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On weak solutions of steady Navier-Stokes
equations for monatomic gas

J. BREZINA*, A. NOVOTNY

Abstract. We use L estimates for the inverse Laplacian of the pressure introduced by
Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential
theory due to Adams, Hedberg, to get a priori estimates and to prove existence of
weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant
v > %(1 ++/13) ~ 1.53 for the flows powered by volume non-potential forces and
with v > %(3 + V/41) = 1.175 for the flows powered by potential forces and arbitrary
non-volume forces. According to our knowledge, it is the first result that treats in
three dimensions existence of weak solutions in the physically relevant case v < g with
arbitrary large external data. The solutions are constructed in a rectangular domain
with periodic boundary conditions.

Keywords: steady compressible Navier-Stokes equations, periodic domain, isentropic
flow, existence of the weak solution, potential theory

Classification: 35Q, T6N

1. Introduction

Evolution of a viscous compressible fluid is described by the density o(¢, ), the
velocity field u(t, x), and the temperature 9(¢, x), which are functions of the time
t and the spatial coordinates . These quantities have to satisfy the fundamental
conservation laws, namely the conservation of

(1.1) mass: Oro + div(ou) =0,
(1.2) linear momentum:  J¢(ou) + div(pu @ u) + Vp =div S+ of + g,
(1.3) energy: Ot(ge) + div(geu) + divg =S : Vu — p divu.

In (1.1)—(1.3), g denotes the heat flux and S the viscous stress tensor, p represents
the pressure and e the internal energy. The dependence of these quantities on the
state variables o, 9, u, and their derivatives characterises the physical nature of
the gas and will be discussed later. Finally of and g denote external volume and
non volume forces.

* The work has been supported by Jindfich Necas Center for Mathematical Modeling, the
project LC06052 financed by MSMT CR.
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In the case of the small velocity gradient and/or small viscosities, the dissipa-
tion (i.e. transformation of the kinetic energy into heat) may be neglected. Simi-
larly, in the case of small heat conductivity of the gas and/or small temperature
gradients, the heat flux ¢ may be neglected, as well. A flow that fulfills both these
physical assumptions is called adiabatic. If one rewrites equation (1.3) in terms of
the specific entropy s (defined by the Gibbs law, namely ¢ ds = de — po~2 do),
it appears that in the adiabatic case, the specific entropy is constant along tra-
jectories of fluid particles. This implies that the pressure has a particular form

(1.4) p(o) =ao”, a>0, ~>1,

where v > 1 is the so called adiabatic constant and a > 0 is a constant along any
trajectory. In the sequel, we will assume that the flow is isentropic, which means
that a is constant across all trajectories. As the pressure is a function of the sole
density, equations (1.1)—(1.2) become an independent system, while, once (g, u)
is known, (1.3) is an independent equation to determine the temperature field.

To complete system (1.1)—(1.2) it remains to specify S. We consider Newtonian
fluid, which is characterized by the viscous stress tensor

(1.5) S = u(Vu + Vul) + Adival,

where p and A are constant viscosity coefficients which have to satisfy thermody-
namic constraints

(1.6) >0, 2u 431> 0.

In this paper we deal with the existence of steady (i.e. time independent)
solutions (p, u) to the system of equations for the isentropic flow of the Newtonian
fluid which reads

(1.7) div(ou) =0
(1.8) diviou @ u) — pAu — (p+ A\)Vdivu + Vp(o) = of + g,
with p(g) = o7, where we have taken a = 1 without loss of generality.

It is shown in statistical physics that the adiabatic constant + in (1.4) depends
on the number M of the degrees of freedom of the molecules of the gas. One has

v = % ~ 1.66 for the mono-atomic gas, v = % = 1.4 for the air and in general
v = % Parameters similar to v appear in the complete theory of the viscous

compressible fluids described by the full Navier-Stokes-Fourier system (1.1)-(1.3),
and from the mathematical point of view, they determine the quality of density
estimates. That is why the simplified isentropic model for compressible fluids is
important, in spite of its slightly contradictory physical background.
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The first existence result for the system (1.7)—(1.8) is due to the pioneering
work of Lions [10]. This work assumes v > % Later, Novotny, Novo [12] have
adapted a method of Feireisl [5] to prove existence in the case of the potential f
(and arbitrary g) with v > %, see also [15]. Recently, Frehse, Goj, Steinhauer [8]
and Plotnikov, Sokolowski [16] have independently obtained new L°° estimates
for the quantity A~!p and have proposed several methods to improve estimates
of the density. Both works however assume a priori bound for L! norm of pu?
which is not available for the general system (1.7)—(1.8). When this paper was
completed, we have learned about the paper by Plotnikov, Sokolowski [17], where
the authors consider the same problem with the Dirichlet boundary conditions,
and where however the physical condition fQ o0 = m of the conservation of total
mass may be violated. They use similar bootstrapping argument and obtain
existence with the coeflicient v > %

The main goals of this paper are:

(1) to put the Frehse, Goj, Steinhauer [8] and the Plotnikov, Sokolowski [16]
estimates into the context of the modern potential theory (see Adams,
Hedberg [1]);

(2) to show how the L estimate of A~1p can be combined with the standard
energy and density bounds even without the a priori L! bound for pu?;

(3) to use these observations to prove existence of solutions for small values
of v, namely v > %(1 +4/13) ~ 1.53 in the case of three dimensional flows
and arbitrary f, and v > %(3 ++V/41) =~ 1.175, if f is potential.

