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Some results on LΣ(κ)-spaces

F. Casarrubias Segura, O. Okunev, C.G. Paniagua Ramı́rez

Abstract. We present several results related to LΣ(κ)-spaces where κ is a finite cardinal
or ω; we consider products and some constructions that lead from spaces of these classes
to other spaces of similar classes.

Keywords: upper semicontinuous mappings, products, Lindelöf Σ-spaces

Classification: 54D20, 54C60, 54B10

All spaces in this article are assumed to be Tychonoff (= completely regular
Hausdorff). We use terminology and notation as in [Eng2]. For multivalued
mappings we do not require that images of points all be nonempty; if p : X → Y
is a multivalued mapping and A ⊂ X , then p(A) is defined as

⋃

{ p(x) : x ∈ A }.
The composition of two multivalued mappings p : X → Y and q : Y → Z is
defined by the rule (q ◦ p)(x) = q(p(x)). A multivalued mapping p : X → Y is
upper semicontinuous if for every open set V in Y the set { x ∈ X : p(x) ⊂ V } is
open in X , or, equivalently, if for every point x in X and every neighborhood V
of p(x) in Y there is a neighborhood U of x in X such that p(U) ⊂ V .

It is well-known that the composition of compact-valued upper semicontinuous
mappings is compact-valued upper semicontinuous. In fact, it is easy to prove
that a mapping is compact-valued upper semicontinuous iff it is the composition
of a continuous single-valued function, the inverse of a perfect mapping and the
inverse of a closed embedding (see, e.g., [KOS]).

The symbol c denotes the cardinality of the continuum. If κ is an infinite
cardinal, A(κ) denotes the one-point compactification of a discrete space of car-
dinality κ. The symbol I stands for the closed interval [0, 1].

Let K be a cover of a space X . A family N of subsets of X is called a network
modulo K if for every element K of K and a neighborhood U of K, there is an
element N of N such that K ⊂ N ⊂ U [Nag].

The second author acknowledges support from CONACyT research project 61161/2006.
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Given a cardinal κ, finite or infinite, a space X is called an LΣ(< κ)-space
[KOS] if it satisfies one of the following equivalent conditions:

There is a second-countable space M and a compact-valued upper semicon-

tinuous mapping p : M → X such that p(M) = X and w(p(z)) < κ for each
z ∈ M ;

or

There are a compact cover K of X such that w(K) < κ for every K ∈ K and
a countable network modulo K in X .

X is an LΣ(≤ κ)-space if it is an LΣ(< κ+)-space. X is an LΣ(κ)-space if it is
an LΣ(≤ κ)-space and is not an LΣ(< κ)-space; this concept is especially impor-
tant in the case of finite cardinals κ. Of course, for finite κ, the weights of images
of points and of the elements of the compact covers in the above characterizations
can be replaced by the cardinalities.

The classes of LΣ(< κ)-spaces are invariant with respect to closed subspaces,
continuous images and countable unions. Obviously, all LΣ(κ)-spaces are Lindelöf
Σ-spaces in the sense of [Nag]; it is easy to see that LΣ(≤ 1)-spaces are exactly
the spaces of countable network weight. The class of LΣ(2)-spaces includes the
Double Arrow space, one-point compactifications of uncountable discrete spaces
of cardinality less or equal to the continuum, and the one-point compactifications
of Ψ-like spaces (that is, the spaces of the form Ψ(A), where A is an almost
disjoint family on ω; see Section 2 for a detailed description). Assuming MA(ω1),
all scattered compact spaces of height 3 and cardinality ω1 are in LΣ(≤ 3) [KOS].
If κ ≥ c, then LΣ(≤ κ)-spaces are exactly Lindelöf Σ-spaces of network weight

≤ κ.

1. Products of LΣ(n)-spaces

It is easy to see, using the fact that the product of compact-valued upper
semicontinuous mappings is upper semicontinuous, that the product of an LΣ(κ)-
space with an LΣ(λ)-space is an LΣ(≤ λ ·κ)-space. However, if λ and κ are finite,
it turns out that the product may be of the “type” lower than λ ·κ. For example,
the one-point compactification A(ω1) of the discrete space of cardinality ω1 is an
LΣ(2)-space; as shown in [KOS], for every n ∈ ω, A(ω1)

n is LΣ(n + 1). On the
other hand, if ω2 ≤ c, then the space A(ω2) is also an LΣ(2)-space, but its square
is in LΣ(4). Thus, it may be interesting to find the exact LΣ-classes for products
of some LΣ(n)-spaces. Several problems of this type were posed in [KOS] and
[Oku]; here we present solutions to some of these problems.

