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1971 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS 
FACULTAS RERUM NATURALIUM — TOM 33 

Katedra matematické analýzy přírodovědecké fakulty 
Vedoucí katedry: Prof. RNDr. Miroslav Laitoch, CSc, 

NOTE ON T H E PAPER [11 OF S. SEDZIWY 

JAN VORACEK 
(Received March 31st, 1970) 

0. In the above cited paper the author studies the differential equation (d.e.) 
(n — positive integer) 

x{n) + a tx
("- 1 ) + ... + afc_1x

(""*+1) + hk(x{n~k)) + a fc+1x
(w"*"1) + ... + anx = e(t) 

(k- 1,2, . . . ,n;x ( 0 ) = x), (1) 

where the at(i — 1, 2,..., n; i + k) are positive constants and hk(x), e(t) are continuous 
functions of their arguments. In the case hk(x) and e(t) are bounded, two theorems 
about global boundedness (g.b.) of the solutions of (1) for k — n are proved. In the 
case of unbounded hk(x) the validity of four theorems (n = 3, k = 1,2, 3 and n — 
~ k = 4) dealing with the global stability of solutions of the autonomous equation 
(e(t) = 0) is shown. Finally, for n ~ k = 3 a sufficient condition is given for the g.b. 
of solutions of (1) with unbounded h3(x). In this note we will show, that theorems 
concerning the g.b. of solutions can be proved by using the simple method of paper 
[2] (see also [3] pp. 384 — 392); moreover it is possible to get some additional results. 

1. Let us study, instead of (1), the more general d.e. 

^ + I /.(*0,-°) + K(x) = e(t) (2) 
i = i 

with continuous f(i — 1, 2,..., n — 1) and let us pose (with positive at) 

fly) - aty ~(pt(y) (i - 1, 2,,.. n - 1). (3) 

In what follows we will suppose that rn~x + axr
n~2 + ... + an = 1 is a Hurwitz-

polynomial. 

Theorem 1. Let us consider the equation (2) and suppose 

| h„(x) | _i H for every x, (i) 
i e(t) \<LE for every t ^ 0, (ii) 

| J e(s) ds\ SE for every t ^ o, (hi) 
o 

j (pi(y) | = m(- (i - 1, 2,..., n - 1) for every y, (iv) 
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there exist h > 0, S > 0 such that for every | x \ >, h the inequality hn(x) sgn x >. m + <5 

(where m = ~~ mt) holds. (v) 
! = 1 

Then the solutions of (2) are g.b. 

Proof The fact that the derivatives x'(t), x"(t), ..., x("~L)(t) are ultimately bounded 
by a constant independent of the solution x(t) can be proved in a way analogous to 
that of [2]. 

We start from the identity 

yin-^+laky
{n-k-1)=-el(t) (4) 

fc = i 

(where x{i+1)(t) = y{i)(t), i = 0, 1, ..., n - I and e^t) = e(t) - [hn(x(t)) + 
n-l 

+ Z (/9i(x;("~!)(0)]) which is satisfied by each solution x(t) of our equation. We 
i= 1 

have thus 
^ г + 1 ) = v 

(i = 0, 1, ..., n — 2, T stands for a real number). (5) 

In this formula >'0(0> Yi(0 ^ r e convenient solutions of the d.e. y(n~1) + 

+ V aky
{"-k~1) = 0. Now, as the function -— admits a majorant of the 

fc=i dtl 

type Ae"r(f~s)(r > 0) and e^t) is bounded by (/), (//) and (iv), the boundedness of 
derivatives can be easily proved. In each interval [T, T [of existence of x(t) we get the 
boundedness of derivatives and for this reason the solution x(t) must exist on the 
whole half-axis [T, +OO]. Note that this proof of the boundedness of derivatives may 
be used for the d.e. with e(t, x, x',..., x{n~1}) instead of e(t). 

Let us suppose now a chosen solution x(t) satisfies the inequality (/ stands for 
a convenient positive constant) 

I * ( n - 1 ) ( 0 I + ' l > * I x{"-k~X)(t) | < /, | x(t) | ^ h (6) 
fc=i 

for every / >. t0. From (iv), (v) we then easily obtain 

<P(t) = J lh(x(s)) +"Z mix^-^s))-] sgn x(s)ds ^ 3(t - t0) > 0 (7) 
to < " = 1 

for every t >. t0. Integrating (2) from t0 to t >, t0 and multiplying it with the constant 
sgn x(t) we get 

a„-r I x(t) | = | x ( " - 1 ) | + "£ afc | x*""*""! - 0(0 + | f <s)ds | + 
Һ -"= Ì 

+ l ^ " 1 ) ( ř o ) l + I в * U ( " " ł " 1 ) ( ř o ) l (8) 
fe=i 
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and therefore by (6) (7) and (Hi) 

an„. ! x(t) | = 2(7 + E) + an_! | x(t0) ! - <5(. - t0) for every . = t0. (9) 

Thus, we have a contradiction from which we finally conclude 

lim inf | x(t) \ = h. (10) 

By (9) and (10) it follows 
2 

lim sup | x(t) j = (/ + E) + /. 

and the proof of Theorem 1 is complete. 

Remark L We see from our proof that asking in (v) the weaker condition 
hn(x) sgn x __: m for every \x\ > A, we obtain boundedness of solutions. For/fc(_y) = 
= aky(k — 1,2,...,« — 1) the conditions in Theorem I reduce to the Sedziwy's 
conditions. 