The condition for the general f allows to treat at least the monatomic gas. As
the estimate of A™1p is essentially of the local character we limit ourselves to
the periodic boundary conditions and periodic domain. In order to guarantee
existence of space periodic solutions, we assume f and g with certain symmetries.

The paper is organised as follows. In the next section we formulate Theorem 1,
the main result of the paper. The rest of the paper is devoted to its proof. In Sec-
tion 3 we derive L estimates for A~1p. Then in Section 4 we use the nonlinear
potential theory due to Adams, Hedberg [1] to find a convenient L! bound for the
quantity pu?. In Section 5 we use this estimate together with standard energy
and density bounds to estimate the density in the space L79, ¢ = % This piece
of information, combined with the recently discovered compactness properties of
the so called effective viscous flux and with the notion of the renormalized solu-
tions to the continuity equation (cf. P.L. Lions’ results [10] and [6], [15]), makes
possible to prove compactness of the set of weak solutions as well as to construct
weak solutions via a several level approximation scheme, in the same manner as
in [12]. The approximation process leading to the existence theorem is described
and investigated in Section 6. The limit passage from one level to another is
standard, see e.g. [15]. Nevertheless, the necessary modifications in the construc-
tion of approximations to accommodate the periodic boundary conditions, as well
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as the last (and the most delicate) limit process are performed in all details in
Sections 6.1 and 6.2.

2. Formulation of the problem and main results

We consider equations (1.7)—(1.8) on a periodic cell

3
(2.1) 0= ([—w, +w]\{_m})
with the periodic boundary conditions and f, g with symmetry

filx) = —fi(Yi(x)),  fi(z) = fi(Y;(x))  and

2D @) = —g(Vi@),  gi@) —g(Yy@) for i#£] ije {1.2,3),

where
YZ-(...,;UZ-,...)=(...,—xi,...).

This implies the same symmetry of u, and ¢ with the symmetry
(2.3) o(x) = o(Yi(x)) for i=1,2,3.

Consequently the investigated problem can be viewed also as the problem on the
cube (0, 7)% with slip boundary conditions

u-n=0, nSTt=0 bothon 8(0,7T)3,

see Ebin [4].

Let G stand for a domain in R3 or for R3 or for the periodic cell Q. Throughout
the whole paper we shall write LP(G) for the Lebesgue spaces, W*P(G), k € N, for
the Sobolev spaces, C*(@G) resp. C*(G) for the k-times continuously differentiable

functions on G resp. G, Cy(G) for the continuous functions with compact support
in G, and D(G) for C*°(G) N Cy(G). The spaces of vector valued functions
have the vector space as the next argument (e.g. LP(G;R3) resp. WkP(G;R3)
are Lebesgue resp. Sobolev spaces of R3-valued functions). If there is no danger
of confusion, we write simply LP(G;R?) = LP(G) and WFP(G;R3) = WkP(@).
The corresponding norms are H - HLP(G)’ - HW’V»P(G;[E@)’ and so on. If G is Q, we

write simply [|-[| 1) = [ [, = - I, and [ lyra@) = |- kg = 1 [lip-
By prime we denote dual spaces (e.g. D'(G) is the space of distributions — dual
to D(G); (LI(Q)) = LI (Q), where ¢ is the dual index to g, i.e. % + % = 1;

(Wha(R3)) = W14 (R3), etc.) Furthermore we introduce spaces of symmetric

functions: for example, Wsl}}?n(Q; R3) stands for the (vector valued) functions from

Wh2(Q;R3), that enjoy symmetric property (2.2) and Lbym, () denotes (scalar)
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functions from LP()) that satisfy symmetry (2.3). A set as an index of a measure
(or a function) means the measure restricted to the set, e.g. po is the measure
pa(M) =p(QN M) = [g P

Suppose for a moment that (p,u) is a classical solution to (1.7)—(1.8) and
let b € C1(0,00). Multiplying continuity equation (1.7) by ¥'(o), we obtain the
renormalized continuity equation

(2.4) div(b(o)u) + (ob'(0) — b(0)) divau = 0.

To keep this equation valid even for a weak solution o € LY (Q) and u € W12(Q; R3)
(see Definition 1 later on) we require that (2.4) is satisfied in the sense of distri-
butions D'(Q2) for any

be C([0,00)) N Cl((O, 00))

sup ’tab/(t)’ < 00, for some « € [0,1),
(2.5) te(0,1)
sup  [t7b(t)] < o0, for some a < J_q
te(1,00) 2

Similarly, we take a scalar product of momentum equation (1.8) with u and we
integrate over . Using continuity equation (1.7) and taking advantage of the
periodicity of solutions, after several integrations by parts, we obtain the energy
equality

(2.6) /;L|Vu|2+(u+)\)|divu|2 dm:/ of u+g-ude.

