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On loops that are abelian groups over
the nucleus and Buchsteiner loops

PiroskA CSORGO

Abstract. We give sufficient and in some cases necessary conditions for the conjugacy
closedness of Q/Z(Q) provided the commutativity of Q/N. We show that if for some
loop @, Q/N and Inn @ are abelian groups, then Q/Z(Q) is a CC loop, consequently
Q@ has nilpotency class at most three. We give additionally some reasonable conditions
which imply the nilpotency of the multiplication group of class at most three. We
describe the structure of Buchsteiner loops with abelian inner mapping groups.

Keywords: conjugacy closed loops, Buchsteiner loops

Classification: 20D10, 20N05

1. Introduction

Q is a loop if it is a quasigroup with neutral element 1. The mappings Lq(z) =
az (left translation) and Rg(x) = xa (right translation) are permutations of Q
for every a € Q. The permutation group generated by left and right translations
MIt(Q) = (Lq,Rq | a € Q) is called the multiplication group of Q. Denote by
Inn(Q) the stabilizer of the neutral element, and call it the inner mapping group
of the loop Q.

In this paper we generalize the results obtained in [3] concerning the prop-
erties of loops such that the factor loop over the nucleus is an abelian group.
The motivation of [3] was the theory of Buchsteiner loops ([2], [6], [7], [9] and
partly [10]). We give sufficient and in some cases necessary conditions for the
conjugacy closedness of Q/Z(Q) provided the commutativity of Q/N.

Then we study the case of abelian inner mapping group. In 1946 Bruck [1]
proved that if @ is a loop of nilpotency class at most two then Inn @ is abelian.
In the nineties Kepka and Niemenmaa [13], [14] showed that a finite loop with
abelian inner mapping group must be nilpotent, but they did not establish an
upper bound on the nilpotency class of the loop. For a long time the prevailing
opinion was that every loop @ with abelian Inn @ has nilpotency class at most
two, i.e. that the converse of Bruck’s result is true.

However, in 2004 Csorgd [8] constructed a nilpotent loop of order 128 such that
the inner mapping group is abelian and the nilpotency class is equal to three. In
this loop the nucleus is a normal subloop, and the factor over the nucleus is
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isomorphic to an abelian group. Later Drépal and Vojtéchovsky [11] by analyzing
the loop of this example developed a method by which they could construct many
other examples.

In this paper we shall show (Theorem 3.14) that if Q/N is an abelian group
and Inn @ is also an abelian group, then @Q/Z(Q) is a group and @ is nilpotent
of class at most three. Note that Drapal and Kinyon [9] produced a Buchsteiner
loop of order 128 that is of nilpotency class three and possesses an abelian inner
mapping group. Let us also remark that recently Nagy and Vojtéchovsky [12]
constructed a Moufang 2-loop of order 214 of nilpotency class three with abelian
inner mapping group.

We shall also show that some conditions that are satisfied by Buchsteiner loops
imply that the nilpotency class of the multiplication group is at most three. We
shall then apply our results to Buchsteiner loops with abelian inner mapping
groups, giving a structural description for both the loops and their multiplication
groups.

We prove our results by applying the theory of connected transversals. This
concept was introduced by Niemenmaa and Kepka [13]. Using their characteriza-
tion theorem we can transform loop theoretical problems into group theoretical
problems.

2. Basic definitions and results

Let @ be a loop. Set A = {L. | c€ Q}, B={Ry | d e Q}. Then A
and B are left transversals to Inn@ in Mt Q, (4, B) = MItQ, [4,B] < InnQ
and coreyyi () Inn(Q) = 1 (i.e. the largest normal subgroup of Mlt @ in Inn @ is
trivial).

Conversely, consider a group G with the following properties: H is a sub-
group of GG, A and B are left transversals to H in G. A and B are H-connected
transversals by definition, if [A, B] < H.

By a result of Kepka and Niemenmaa [13], the above two situations are equiv-
alent:

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if
and only if there is a subgroup H, for which there exist H-connected transversals
A and B such that (A, B) = G and coreg H = 1.

Let @ be aloop and S be a normal subloop of Q. Put M(S) = (L¢, R | ¢ € S).
Then M(S)Inn @ < Mlt @ (this is a standard fact). Put
C(S) = coreny g M(S) Inn Q. Denote by f the natural homomorphism of Mlt Q
onto Mlt Q/C(S). Then f(A) and f(B) are f(Inn@)-connected transversals in
Mlt Q/C(S) and MIt(Q/S) = Mlt Q/C(S).