Theorem 1.1. Suppose m, n ∈ ω, X is an LΣ(m)-space and Y is an LΣ(n)-
space. Then X × Y is an LΣ(k)-space, where n+m − 1 ≤ k ≤ mn.

Proof: Let p1 : M1 → X and p2 : M2 → Y be upper semicontinuous mappings
from second countable spacesM1 andM2 ontoX and Y such that p1 is at mostm-
valued and p2 is at most n-valued. Then the mapping p1×p2 : M1×M2 → X×Y
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(defined by the rule (p1×p2)(m1, m2) = p1(m1)×p2(m2)) is upper semicontinuous
and onto X×Y . This proves that X×Y is an LΣ(≤ mn)-space; therefore, X×Y
is an LΣ(k)-space for some k ≤ mn.

To prove the second part of the inequality, suppose for contradiction that X ×
Y ∈ LΣ(k) and k ≤ n+m − 2. Fix a second countable space M and an at most
k-valued upper semicontinuous mapping p : M → X×Y such that p(M) = X×Y .
Let πX , πY be the projections of the product X × Y ; put

A = { z ∈ M : |πX(p(z))| ≤ m − 1 }.

Since the composition πX ◦ p is upper semicontinuous and X /∈ LΣ(≤ m − 1),
there is a point x0 ∈ X such that x0 /∈ πX (p(A)), hence ({x0} × Y ) ∩ p(A) = ∅.
Let B =M \A and q : B → Y be the multivalued mapping defined by the rule:

q(z) = πY

(

p(z) ∩
(

{x0} × Y )
)

.

Since {x0} × Y is closed in X × Y , the mapping q is upper semicontinuous,
and from p(M) = X × Y and ({x0} × Y ) ∩ p(A) = ∅ it follows that q(B) = Y .
For every z ∈ B, p(z) has at most n+m − 2 points, and at least m − 1 of these
points have their projections on X different from x0. Hence, q(z) contains at
most n − 1 points. Thus, q is an upper semicontinuous, at most (n − 1)-valued
mapping from the second countable space B onto the space Y , a contradiction
with the assumption that Y is an LΣ(n)-space. �

Corollary 1.2. If X is an LΣ(n)-space for some n ∈ ω, then Xm is an LΣ(k)-
space for some k ≥ mn − m+ 1.

In particular,

Corollary 1.3. If there is an n ∈ ω such that Xm is an LΣ(≤ n)-space for every
m ∈ ω, then X has a countable network.

It was shown in [KOS] that if Xω is an LΣ(< ω)-space, then there is an n ∈ ω
such that Xm is an LΣ(≤ n)-space for every m ∈ ω; it was also shown that,
consistently, this implies that X has a countable network. Corollary 1.3 now
allows to prove this in ZFC (thus giving an answer to Question 7.4 in [KOS]):

Corollary 1.4. If Xω is an LΣ(< ω)-space, then X has a countable network
(and hence Xω is in fact an LΣ(≤ 1)-space).

Another interesting corollary of Theorem 1.1 is

Corollary 1.5. If X is an LΣ(m)-space for some m ∈ ω, and Y is an LΣ(n)-
space for some n ∈ ω, n ≥ 2, then X × Y is not homeomorphic to X .
In particular, if X is an LΣ(m)-space for some m ∈ ω, m ≥ 2, then all finite

powers of X are pairwise non-homeomorphic.
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Since the classes of LΣ(≤ n)-spaces are invariant with respect to closed sub-
spaces and continuous images, we may further strengthen Corollary 1.5.:

Corollary 1.6. If X is an LΣ(m)-space for some m ∈ ω, and Y is an LΣ(n)-
space for some n ∈ ω, n ≥ 2, then X × Y is not homeomorphic to a continuous
image of any closed subspace of X .

Corollary 1.7. If X is an LΣ(≤ n)-space for some n ∈ ω, and there are natural
k and m such that k < m and Xm is a continuous image of a closed subspace of

Xk, then X has a countable network.

For example,

Corollary 1.8. Let X be the Double Arrow space. If m, n ∈ ω and n > m, then
Xn cannot be embedded into a continuous image of Xm.