Q Q
Of course, due to the presence of the weakly lower semi-continuous functionals

Vu — / \Vu|? dz, Vu — / | divw|? de,
Q Q

on L2(Q; R?’), for weak solutions, we can expect only the energy inequality
(2.7) /M|Vu|2+(u+)\)|divu|2 dwg/ of ‘u+g-ude.

Q Q

Last but not least, integrating momentum equation (1.8) over the periodic cell €,
in accordance with the periodicity of solutions, we obtain the compatibility rela-
tion

(2.8) /Q of +g dz=0.

This condition is automatically satisfied by any solution induced by f and g with
symmetry (2.2). Finally, we denote by m > 0 the total mass of the gas in the
volume (2.

Following the terminology of [15] we define a renormalized bounded energy weak
solution of the periodic problem (1.7)—(1.8) on the domain Q as follows:
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Definition 1. Let the viscosity coefficients u, A satisfy (1.6). Suppose that v > 1
and m > 0 are given constants and assume that both f,g € L°°(Q) satisfy (2.2).
We say that a couple (o, u) is a renormalised bounded energy weak solution of
the periodic problem (1.7)—(1.8) on the periodic cell § if

(2.9) 0 € LYm(Q), u € WHE(Q;R?),

(2.10) / o dx =m,
Q

the renormalised continuity equation (2.4) is valid for any b satisfying (2.5), the
momentum equation (1.8) holds in D'(Q), and (2.7) is satisfied.

Remark 1. In view of (2.9) the simple density argument can be used to see that
(1.8) holds even in (W1 4(Q;R3)) for any ¢ > max(2, 23—13)

Now we are ready to state the main result.

Theorem 1. Let 2, m, u, A\, f, g satisfy the hypotheses of Definition 1. Let
(2.11) 7> gen. 7= 3 (14 VIB) ~ 153

or let f be potential and

(2.12) Y > Ypot. 1= %(3 +V/41) = 1.175.

Then there exists a renormalised bounded energy weak solution (p,u) of the
periodic problem (1.7)—(1.8) which satisfies

(2.13) 0 L(Q), g=-—"1.

Weak solutions are constructed via several approximation levels described in
Section 6. The last approximation leading to the final system (1.7)—(1.8) consists
in investigating the same system where p(p) = ¢" is replaced by the modified
pressure ps(o) = o7 + 607, where 3 > 6 (for technical reasons) and ¢ is a positive
parameter. Existence of weak solutions to these equations is well known, cf. [10]
or [15], modulo some changes in proofs in order to accommodate the periodic
boundary conditions as explained in Section 6.

3. A potential estimate

Let (o5, us) be a sequence of renormalized bounded energy weak solutions to
the problem (1.7)—(1.8), where, as well as in sequel, p stands for ps. Our aim is
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to derive for pg sufficiently strong estimates independent of 6 > 0 in terms of the
external data || f|lco, ||g]lco (and, of course, of the coefficients p, A).

Choose y € Q. Since the periodic problem is invariant with respect to the
translation of the periodic cell, we can assume y = 0. As in [8] and [16], the main
estimate of this section can be obtained testing formally the momentum equation
(1.8) by ¢(x) = (z — y)|z — y|~1. Since this is not an admissible test function in
the sense of Remark 1, we shall truncate it as follows:

o = (xz—yhn(lz —yl),

% — }% on [0,7)
n(t)=q +—+ on [rR)
0 on [R,o0)

where 0 < r < 5 < R < 7. Denoting P=pu®u+pland n = (@=y) short

[z—y]”
calculation ylelds
1
. Tr(P—S) + (ef +9) - (z —y) d
1
(3.1) —5 ). TE-S)+(cf+9) (x-y)de
Br
Tr(P—-S)—(P-S):
+/ s ) -E-9 nON | (of +9)-ndz =0,
Br\B, |z -y

where Bs = {z : |x — y| < s}. Since p € LP(Q) for a fixed d, we realize that the
term @ := (Tr(P—S)+ (of +9g) - (z —y)) belongs to L1(Q). Thus the Lebesgue
point property implies

4
/ Q da mr? Qdm—>0 as r — 0.
C B

Rearranging the remaining terms in (3.1) and estimating the resulting right-hand
side, we obtain

TP—P: 1
sup/ : PR Ge< o [ Tr®-8)+(of +9)- (2 —y) du
r>0 JBR\B, ly — x| R Jpy

2I8|
+ [ g tled ol de < OO+ [Plug + Sl + ol o)

Here and in the sequel, C' is a generic positive constant independent of §. Next,
we observe that

TtP-P:non=ou?+3p—(o(u-n)?+p)>2p>0.

617
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Thus, recalling the structure of S, see (1.5), we get

2p
82 [ e <clo]ot b+ el

Finally, denoting the periodic extension of p from L!(Q) to Li (R3) again by p

loc
and extending the integral at the left-hand side of (3.2) to the whole R3, we arrive
at
1 ? po(z) p 1
(A" pa)[y] ::/ dx §/ de + —/ p dx
(3.3) R |z -yl Br |z — Y| R Jo

<C(1+ "9“2”1,9 + HPH1Q + H“H1,2,Q)'

4. An application of the potential theory

In this part we will apply the general potential theory developed by Adams,
Hedberg [1] to obtain a convenient estimate for pu?. A similar estimate has
been proved in [16], in a direct way. A slightly weaker one, for the quantity
plul|, was derived in [8] via the theory of Morrey spaces. The main advantage
of our approach is that accurate expressions for the best constants (see (4.9)) of
estimates are obtained, which will be crucial for the bootstrapping argument in
Section 5.