The permutation group generated by all left translations is called the left mul-
tiplication group and we shall denote it by £ = £(Q). In a similar way the
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right multiplication group R = R(Q) is generated by all right translations. Let
L1=LNInn@, and R1 =R NInn Q.

Proposition 2.2.

['1 = <ny_1LxLy | T,y € Q>7

Ri1 = <Rym_1Rny | 2,y € Q>a

and Inn Q is generated by £1 UR1 U {Ty | z € Q} where T, = R, 'L, for all
T € Q.

We say that @ is an A;-loop (Ar-loop) if £1 < Aut@Q (R; < Aut Q). A loop
Q is an A, ;-loop if it is both an A;-loop and an A;-loop.

The left, middle and right nucleus of a loop @ are defined, respectively, by

Ny=N\(Q):={a€eQ|a-zy=a-zy forall z,yeQ},
Ny=N,Q):={acQ|z-ay=wxa-y forall z,yecQ},
No=No(Q):={aeQ|z-ya==xy-a forall z,yec Q}.

The intersection
N =N(Q)=N\NN,NN,

is called the nucleus of Q.

Proposition 2.3. Let @ be a loop. Then

i)  COwmi@(R) ={Lc|ce Ny},
Cwmis (L) = {Rq | d € Np};
ii) if R <MltQ then CMth(R) <IMIt@Q and Ny < Q;
iii) if £ <9 MItQ then Cyyp(£) < MltQ and N, < Q;
iv) A*A = A, B*B = B, where A* = Cye0(R), B* = Oz o(£).

PROOF: i), ii), iii): see [6, Lemma 1.7]. iv) is trivial. O

Proposition 2.4. Let Q) be a loop and let Gy be the normal closure of Inn @ in
Mlt Q. Suppose that Inn Q) < K <Mt Q. Then
i) Mlt Q/K is abelian;
ii) Mlt Q/Gy is abelian, Gy = (Mlt Q) Inn Q;
iii) Gp < K.

PROOF: i) Let aK and bK be arbitrary elements of Mlt Q/K with a € A, b € B.
Our statement follows from [A4, B] <InnQ < K.

ii) By i) Mlt Q/G is abelian, whence (Mlt Q)" Inn Q < Gg. Using
(Mlt Q) Inn Q < Mt Q, our statement follows.
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iii) We have K > (Mlt Q)’ by i), whence K > (Mlt Q)" Inn Q. O

The center of Z(Q) is defined by Z(Q) = {a € N | xa = ax for all z € Q}.
By putting Zg =1, 71 = Z(Q) and Z;/Z; 1 = Z(Q/Z;_1) we obtain a series of
normal subloops of Q. If Z,_1 is a proper subloop of @ but Z, = @, then Q is
centrally nilpotent of class n.

A loop Q is left conjugacy closed (LCC loop) if the left translations re closed
under the conjugation, i.e. LoLyLo ™1 = L for all a,b € Q, respectively, Q is
right conjugacy closed (RCC loop) if RgRyRe ™! = Ry for all a,b € Q. A loop Q
is conjugacy closed (CC loop) if it is an LCC and an RCC loop.

3. Buchsteiner loops and loops that are abelian modulo the nucleus

Buchsteiner loops are defined by the identity
(B) z\ (zy-2) = (y - zz)/x.

Here a \ b denotes the unique solution x to ax = b, while b/a denotes the unique
solution y to ya = b. We call (B) the Buchsteiner law since Hans-Hennig Buch-
steiner initiated their study in [2].

Rewriting the Buchsteiner law (B) in terms of translations immediately yields

Lemma 3.1. @ is a Buchsteiner loop, the Buchsteiner law is equivalent to each
of the following:

L. 'R.L, =R, 'R., forall z,z€Q,
Ry 'LyRy = Ly 'Ly  forall az,y € Q.

Proposition 3.2. Let Q be a Buchsteiner loop. Then the following statements
are true.

i) L=(A)IMItQ,
R =(B) <MLt Q,
[A,B] =R1= L.
ii) The nucleus N < @ and
N =Ny =N,=N,.
Put Ag={L.|ce N}, B={Ry|de N}. Then

Ap = COmie@(R), Ap IMItQ,
By = Cwvig(£),  Bo < Mt Q.
iii) Q/N is an abelian group of exponent four (an example in which this
exponent is achieved is constructed in [6]).

iv) Q is an A, ;-loop.
v) Q/Z(Q) is a CC loop.
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PROOF: i) See [6, Corollary 1.3].
ii) See [6, Corollary 1.6, Corollary 1.8].
iii) See [6, Theorem 7.14].
iv) See [6, Corollary 5.4].
v) See [3, Theorem 3.5]. O

Buchsteiner loops are modulo the nucleus abelian groups. We shall now state
their further basic properties.

