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1969 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS. TOM 30
FACULTAS RERUM NATURALIUM

Katedra algebry a geometrie prirodovédecké fakulty.
Vedouci katedry: Doc. RNDr. Josef Simek.

BRANCH POINTS OF ALGEBRAIC INTEGRAL EQUATIONS

VLASTA PERINOVA
( Received on October 30th, 1967)

In this paper we shall solve the problem of the branching of solutions, in the
space of continuous functions, for the algebraic integral equation
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u is a real or complex parameter, Lo, ...q, (5t .. .2,)andf(s) are given real or

complex functions of real variables s, ¢y, . . ., z, which run the same finite one-
or more-dimensional region /. This type of integral equations was introduced
by W. Schmeidler in [3].

Papers [1, 5] deal with branching of solutions of some nonlinear integral
equations with nonlinear functionals. In [2] branching of solutions of the
homogeneous algebraic integral equation was studied from a certain point of
view; solutions of this equation in a neighbourhood of an eigenfunction y(s)
corresponding to an eigenvalue u, were sought in the form of series in certain
integer or rational powers of (4 — p,) and -convergence of these series and their
number were found out in every case. There was not studied the question which
powers of (u — u,) are admissible and whether examined series exhaust all
small solutions in a neighbourhood of the solution y(s).

In the following we derive the branch equation for equation (1) and for the
couple (1, ¥o(s)) which obeys (1). From this equation the form of solutions and
their number in a neighbourhood of the solution y,(s) can be determined.

Let Ly, .. .4, (S 215 - .5 2,) be continuous in all the variables in the whole

definition region, f(s) be continuous in &7. Let y,(s) be a solution of (1) continuous
in .o/ for the value u, = 0 of the parameter u. Introducing the notation
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uation (1) can be written in the form
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the sum ZX’ is taken under the condition that expressions with 1°0° and 1% are
missing.

Let 1 be p-multiple eigenvalue of the kernel K(s, ), ¢:(s) ( = 1, p) be corres-

ponding eigenfunctions and y;(s) (i = 1, p) associated eigenfunctions continuous
in 7. Introducing the kernel

Cls, 1) = K (s, 1) — Z i () @i (2) 6)
instead of K(s, t), we can write (4) in the form
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As 1 is not an eigenvalue of the kernel C(s, ), there exists the continuous resolv-
ing kernel E(s, t;u,) of C(s, r). Designating the operator (1 + f E(sy t5 ) . .. do)
K-

as (I + E) the solution of equation (7) can be written
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Let us seek the solution of (9) in the form of the series
os) = > Cl ... Cralu, (). (10)
I
Substituting (10) into (9) and equating coefficients of C{’ . C;;’ ' we obtain

the following system of equations for the determination of the functions
Dy, - v 1yl ()
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and in general
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was introduced.

Now we shall prove the convergence of the series (10) for [Cyl, . . ., |Gl and
|A| sufficiently small. Let us choose such numbers 4; (i = 1, ), B, Bj,, ¥ and
w that
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holds, where | u(s) | = max | u(s) |. Using these relations we obtain from (9)
se of .
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Seek the solution of (14) in the form
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For the determination of Wy,... 1,0 W obtain the system of equations
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. and generally
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Comparing these relations with the ones obtained from (11) and (12) with the
use of (13) we get

1060 () I < 1> bt b tprrz1 ' a7

From this it follows that the region of convergence of the series (15) is the one
of the series (10). Let us study the implicit function @(|4, |Cy|, . . ., |C,|) obeying
equation (14). As

aF[w:M|aICI|>---,]Cp[] .:1
ow w=12 = [Cf =...=|Cy=0

it is possible to determine » from (14) as unambiguous and continuous function
of |A, |Cyls . . .» |Cpl. That means that the series (15) has a finite positive radius
of convergence. The same is valid for the series (10). Hence, (10) converges
absolutely and uniformly according to s in a neighbourhood of the point 4 = g,
to a continuous function v(s) which is the unique solution of equation (9).
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Substituting (10) in (8) instead of ©(s) we have the following system of equa-
tions for the determination of the quantities C;

Ci = Z Ci‘ PRI C;P )»l Djf)...lpl’ i = i;?: (18)
L+ ... +IP+I:1

where
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Prove that it is valid
DY o o= [o@U+E)ypidt=0y,1,j=1p. (19)
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From the equation for the functions ¢;(s) (i = 1, ?)