We shall say that a function g on RY is a radially decreasing convolution kernel
if g(x) = go(Jz|), for some non-negative, lower semi-continuous, non-increasing
function gg on RT for which fol go()tN 71 dt < co. The key ingredient of our
proof is the following theorem.

Theorem 2 ([1, Theorem 7.2.1]). Let g be a radially decreasing convolution
kernel, and let ;. € Mt (RN) be a positive Radon measure. Then for1 <p < q <
oo the following properties of p are equivalent:

(a) there is a constant A1 such that

1/q
(1) ([ laxsiran) " < arfs],

for all f € LP(RN);
(b) there is a constant Ag such that

(4.2) lg* nxc), < Az p(E)VT

for all compact sets K c RY.
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Moreover, the least possible values of A1 and Ay are the same. As a matter of
fact one can take A1 = As.

The following preliminary material is taken again from [1, Chapter 1]. We shall
be concerned with the Bessel kernels G, which are defined for any real (or even
complex) index « via the Fourier transform by the formula

(4.3) Ga=F L1 +E)2).

The Bessel kernel G, is radially decreasing convolution kernel, in particular it is
real and positive. It has exponential decay at infinity and the following asymp-
totics at zero

(4.4) Ga(z) < Cla, N)|z|*N  as |&| =0, for 0<a<N.

Due to the definition (4.3) it is easy to see that the kernels G, form a group,
namely

For the kernel G, one can define the Bessel potential space
LYPRY) = {p=Gax f|f € LPRY)},

with the norm HGa * fHLa)P(RN) = HfHLP(RN)' The fundamental theorem of
A.P. Calderon [2] identifies these spaces with the Sobolev spaces.

Theorem 3 ([1, Theorem 1.2.3]). For a € N, WOP(RN) = L¥P(RN), 1 < p <
0o, with equivalence of norms. In particular, for all p € W®P(RN) there exists a
unique f € LP(R™N) such that ¢ = G % f, and there is a constant A such that

A7l oy = Nlellwangny < Al o),

Due to Theorem 3, for any u* € W12(Q) there exists a unique f € L%(1)
such that E(u!) = Gy % f, where E : Wh2(Q) — W12(R3) is a continuous
extension operator. Now, we are in the position to use Theorem 2 with N = 3,
p=q=2, u=npqde, g =G and f. First we apply Fubini’s theorem to check
the condition (b) of Theorem 2

(4.6)
|G1 % ponk]3 = /}R3 /R3 » G1(y — =) pank (y) G1(z — =) ponk (2) dy dz dz
(17) = [, (@1 %G1} pona) (2) pan(2) =

(4.8) < ||G2 *pa|, pa(K) < Cl|A™ pol| . pa(K) < A3 pa(K),
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where on the last line we have used (4.5), (4.4), (3.3), and we have put
(4.9) A3 = O+ [leu?|l, + lplly + [l 2)-

Finally, using the statement (a) of Theorem 2 and Theorem 3 we conclude that

3

Iy = 3 [ B0 g 0o

(4.10)

<

'Mw ||

-
Il
—

A @71 sy < C A3|ul iz -

5. Bootstrapping argument

There are two standard estimates for the renormalized bounded energy weak
solutions we have not yet exploited. First, if we use the energy inequality (2.7),
Korn’s inequality, the Young inequality, and the Sobolev imbeddings we arrive at
the estimate

(5.1) lully o = O£l el -

Second, we introduce the so called Bogouvskii operator, which is a particular solving
operator

(5.2) B: pe L) »ve WH(QR?), 1<¢<oo

of the problem

divv:go—/cpd:v in (—m, )3,
Q

v=0 on d(—m,m)3.

(5.3)

The operator B is continuous, namely ||leq < CH<p||q. For details see [15,
Section 3] and references quoted there. In view of Remark 1 we can test (1.8) by
the function B[y], where ¢ € L7 (), 1 < ¢ < 2, to get

/ p div(Blg]) dz = / (S — qu®w) : VBlg] - (of +49) - Blg] de
Q Q

(5.4) )
< O[fully g + llow?[l, + [lelle [ £l + gl ¢l

For vq > g, the Young inequality together with (5.1) yields

;[ p(avBid+ | o de) de < (1 ou?],)

p|l, = sup
2l o
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Next, we split the right-hand side,
HQu2HZ = / (Q'Yu2)b,uc de, q=n1b, 2¢=2b+c,
Q

and apply the Holder inequality to get

(5.6) low?[[§ < e[ el
provided
(5.7) b+ % < 1 or equivalently g < % .