Lemma 3.3. Let Q be a loop such that N < @, Q/N is an abelian group. Set
Ag={Lc|ce N}, By={Rg|de N}. Let G =Mt Q and H = Inn Q. Then
the following statements are true.
i) coreq AgH D [A,B]U ((AYNH)U ((BYN H).
ii) Put G = AgH = ByoH.
Then G1 4 G and G/G1 is abelian.
iii) Z(G1) = Z(G) x (2(G1) N H).
IV) Ay <G, By <G.
v) AoBo < Ci([A, B]).
i) Suppose h € HNAutQ, a € A, b € B. Then h® = hag, h® = hf3y with
ag € Ag, Bo € By.
vii) If h € HN Aut Q, then h € C([A, B)).

V1

PrOOF: i) By N <4 @, we have AgH < G, BgH < G. Using /N is abelian it
follows coreq AgH 2 [A, BJU({(A)NH)U ((B) N H).

ii) By i) clearly (4) N AgH < (A). Let a € A, b € BNaH. Then us-
ing [A,B] < H we get (a71b)* € AgH for every a* € A, in similar way
(a=10)Y" € BoH(= AgH) for every b* € B. Since G = (A,B) and H =
(a=1b, (A)NH, (ByNH|a€ A, be BNnaH) by Proposition 2.2 we can con-
clude that G < G.

iii) Using Z(G1) < Ng(H) and Ng(H) = Z(G) x H (see [13, Proposition 2.7])
it follows easily.

iv) By [3, Lemma 1.7] and by i) Ag < (A). Since Ag < C(B) (see Proposi-
tion 2.3) and (A4, B) = G it follows Ag < G. In a similar way By < G holds.

v) Using Ag < G and Ag < C(B) we can see easily A9 < Cq([A4, B]), and
similarly By < C([A, B]).

vi) By [3, Lemma 1.2] o € A, b" € B. Since G1 < G, Ay < G, By < G, and
AgA = A, BoB = B we get our statement.

vii) Using vi) and Ay < Cg((B)), By < Ca({A)) it follows easily. O

The conjugacy closed loops (CC loops) @ satisfy the following properties:

(A) SMItQ, (B) SMltQ,
Q is an A, ;-loop, furthermore N < @, Q/N is an abelian group.
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In [3] we studied the converse of this result, i.e. those loops satisfying these
conditions and we got that they are very close to the CC loops:

Proposition 3.4 ([3, Theorem 3.1]). Let Q be a loop such that N < @Q, (A) <
Mlt Q, (B) IMItQ, Q is an A; .-loop. If Q/N is an abelian group, then Q/Z(Q)
is conjugacy closed.

In fact, we have proved a somewhat stronger result as well:

Proposition 3.5 ([3, Proposition 3.2]). Let Q be an A, ;-loop in which the nu-
cleus is normal and Q/N is an abelian group. If [A, B] < Aut @, then Q/Z(Q) is
a conjugacy closed loop.

As the Buchsteiner loops satisfy these conditions we get

Corollary 3.6 ([3, Theorem 3.5]). Let Q be a Buchsteiner loop. Then Q/Z(Q)
is a conjugacy closed loop.

In Proposition 3.5 the requirement that ) is an A, ;-loop seems to be too
strong. In case of [A, B] < Aut@ we shall obtain an exact description when
Q/Z(Q) is conjugacy closed. For this aim we need the following subsets for a

loop Q:

Lr(Q)={L. 'L, | L., 'L,Mv e nQ, 2,y € Q},
Rp(Q) = {Rw 'R | Ry 'R, € T Q, =,y € Q}.

In the following statements Ag, By are defined as in Lemma 3.3.

Proposition 3.7. Let Q be a loop such that N < @ and Q/N is an abelian
group. Suppose [A,B] < Aut@. Then Q/Z(Q) is a CC loop if and only if
Lp(Q) € AutQ and Rp(Q) € Aut Q.

PRrROOF: Let G =Mt Q, H = Inn Q.