For some individual spaces, in particular, for products of given spaces, finding
the exact LΣ(k)-class where they belong appears a non-trivial task. For example,
it is still not clear whether the square of the Double Arrow space is in LΣ(3) or
LΣ(4) (Problem 1(132) in [Oku]).

The next theorem solves Problem 3(134) in [Oku].

Let A be an almost disjoint family of infinite subsets of ω. Recall that the space
Ψ(A) is defined as the union ω∪A with the topology in which the points of ω are
isolated, and basic neighborhoods of the points A ∈ A are of the form {A}∪A\F
where F ⊂ A is finite. Clearly, Ψ(A) is a Hausdorff zero-dimensional (hence
Tychonoff) locally compact space. Let αΨ(A) be its one-point compactification.
Then αΨ(A) is an LΣ(2)-space, because it is a countable union of singletons
(points of ω) and the subspace homeomorphic to A(|A|); the latter space is in
LΣ(2), and the class LΣ(2) is invariant with respect to countable unions (see
[KOS]). Problem 3(134) in [Oku] was whether the square of a space αΨ(A) can
be an LΣ(3)-space and whether it can be an LΣ(4)-space.

Theorem 1.9. Let A, B be uncountable almost disjoint families of infinite sub-
sets of ω, and let X = αΨ(A)× αΨ(B). Then

X is an LΣ(3)-space iff both A and B have cardinality ω1;
X is an LΣ(4)-space iff one of the families A, B has cardinality greater than ω1.

Proof: Since both αΨ(A) and αΨ(B) are LΣ(2)-spaces, their product is an
LΣ(≤ 4)-space. By Theorem 1.1, X is not LΣ(2), so it is either LΣ(3) or LΣ(4).

If one of the families A, B has cardinality greater or equal to ω2, then the
one-point compactification of the corresponding Ψ-space contains a closed copy
of A(ω2) while the other contains a closed copy of A(ω1). Hence, the product
X contains a closed subspace homeomorphic to A(ω2) × A(ω1), which is not an
LΣ(≤ 3)-space by (the remark after the proof of) Theorem 4.7 in [KOS]. Since
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the class of LΣ(≤ 3)-spaces is hereditary with respect to closed subspaces, this
proves that X cannot be an LΣ(3)-space.

On the other hand, if both A and B have cardinality ω1, then each of them is
the union of a countable space and the space A(ω1). It follows that X is the union
of a countable set, countably many copies of A(ω1), and a copy of A(ω1)×A(ω1).
Since each of these spaces is in LΣ(≤ 3), the space X is in LΣ(≤ 3). �

Corollary 1.10. If c = ω1, then for any uncountable almost disjoint families A,
B on ω, the product αΨ(A)× αΨ(B) is an LΣ(3)-space.

2. One-point compactifications

In [KOS], the consistently positive answer to Question 7.4 was obtained by
showing that a counterexample would have to be a strong S-space and an LΣ(n)-
space for some n ∈ ω. It appears natural to ask if this kind of spaces can exist. In
this section we present a construction that shows, in particular, that the answer
is “yes”.

Theorem 2.1. Let X be a locally compact space. Suppose that for some n, m ∈
ω there exist an LΣ(≤ n)-space Y and a continuous mapping j : X → Y such that
j(X) = Y and |j−1(y)| ≤ m for all y ∈ Y . Then the one-point compactification
αX of X is an LΣ(≤ nm+ 1)-space.

Proof: If X is compact, then the mapping j is perfect, so its inverse is upper
semicontinuous and at most m-valued. If p : M → Y is an upper semicontinuous
at most n-valued mapping from a second countable space M onto Y , then the
composition j−1 ◦ p is upper semicontinuous, onto X , and at most nm-valued, so
αX = X is an LΣ(≤ nm)-space.

Thus, we may assume that X is not compact. Let ∞ be the point such that
{∞} = αX \ X .

Let p : M → Y be an upper semicontinuous mapping from a second-countable
space M onto Y such that |p(z)| ≤ n for every z ∈ M . Define a multivalued
mapping q : M → X by putting

q(z) = j−1(p(z)) ∪ {∞}.

Obviously, the mapping q is onto αX and is at most (nm + 1)-valued, so to
complete the proof, it remains to verify that q is upper semicontinuous.