With help of estimates (5.1), (5.5) we can rewrite (4.10) as
(5-:8) o[y < @+ o]y llelfs-

Further application of the Hélder inequality together with the imbedding L6(Q) —
W12(Q) and with (5.1) yields

59) el < O+ el el el

n (5.8), (5.9), € can be chosen arbitrary from the interval (0,e9) where ¢ is
sufficiently small and C' depends on ¢y but is independent of €. Taking into
account (5.5), (5.6), and (5.9) we arrive at

(5.10) lelly = lle” + el < €1+ flell3 . el &*).

In the next step we shall interpolate the norms at the right-hand side of (5.10)
between L1(Q) and L79(9) as follows

vq (r—1)
(5.11) lell, < llellfllell5, =Cllell}, . v= T

Applying (5.11) to (5.10) With r successively equal to 2 +ecand 8 5, under the
necessary conditions yq > 5 and Yq > >6 & respectively, and noticing that Hg”l =m,
we get
(5.12)

o) g (b 2b+2q A g 2
o +80° |2 < C(1 + [|e]I2 ), z=ﬁyq_1(§+ 5 ),Cqu_lg’b

621
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This formula yields
o7 +80°||, < C(2,m, f.9)

provided

g y+2
5.13 ”yq>z: -
(5.13) yg—1 3y

The expression Mjﬂl is a decreasing function of ¢, consequently (5.13) can be un-

derstood as an inequality to determine the lower bound for ¢q. Thus, in accordance

with (5.7), ¢ = % represents the optimal choice of ¢. Then (5.13) reduces to

vq > 2 or equivalently 372 — 2y — 4 > 0. The latter inequality leads directly to
the condition v > ygen. (2.11).

If the volume force f is potential, the term fQ of - u on the right-hand side of
(2.7) is zero thanks to (1.7). Thus we obtain, instead of (5.1), a priori bound for
HUH1,2' Consequently (5.9) takes the form

(5.14) lpw?||, < C(1+ [levw?|,.)

and interpolation (5.6) yields
(5.15) low?|[7 < €l |y [ull§ < @+ ow[ly)-
As b < ¢, we get estimate for ng2||g. Using (5.5), we arrive at

(5.16) le” +380°||7 < C(1 + [|ow?[[7) < C(Q,m. £, 9)

for every 1 < g < % and for all v > 1.
Summarizing all estimates, we have

5895  bounded in L%(), o5 bounded in L7Y(Q),

(5.17) 9 12 3
osus  bounded in L7(£), us bounded in WH*(Q;R?)

uniformly with respect to J, provided ¥ > vgen., or provided v > 1 and f is
potential. To prove strong convergence of the density, we shall also need the
estimate

(5.18) losus|), < lles||Z.[lesull|? < € with some r> &
. osus||, < ||es]|3,llsus]lg < X

This is true provided % > 2—1(1(1 + %) which is equivalent to condition (2.12).
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6. Existence of a solution

The first part of this section is devoted to the construction of the bounded
energy weak solutions to problem (1.7)—(1.8) by using several level approximation
scheme. We also explain (referring to the second part) how to pass to the limit
between the levels. In the second part we combine the estimates of Section 5 with
the compactness properties of the effective viscous flux and with the convenient
estimates of oscillations to the density sequence to carry out the last limit process
6 — 0+.

6.1 Approximations.

In this section we explain how to construct the renormalised bounded energy
weak solutions to problem (1.7)—(1.8) on the periodic cell (2.1). We adopt the
same chain of approximations as described in Chapter 4 of [15], where a similar
problem is treated for larger values of the adiabatic constant and the homogeneous
Dirichlet boundary conditions for the velocity. The problem of density estimates
for the small adiabatic constants was already treated in Section 5. Due to this fact,
we shall concentrate in this part essentially to the changes which are necessary to
be operated in order to accommodate the periodic boundary conditions and the
symmetries (2.2), (2.3).

To this end, we consider an approximating problem with positive parameters
a, g, and §:

(6.1) alp—h) +div(ou) —cAp =0,

1
(6.2) alh+ o)u + E(div(gu @ u) + ouVau) + V(0" +60°) —divS = of +g,

on the periodic cell 2. Here h is a smooth periodic function with the symmetry
(2.3) satisfying [, h = m. Further, p and u are unknowns that have to obey
symmetries (2.2) and (2.3), respectively. Notice that in this case u - n and 90
necessarily vanish on d(—m,7)3. In order to solve this system we employ the
Leray-Schauder fixed point theorem.

Theorem 4 (see [15, Section 1.4.11.8]). Let X be a Banach space and D C X
bounded open set. Let H : D x [0,1] — X be a homotopy of compact transfor-
mations, which means that H is a compact mapping for every t € [0,1] and that
it is uniformly continuous in t on any bounded set B C D. Let

(6.3) w—H(w,t)#0, Vtel0,1], YwedD.

If there exists wg € D such that H(wg,0) = wg, then, for any ¢t € [0,1], there
exists wy € D, satisfying H(w¢,t) = uy as well.