Pe () — J K(s, t) gi(2)dt = 0
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we obtain, introducing the kernel C(s,t) and using the orthogonality of the
eigenfunctions, the equation

9:(s) — [ Cls ) p(@dr = wi(s).
K4

Its solution can be written in the form
i ()= + E) s

and from this, multiplying by the function ¢;(s) and integrating over s, follows
(19). Hence, the system (18) has the form

hod 1 LG > 1, I o a1 ) . -
S Ci...CrDY S ch...Ch zz Dy, =0,i=1p.
N I=1 (20)

As the system (20) does not include C; (i = 1, p) in the first power, it is not
unambiguously solvable. It is called the branch system. Every small solution C;
of this system gives a solution of equation (1) which is defined in a neighbour-
hood of the point 4 = u, and equals the solution y,(s) at this point.

In the case p = 0 the system (20) does not exist and the unique solution of
equation (1) in a neighbourhood of the point 4 = 0 is

Il+...+l,,=:'2

¥ =3 + > Ho, ).
1=1

Functions 9,(s) can be determined by the method of uncertain coefficients.
For p = 1 the branch equation has the form

ic’qﬂ+§c’§z"’ D, =0. | @)
1=2 =0 m=1
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Consider some cases of equation (21) in greater detail. If all the coefficients of
(21) are equal to zero (D, = 0), then o(s) represents one-parametric set of
solutions of (7). As it is possible to choose C as an arbitrary function of 4, there
exists the infinite number of solutions in the form of series in arbitrary powers
of 2 which converge either in a neighbourhood of the point 2 = 0 or only at this
point. If all D,,, do not equal zero, there exists a finite number of small solutions
of equation (7). Every such solution can be expressed in the form of a convergent
series in powers of A and exponents of these powers and the number of solutions
can be determined by the method of Newton’s diagram [6]. For example, if it
is valid
D 30 * 0’

Dy =0 (5= la_m_“I):DOm"*:O’
oo e 7))

D,;=0 (j=1Lk—1), Dy # 0,

there exist three solutions of equation (7) in the form
vi(s) = Z Ci o, (), i=1,23, (22)
LHl=1
where for the constants C;
m—k I~ m—k+i
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holds. Substituting (23) in (22) we seek the solutions y(s) of equation (1) in
the form of the series

oo !
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the functions #;(s) can be determined using the method of uncertain coefficients
again. Analogically it is possible to study all other cases in equation (21).

The system (20) for p > 2 can be studied by means of the method described
in [7]. This method is based on the method of Newton’s diagram and the theory
of elimination.

The above method of the study of branch points of algebraic integral equations
will be used in the next paper for the study of the countable infinity of the set of
eigenvalues of the symmetric homogeneous algebraic integral equation. This
problem was studied with the aid of another method by W. Schmeidler in [4].
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SHRNUT{

BODY VETVENI ALGEBRAICKYCH INTEGRALNICH ROVNIC

VLASTA PERINOVA

Prace se zabyva problémem vétveni feSeni obecné algebraické integralni
rovnice s Ciselnym parametrem v prostoru spojitych funkci. Tento problém je
pfeveden na hledani vSech malych feSeni (vétvi nulového feSeni pro hodnoty
parametru z okoli nuly) jisté transformované rovnice, coZ je ekvivalentni s urce-
nim vSech malych feSeni odpovidajici rovnice vétveni. Podrobnéji jsou rozebrany
nékteré specidlni pfipady rovnice vétveni.
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