Let z0 be a point of M and U an open neighborhood of q(z0) in αX ; we need
to find a neighborhood V of z0 in M so that q(V ) ⊂ U .
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Since ∞ ∈ U , the set K = X \ U is compact. Put W = Y \ j(K). The set W
is open in Y and contains p(z0), so by the upper semicontinuity of p, there is a
neighborhood V of z0 inM such that p(V ) ⊂ W . Then q(V ) = {∞}∪j−1(p(V )) ⊂
{∞} ∪ j−1(W ) ⊂ U , and the proof is complete. �

Corollary 2.2. If X is a locally compact space, and X admits a continuous

bijection onto a second-countable space, then αX is an LΣ(2)-space.

The Kunen Line and the Todorčević line [Todor] are locally compact, ad-
mit weaker second-countable topologies, and are strong S-spaces. Since the
Todorčević line is constructed assuming b = ω1, we arrive at the following.

Corollary 2.3. Assume b = ω1. Then there exists a strong S-space which is an
LΣ(2)-space.

Arguments similar to that of the proof of Theorem 2.1 lead to the following
versions:

Theorem 2.4. Let X be a locally compact space. Suppose there exist an LΣ(<
ω)-space Y and a continuous finite-to-one mapping j : X → Y such that j(X) =
Y . Then the one-point compactification αX of X is an LΣ(< ω)-space.

Theorem 2.5. Let X be a locally compact space. Suppose there exist an LΣ(<
ω)-space Y and a continuous mapping j : X → Y such that j(X) = Y and j−1(y)
is compact and metrizable for every y ∈ Y . Then the one-point compactification
αX of X is an LΣ(≤ ω)-space.

Recall that a mapping j : X → Y is called compact-covering if for every com-
pact set K in Y there is a compact set F in X such that j(F ) = K.

Theorem 2.6. Let X be a locally compact space. Suppose there exist an LΣ(≤
ω)-space Y and a continuous compact-covering bijection j : X → Y . Then the
one-point compactification αX of X is an LΣ(≤ ω)-space.

In all three latter theorems the mapping q is defined in the same way as in the
proof of Theorem 2.1, and the upper semicontinuity of q is verified by the same
argument. In Theorem 2.4, q is trivially finite-valued, and in Theorem 2.5, q has
compact metrizable images of points because finite unions of metrizable compacta
are metrizable compacta. In Theorem 2.6, the compactness and metrizability of
images of points under q are verified as follows: there is a compact subset C of X
such that p(z) ⊂ j(C); since j is a continuous bijection, the restriction of j to C
is a homeomorphism. Thus, q(z) is the union of the set j−1(p(z)), homeomorphic
to p(z), and a singleton, hence compact metrizable.

It is not clear if it is possible to omit the requirement that j be compact-covering
in Theorem 2.6. Hence,
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Problem 2.7. Let X be a locally compact space. Suppose there exist an LΣ(≤
ω)-space Y and a continuous bijection j : X → Y . Must the one-point compacti-
fication αX of X be an LΣ(≤ ω)-space?

It is also not clear whether Theorem 2.6 remains true if we require that j be
finite-to-one instead of being a bijection. The reason of course is that the preimage
of a compact metrizable space under a perfect finite-to-one mapping need not be
metrizable, so the argument as above does not work. Hence,

Problem 2.8. Let X be a locally compact space. Suppose there exist an LΣ(≤
ω)-space Y and a continuous finite-to-one compact-covering mapping j : X → Y .
Must the one-point compactification αX of X be an LΣ(≤ ω)-space?

Problem 2.9. Let X be a locally compact space. Suppose there exist an LΣ(≤
ω)-space Y and a continuous finite-to-one mapping j : X → Y such that j(X) =
Y . Must the one-point compactification αX of X be an LΣ(≤ ω)-space?

3. The Alexandroff duplicates

One of intriguing questions in the theory of LΣ(≤ ω)-spaces is the following
(Question 7.5 in [KOS]; also Problem 13(144) in [Oku]): Let X be an LΣ(≤ ω)-
space and let p : X → Y be a finite-valued upper semicontinuous mapping such
that p(X) = Y . Must Y be an LΣ(≤ ω)-space?
Below we prove that the answer is positive for a particular case of the Alexan-

droff duplicate of an LΣ(≤ω)-space; this gives a positive answer to Problem 15(146)
in [Oku].
Recall that the Alexandroff duplicate AD(X) of a space X is X × 2 with

the topology defined as follows: the points of X × {1} are isolated, and basic
neighborhoods of the points (x, 0) are of the form (U × 2) \ {(x, 1)} where U is
a neighborhood of x in X (see [Eng1] for a discussion of this construction). It is
easy to see that the mapping π : AD(X)→ X defined by the rule π((x, i)) = x is
two-to-one and perfect, so its inverse is 2-valued upper semicontinuous.