We take v € Wsly’ﬁlo(Q;R?’) such that Hle o < K for some K > 0. Using the
standard theory of elliptic operators, see e.g. Necas [11], we can construct solving
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operators

;- £ € Wb () N {Jo&=m} — or € (W2E(Q) N {Jqo=m})

to the problems
(6.4) —eApr = —t(a(€ — h) +div(év)) inQ, / ot de=m, te€]0,1],
Q

which, for any 1 < p < oo, form a homotopy of compact transformations by virtue
of the compact imbedding Ws%}fn(ﬂ) e Wsl}}ﬁl(Q) Testing

(6.5) aleo—h) 4+ div(pv) —cAp =0

(compare with (6.1)) by ¢ and using conveniently a bootstrapping argument we
realize that any fixed point g € Wsly’ﬂl(ﬂ) N{Jq o = m} of II; satisfies

(66) HQtHl’pSOS(Kvpaaao‘ah)v
where Cg is a positive constant independent of ¢. As a consequence the domain

D = {¢ e Wb (@) |[|¢]l,, < 2Cs, Jo=m}

verifies (6.3) with the homotopy H(-,t) = II;(-). We can therefore employ
Theorem 4, taking X = Wsly’ﬁl(Q) N{fq o = m}, to construct the operator S

(6.7) S:ve W%;?(Q;Rg) — (0 = T1(0)) € WP (Q)

sym

such that o = S(v) solves equation (6.1).
Similarly we define operators T; : v — uy, t € [0, 1] as the solving operators to
the problems

(6.8) —pAu — (p+ AN)Vdive = —tF(S(v), v),

on the periodic cell 2, where

(6.9) F(o,v) :=a(h+ o)v+ %div(gv ®@v) + %Q’va +V("+ 6% —of —g.
The necessary condition to guarantee the existence of solutions to this system is

fQF = 0. This condition is always satisfied provided f, g, v and o, h posses
symmetries (2.2) and (2.3), respectively.
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Referring to the standard results of the regularity to the elliptic systems, see
again [11], we conclude that

Ty v € Wond (4 R?) — uy € W2E (4 R?) o Whod (Q; RY)

Sym sym
for any p > 3.
We test (6.2) by u, where (6.2) can be viewed as the Lamé type system (6.8)
with v = u. After a long but standard calculation, employing among others (6.1),
we get

/Q;L|Vu|2 +(u+ N dival? de + 5| V(o7/)|2,

(6.10)

< [ (ef +9)-wde+ac(h)
Q

where C(h) is a positive constant dependent on h. Taking advantage of the
symmetries of u and of the fact that [,(¢ —h) = 0, one can use the Sobolev
and Poincaré type inequalities as well as a bootstrapping via F(S(u),u) and the
elliptic regularity of (6.8) to conclude that

(611) Hu||276+HQ||0,35 SCT(o‘aavevfagvh)'

Now we shall take K = 2C7p in the definition of Cg (see (6.6)) in order to have
the operator S well defined.

The domain D = {v € W%}?(Q,R?’HH'UHIOO < 2C7}, verifies (6.3) with

H(-,t) = T;. Once again, we can use Theorem 4 with X = Wslb}ﬁf (), to guarantee
existence of a fixed point uz = T (ue) and then we set o = S(u.). Evidently,
the couple (e, uc) solves (6.1)—(6.2).

To pass to the limit ¢ — 04, we have on our disposal estimate (6.10) and
another estimate

lellozs < €. £.9.h).

It can be obtained by testing the momentum equation (6.2) by the Bogovskii
operator B[y], see (5.2), (5.3), using the known bound (6.10), and applying con-
veniently the Sobolev imbeddings and the Hoélder inequality in a way similar to
(5.4). Both estimates provide uniform bounds for Hugﬂl o and H~95H0 28 indepen-
dent of . 7 7

These estimates are sufficient to pass to the limit in the continuity equation
(6.1), the energy inequality (6.10), and in all terms of the momentum equation
(6.2) except the pressure term pg(oc).

To pass to the limit in ps(g:), one needs to show that the weak limits w and
o of the sequences u. and g, satisfy also the renormalized continuity equation
similar to (2.4), namely

aob' (o) + div(b(o)u) + (ob'(0) — b(e)) divu

(6.12) , / 1 2
= ahb' (o) + e div(b'(0)Ve) —b"(0)| Vol
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with a convenient function b € C2(0,00). This equation can be obtained via
multiplying equation (6.5) by & (). Further, one needs to prove that the quantity

(6.13) Ps(0) = ps(e) — (2 + N diva,
called effective viscous pressure, satisfies the identity
(6.14) P3(0)b(0) — P3(0) b(o) = (2u+ \) (o) dives — o) divu)

with another convenient function b. Here and in what follows the overlined quan-
tities denote corresponding weak limits in D'(Q).

The same holds for the passage a@ — 0+, but now, (6.12) is replaced by the
renormalized continuity equation (2.4).

Importance of the effective viscous pressure (6.13) and some of their properties
was recovered in various contexts by several authors: Lions [10], Serre [18], Hoff
[9], Novotny, Padula [14] and [13]. Finally it was successfully used in existence
theory by Lions [10]. Its rigorous mathematical realization is deeply related to
the quality of density estimates and therefore to the value of v (resp. (3, in the
case of limits ¢ — 0+ and @ — 0+ ). In fact, the difficulty of the underly-
ing mathematical analysis increases with decreasing values of adiabatic constant.
Intimately related to the DiPerna-Lions transport theory and to the Friedrich’s
lemma about commutators [3], the Lions method is applicable provided g is square
integrable. Thus, for general f, it could be used without additional restriction as
the condition v > vgen. is equivalent to vg > 2 (cf. discussion after (5.13)). To
treat also the case of potential f we shall rather apply another method proposed
by Feireisl [5] (see also [7]) which is better adapted to investigate small adiabatic
constants. We shall describe all details of this approach in the next section.