Theorem 2. Let us consider the d.e. (2). If(ii), (iv) and 

E + m; < Lfj ^ /.(x) sgn x < H2 for every | x | = A > 0 (vi) 

hold, then the solutions of (2) are g.b. 

Proof The g.b. of the derivatives of a solution x(t) as well as its existence on 
[t0, +oo] can be proved in the same way as above. Let us suppose again (6) holds 
for every t >. t0. Instead of (8) we use now the inequality 

«„__ | x(t) | = | X*"-" | / _ _ > , ) x<»-*-*> | - cp(t) + | x^~l\t0) | + 
k = l 

+"i1-i*u(--*-i>(.o)i 
_ = i 

with 

!P(0 = J ftWs)) +"Z <P.(*("-|)(-0) - <«)] sgnx(s)dS. 
to .= 1 

By (vi) we obtain 

^(0 > [H_ - (E + m)] (t - t0) > 0 for every t = t0, 

and (6) gives then 

a-__ I 4 0 I __ 2/ + C7-.. I x(.0) | - [jy_ - (E + m)] (t - t0), 

for every / > .0 . Hence we have (10) again and the rest of the proof is the same as 
above. 

2. Theorem 3. Let us consider the d.e. (l)for n = k -= 3. if(ii) holds and constants a3, 
K exist with 0 < a3 < a1a1 (ax > 0) so that 
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j a 3 _ t^L \^K for every x + 0 (vii) 

(h3(0) = 0), then the solutions of our d.e. are g.b. 

Remark 2. In the case the condition 0 < e < h3(x) x~l < axa2 - e(x + 0) of 
1 „ fl,a2 — 2s 

Sedziwy is satisfied we can take in (vii) i.e. a3 = — axa2, K = 

Proof of Theorem 3. For a chosen solution x(t) of the considered d.e. the identity 

x" + axx" + a2x' + a3x = e(t) + a3x - h3(x(t)), 

in the existence interval [t0, T[ (T > t0) holds and hence 

*(0 = Yo(0 + J Yi(t - s) [e(s) + a3x(s) - A3(*(s))l dr, (11) 
to 

V £ ['o» TD» where y0(t), yx(t) are suitable solutions of 

y" + axy" + a2y' + a3y = 0. (12) 

From (11) we obtain using (ii), (iii) the inequality 

I x(t) \ ^ ! y0(t) + E J ! yx(t - s) \ ds + JK\yx(t - s) \ \ x(s) \ ds, (13) 
to t0 

(te[t0,T[). Because the coefficients of (12) satisfy the Hurwitz-condition, the 
functions y0(t), yx(t) have a majorant Ae~~rt(r > 0) again and therefore we get from 

I x(t) [ < M + J Ne~rs! x(s) \ds (te [t0, T[), 

to 

with N not depending on x(t). Hence, by Gronwall's Lemma 

+ 00 

! x(t) | ^ M exp [ J Ne"rs ds] ^ MP (t e [t0, T[). (14) 
to 

We obtain so the boundedness of x(t) on [t0, T[; if we denote H = l.u.b. h3(x) on 
[ — MP, MP] it becomes clear that the boundedness of derivatives can be shown as in 
the proofs above. From this we conclude T = + oo and thus M must not depend 
on x(t). Theorem 3 is proved. 

3. Under assumptions of Theorems 1, 2, 3 and if xh3(h) > 0 (x =f- 0) it is possible 

to prove the boundedness of J h(x(s)) ds. Thus, in the same way as in [2], we see that 

under the above assumptions each solution of the considered d.e. is oscillatory 
or —> 0 for t -> +oo. From this it follows again that the periodic solution, whose 
existence can be asserted if e(t) is periodic and an uniqueness condition holds, 
oscillates in this cases. If we pose stronger conditions on e(t) we obtain in all the 
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considered cases simple oscillation —theorems, as Theorems 8, 9 in [4]. It is possible 
also to prove theorems about divergent solutions. We have i.e. 

n - I 

Theorem 4. Let us consider the d.e. (I) for k = n. If r"~l + £ t v " - * " 1 is a Hur-
k = 1 

witz— polynomial, (/'), (ii), (Hi) and 

lim sup xh„(x) < — „fl_1_/[A'H_, + <-i^„_2 + ••• + «»-3^_ + E] (viii) 

(where Xj = l.u.b. x(j)(f) o« [j0, +oo[, j = 2, 3, .,,,«. — 1) /zoW, f/?e« t//<?re t?x/_*t 
divergent solutions of the considered d.e. (with bounded derivatives). 
The proof of this Theorem can be carried out by using the function 

2y _- ___«___. f fc(s)ds + _!_./"„<-!) + " £ _ , , x("-fc-r) - L(s)ds)2i 
<*n-\ J «--l \ ft-1 j / 

o o 
in the same manner as the proof of Theorem 7 [4] (see also [5]). 
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Shrnutí 

POZNÁMKA K PRÁCI S. SEDZ1WEHO [J] 

JAN VORÁČEK 

Ukazuje se, že k důkazu některých vět z práce [1] je možno užít metody publiko­
vané autorem (např. [2]). Touto metodou je možno získat výsledky poněkud obec­
nější a podrobněji studovat asymptotické vlastnosti řešení uvažovaných diferenciálních 
rovnic. 
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