЗ I2 11 14 13 12 

Һ IЗ E II I2 13 14 11 

Һ. I2 Һ £ IЗ 12 11 h 
14 I] I2 IЗ E 11 12 h 
11 14 13 12 11 E Iз h 
I2 13 14 11 12 IЗ £ II 

IЗ 12 11 14 13 I2 .1. E 

The points 0 x ^ 2 , 0 3 , C4 form a complete quadrilateral; the points DX,D2, D3 are 
its diagonal vertices. The side CtCj of this quadrilateral is the polar of the point Ck 

with respect to the conic an and simultaneously the polar of the point C„ with respect 
to the conic ak, i,j, k,n — 1, 2, 3, 4. 

It is possible to construct even more extensive groups of permutable quadratic 
involutions with two common singular points, neither of which is the centre of any 
quadratic inversion. Naturally then, not all the inversions are mutually pairwise 
permutable. 
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Shrnutí 

O Z Á M Ě N N Ý C H ROVINNÝCH KVADRATICKÝCH I N V E R S Í C H 
SE DVĚMA SPOLEČNÝMI HLAVNÍMI BODY 

JAROSLAVA JACHANOVÁ 

Práce ukazuje existenci a vlastnosti záměnných kvadratických inversí se dvěma 
společnými hlavními body. Nazveme poloha I. pár záměnných kvadratických inversí 
se společným středem a dalším jedním společným hlavním bodem. Dvě kvadratické 
inverse h(ABiC) a h{AB2c) J s o u v poloze T. tehdy a jen tehdy, je-li třetí hlavní bod 
jedné inverse samodružným bodem inverse druhé. Složení obou inversí je opět 
kvadratická inverse h(BiB2c)y která je v poloze I. s každou z inversí It, I2. Všechny 
tři spolu s identitou tvoří Kleinovu čtyřgrupu involucí. 
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Nazveme poloha II. pár záměnných kvadratických inversí se dvěma společnými 
hlavními body, z nichž žádný není středem některé z inversí. Dvě kvadratické inverse 
h{ABCt)> h(ABCí) J s o u v poloze II. tehdy a jen tehdy, píatí-li I,(C2) = 1a(ci) — LV 
Součinem obou inversí je kvadratická involuce J3(ABD3)- Existují nejvýše čtyři 
kvadratické inverse navzájem po dvou v poloze II., kde každé tři z těchto inversí 
generují abelovskou grupu řádu osm. 
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