To conclude, both previous limit procedures, namely ¢ — 0+ and o — 0+
have common features with the limit passage § — 0+. The latter (most difficult)
limit contains all of essential mathematical aspects of limits ¢ — 0+, a — 0+.
Consequently, the reader can, by himself, adapt the arguments of Section 6.2 to
these situations.

6.2 Vanishing artificial pressure.

Let o5 € Lgym(Q), ug € Wsl}}?n(Q;R?’) be sequences of bounded energy renor-
malized weak solutions to the problem

(6.15)  div (b(0s)us) + (05b'(05 — b(0s)) divus =0  in D'(Q),
(6.16)  div(esus @ ug) — pAug — (p+ AV divug
+ V(oj + 59?) =osf+g in D' (4 R?),

(6.17) /u|Vu5|2+(u+)\)|divu5|2 dz
Q

S/Q(Q(strg)'U& d,
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where b is the same as in (2.4). By virtue of the estimates (5.17), (5.18), and
the compact imbedding W1H2(Q; R3) << LP(Q;R3), 1 < p < 6 we obtain the
following limits
§0% =0 in D'(Q),
05 — 0 weakly in L97(Q),

6.18
(6.18) us —~u weakly in WH2(Q; R3),
us; — u in Lp(Q;R?’), 1<p<6,
6.10 osUs — ou weakly in L"(Q), for some r > 6/5,
(6.19) o05Us D us — ou®@u  weakly in LI(f),

at least for a chosen subsequence.
Using these facts and the weak lower semi-continuity of the left hand side of
(6.17) we can pass to the limit in (6.15)—(6.17) and we get

(6.20) div(ou) =0 in D'(Q),
(6.21) div (b(o)u) + (ob/(0 — b(0)) divu = 0 in D'(Q),
(6.22) div(pu ® u) — pAu

—(u+NVdivu+ Vel = of +g in D'(R3),

(6.23) / u|Vu)? + (u 4 N)| divu)? de < / (of +9g) - u dx.
Q Q

The proof will be complete provided we show the strong convergence of ps
in L1(Q). This will be done in several steps following [15]. In the first step we
shall prove identity (6.14) with b = T}, k > 0, where
z

Ti(2) = kT(k); T € C®°(R"), concave;
T(z)==z for 2<1; T(2) =2 for z>3.

(6.24)

In the second step, we deduce from (6.14) an estimate measuring oscillations of
the sequence of densities ps (see formula (6.34)). This information is used in the
third step to prove that the couple (g, u) satisfies the renormalized continuity
equation (see Lemma 7). The last fourth step consists in comparing the weak
limit of the renormalized continuity equation for (gg,us) with the renormalized
continuity equation for the weak limit (o, u).

Step 1: Compactness properties of the effective viscous pressure (6.13). To begin
with, we shall briefly recall the definition of the Riesz operator

(6.25) Rijlv] = F 1 (— &i&; 16172 F(v)) = V;V;A7 M,
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where

3
(6.26) A Nlx] = F7H(— €72 F (v) = /R v(y)|z —y| ™! de.

It is a continuous operator on LP(R3), 1 < p < oo and there holds

3
Ri; =Rjis / R j[v]wdx = / vR; j[w]dex.
R3 R

Next we recall the celebrated Div-Curl lemma due to Tartar [19].

Lemma 5. Let Q@ C RN be a Lipschitz domain. Let
vp — v weakly in LP(;RY), w, — w weakly in LI(Q;RY),
1 1

where 5 + 7 <1 and let

divw, and curlw, be precompact in W15 (R3).

where s > 1. Then
U -wy —v-w in D'(R3).

An useful and interesting corollary of Lemma 5 is the following commutator
lemma (see [6, Corollary 6.1] or [15, Lemma 4.25]).

Lemma 6. Let 1 < p,q < oo, %+%:%<1and
fn— f weakly in LP(R3),
gn — g weakly in LI(R3).
Then
(6.27)  fuRij(gn) — gnRij(fn) — fRij(9) — gRi;j(f) weakly in L"(R?).
Testing (6.16) by nes = nVA™L(ET},(05)) with i, € € D(Q) we obtain

/9775(9} — (20 + A) divug) Ty (05) dee

= GoodTermS5+/ nRi,j(ka(Qé)ug)%ufS de
Q
DivCurls

4 /Q wl - (€T3 (05 R j (nosul) — nosubRi ; (€T os))] da,

Commutator s

(6.28)
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GoodTermss = / ((p+ ) divus — gg)Vn iP5 — 69? div(neps)
Q

6.29
(6:29) + (VU5 — 05us5 @ us) Vi @ w5 — pVn @ us : Veps
+ pug - V(€T (es)) — (fos + g)nes da.