Theorem 3.1. If X is an LΣ(≤ ω)-space, then so is AD(X).

Proof: Fix a second-countable space M and an upper semicontinuous compact-
valued mapping p : M → X so that p(M) = X and w(p(z)) ≤ ω for every z ∈ M .
Since the cardinalities ofM and of p(z), z ∈ M , are at most c, we have |X | ≤ c, and
we may fix a one-to-one function (not necessarily continuous) j : X → I = [0, 1].
Define a multivalued mapping q : M × I → AD(X) by the rule:

q(z, t) =
(

p(z)× {0}
)

∪
(

(p(z) ∩ j−1(t))× {1}
)

.

Since for every (z, t) ∈ M × I the set j−1(t) contains at most one point, the
images of points under q are compact and metrizable. Let us verify that q is upper
semicontinuous.
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Let (z0, t0) ∈ M × I, and let U be a neighborhood of q(z0, t0); we need to
find a neighborhood V of (z0, t0) so that q(V ) ⊂ U . Since p(z0) is compact,
there is a neighborhood W of p(z0) in X and a finite set F ⊂ X such that
F ∩ j−1(t0) = ∅ and U ⊃ (W × 2) \ (F × {1}). Indeed, for every point x ∈ p(z0)
we can fix a standard open neighborhood (Wx × 2) \ {(x, 1)} of (x, 0) contained
in U ; choose a finite subfamily Wx1 , . . . , Wxn

of the family {Wx : x ∈ p(z0) } so
that p(z0) ⊂

⋃

n

i=1Wxi
, and put W =

⋃

n

i=1Wxi
and F = {x1, . . . , xn} \ j−1(t0).

Let S = j(F ); then S is finite and t0 /∈ S. By the upper semicontinuity
of p, there is an open neighborhood G of z0 in M such that p(G) ⊂ W . Put
V = G × (I \ S). Now if (z, t) ∈ V , then p(z) ⊂ W and p(z) ∩ j−1(t) ⊂ W \ F ,
so q(z, t) ⊂ (W × 2) \ (F × {1}) ⊂ U , and V is as required.

Let us now verify that q is onto AD(X). If x ∈ X , then there is z0 ∈ M such
that x ∈ p(z0). Put t0 = j(x). Then both (x, 0) and (x, 1) are in q(z0, t0).

Thus, there is an upper semicontinuous compact-valued mapping with metriz-
able images of points from a second-countable spaceM × I onto AD(X), and the
proof is complete. �

Theorem 3.1 gives the positive answer to Problem 15(146) in [Oku].

A space X is called a KLΣ(≤ ω)-space if there is a compact second-countable
space M and a compact-valued upper semicontinuous mapping p : M → X such
that p(M) = X and w(p(z)) ≤ ω for all z ∈ M [KOS]. It is observed in [KOS] that
a compact LΣ(≤ ω)-space need not be a KLΣ(≤ ω)-space. The same argument
as in the proof of Theorem 3.1 can be used to prove the following:

Theorem 3.2. If X is a KLΣ(≤ ω)-space, then so is AD(X).

Of course, the same argument works for the next statement:

Theorem 3.3. Let κ be an infinite cardinal. If |X | ≤ c and X is an LΣ(≤ κ)-
space (KLΣ(≤ κ)-space), then so is AD(X).

The condition “|X | ≤ c” in Theorem 3.3 cannot be omitted unless 2κ ≤ c.
Indeed, if 2κ > c, let X = 2κ (with the product topology). Trivially, X ∈ KLΣ(≤
κ). On the other hand, every LΣ(≤ κ)-space is a union of at most c subspaces of
weight at most κ, so its network weight is at most κ · c. The network weight of
AD(2κ) is 2κ, so it cannot be an LΣ(≤ κ)-space.
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[Todor] Todorčević S., Partition Problems in Topology, American Mathematical Society, Prov-

idence, 1989.

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Univer-
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sitaria, CP 04510, México D.F., México
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