Similarly we can test (6.22) by ne = nVA™L(¢T3(0)) to get

/ né(07 — (2u + A) divu) Ty (o) dz

= GoodTerms + / NRi (€T, (0)u! ) ou® d
Q

6.30
( ) DivCurl
+ [ w TR (o) ~ new' Ry (T2 d,
Commutator
(6.31) GoodTerms = / (p+N)dive—07)Vn- ¢+ (uVu — ou @ u)Vn @ ¢
. Q

—uVn@u: Ve + pu - Vn(€Ti (o)) — (fo+ g)ne dz.

Next we shall pass to the limit in (6.28) as § — 0+. Realizing that ¢5 — ¢ in any
LP(Q;R3), p > 1 and taking into account limits (6.18), (6.19) it is straightforward
to show that (GoodTermss) — (GoodTerms). Furthermore, applying Lemma 5
and Lemma 6 we easily verify that (DivCurls) — (DivCurl) weakly in D’'(2) and
(Commutatorg) — (Commutator) weakly in L"(£2), respectively. This is the only
place where we need quite restrictive estimate (5.18).

Finally, subtracting (6.30) and the limit of (6.28) as 6 — 0+, we obtain the
famous identity for the effective viscous pressure, cf. (6.13), namely

(6.32) 0VT(0) — 07 Ti,(0) = — (2 + A) (T (o) divu — T (o) divu) a.e. in Q.

Step 2: Defect measure of oscillations. Using in successive steps the elementary
algebraic inequality (a — b)Y < a¥ — b7, a > b > 0, weak lower semi-continuity of
convex functionals o — fQ o7, 0— — fQ Ti(0), and (6.32) we succeed to control
oscillations of the density sequence gg in the following way

limsup/ T3 (0) — Ty (05)|" ! de
6—0+

(6.33) < lirgljgp/Q(Q'y —03)(Ti(0) — Ti(0s)) dz

< /QQ'YT;C(Q) — 07 Ty(p) dz < CHdivu(;H2li6m%upHTk(g) — Tk(g(;)H2.
—0+
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Hence, thanks to (5.17),

(6.34) sup lim sup HTk — Ti(0s) H i1 S C.

k>0 6—0+
Step 3: Renormalized continuity equation. The control of the density oscillations
allows us to keep the renormalized continuity equation (2.4) valid for the limits
0, u even if the density is not known to be square integrable. More precisely we
claim (see e.g. [15, Lemma 4.50]):

Lemma 7. Let b belong to (2.5), us — u weakly in Wh2(Q;R3) and g5 — o
weakly in L*(), s > 1 and suppose that (6.15), (6.21) and (6.34) hold. Then
(0, u) satisfies renormalized continuity equation (2.4) in D'(Q).

If s > 2, Lemma 7 is a particular case of the DiPerna-Lions transport theory,
which is, in this case, a direct consequence of (6.20) and the Fridrichs’ lemma
about commutators [3].

If s € (1,2) one may adapt to the steady situation the “nonsteady” approach
of Feireisl [5] (see also [7]). Since T} (o) belongs, in particular, to L?(), one can
apply the Di-Perna, Lions transport theory to (6.21) with b = T}, to conclude that

div (b(T(@))w) + (T2t (Ti(e)) — b(Ti(2)) ) divu

=V (Ty(0)) (eTk(0) — Tis(0)) div u,

e.g. for any b € C1([0,00)) N Cp([0,00)). As the consequence of the weak lower
semi-continuity of norms we get

(6.35)

(6.36) | Tk(o) —of|, <CK'"™P, ||Ti(o) —of| < CK'™P,  for 1<p<~q.
Using this fact and (6.34) one verifies that
V' (Ti(0))(eTx(e) = Ti(0)) dive — 0 in LY(Q).

Consequently (6.35) yields (2.4) for a compactly supported b. The passage to
general b given by (2.5) can be performed via the Lebesgue dominated convergence
theorem.

Step 4: Strong convergence of ps. Finally we use (2.4) to prove the strong
convergence of g5 in L'(Q). We introduce functions Lj(z) ~ zlog(z) by the
equation tL} (t) — Ly(t) = Ty(t). Using Lj as b in (2.4) and (6.20) leads to
JoTk(0)dive = 0 and [, Ty, divu = 0, respectively. With this information at
hand, the revisited proof of formula (6.33) yields

. 1 . -
hémzupHTk(Q) — Ti(os) |11 < C/ divu(Tj(e) — Ti(0)) dz
—0+
(637) -1 Y42

< O Ti(e) - leV thUPHTk — Ti(0s)||,71-
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Recalling (6.36), the right-hand side of (6.37) tends to zero with k. Now, we write

limsup||os — o), < ||es — Tk(es)||, + limsup||Tx(0s) — Tk (0)||, + ||Tk(e) — o]l
0—0+ 0—0+

By virtue of (6.36) and (6.37), the right hand side of the above formula tends
to zero. Consequently, the sequence ps converges strongly in L*(2), for all 1 <
s < vq and p7 in equation (6.22) is equal to p?. This completes the proof of
Theorem 1.
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