Let h* € Lp(Q) be arbitrary. Lemma 3.3 1), ii) give that there exist oy, g € A
such that af? = a16h* with 6 € Ag. Then 104(1)6271 = al((h*)_l)agl(zi_l)a;l.
Using Ap < G (see Lemma 3.3 iv)) we get ofll2 = aly((h*)_l)agl with v € Ap.

i) First suppose Lr(Q) C Aut@ and Rp(Q) C Aut@. Since h* € Lp(q) it
follows h* € Aut Q, whence using Lemma 3.3 vi) we can conclude ((h*)~1)% fo
y0(h*)~! with 49 € Ap, consequently ofll;l = aqa9(h*) ! with ag € Ag. Set
h = (h*)7L, clearly h € Aut@. Let 8 € B. We have a1’ = aihy, 2 = fhg
with hy, ho € [A, B]. Then a1? = 01920 = aqhy. Thus a? = a1 Bezh ' =
(alaoh)ﬁ%hgl. Using Lemma 3.3 vi), 2% = hfy holds with 3y € By. Hence
0415 = (alhlaohﬂo)azhal = (Ozlh}lmzﬁo)hal. As hi,hg € [A, B], Lemma 3.3
vii), v), vi) imply a1? = aja*hia®* By = aijhi, where a*, axx € Ag. Using
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Lemma 3.3 v), we can again conclude that Sy € BgN Ag. Since 49N By C Z(G),
whence hP € hZ(G). As alagl = ajagh and 8 € B is arbitrary we get h €
corey Z(G)H. Thus Q/Z(Q) is left conjugacy closed. In a similar way Q/Z(Q)
is an RCC loop, consequently Q/Z(Q) is a CC loop.

ii) Suppose Q/Z(Q) is a CC loop. Then Rp(Q) U Lp(Q) C coreq Z(G)H.
Since h* € Lp(Q) we have ((h*)™!) € coreq Z(G)H, consequently ((h*)_l)o‘g1 =
(h*)"hz with h € H, z € Z(G) N (AgH). Thus a‘ll2 - a1vz(h*)~1h. Put yz =

ag € Ay, h = (h*)"th, so off;l = ajagh. Clearly h € coreq(Z(G))H. Given
€ B, we have a1? = a1hy, % = Shg with hy,hg € H N [A, B]. Then oy” =
alﬁaz hot — aghi. Let us use the same notation and repeat the steps of part i),
then we get a? = alhalhlh%hal(h_lhﬁ)o‘zhal. Since h~! € coreq Z(G)H,
Lemma 3.3 vi) implies h” = hzhg with z € Z(G), ha € H, whence (h_lhﬁ)o‘zha1
— (zh2)®2P0 " with ag1 € Ag. As h1 = a1—ta1? € [A, B] it follows h1 € Aut Q,
using Lemma 3.3 vii) we can conclude hi" = hy, whence hlo‘zhal = (hy &)hal with
& € Ap by Lemma 3.3 vi). Hence aP? = a1a01h1&h20‘2h51 = a1h; with agy €
Ap. Since Ag < G we can conclude hy = e, i.e. h® = hz. As 3 € B is arbitrary
we get h € Aut ). We have ofll2 ' = ajagh, whence af? = aj(h~1)® (aal)O‘?.
Using Ag <G and h™! € Aut @ N coreg(Z(G))H it follows af? = ayézh~! with
£ € Ap. On the other hand we have 0/1)‘2 = a10h*, whence h* = h~1, and we can
conclude Lp(Q) C Aut Q. We can show similarly Rp(Q) C Aut Q. O

We give another sufficient condition for the conjugacy closedness of Q/Z(Q).

Proposition 3.8. Let Q be a loop such that N <@, Q/N is an abelian group.
Suppose Lrp(Q)U Rp(Q) € Z(Inn Q). Then Q/Z(Q) is a CC loop.

PROOF: Let G = MIt Q and H = Inn Q. We have By < Cg({A4)) whence By <
Ca(Lp(Q)) whence Lp(Q) C Z(H) implies Lp(Q) € Z(BoH). Since BoH 4 G
(see Lemma 3.3 i)) it follows Z(BoH) < G. By Lemma 3.3 iii) Z(BoH) =
Z(G) x (Z(BoH)N H), consequently Lrp(Q) C Z(BoH)NH < coreq Z(G)H, i.e.
Q/Z(Q) is left conjugacy closed. In a similar way we get that Q/Z(Q) is an RCC
loop too. ([

In case [A, B] < Aut @ the sufficient condition for the conjugacy closedness of
@/Z(Q) in the previous proposition can be proved to be necessary.

Proposition 3.9. Let ) be a loop such that N < @, Q/N is abelian group.
Suppose that [A, B] < Aut@. Then Q/Z(Q) is conjugacy closed if and only if
Lr(Q) U Rp(Q) C Z(Im Q).

PRrROOF: Let G =Mt Q, H = Inn Q.

i) Suppose first Lp(Q)URp(Q) € Z(Inn Q). Then Proposition 3.8 implies our
statement.
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ii) Suppose Q/Z(Q) is a CC loop. Let a1, a2 € A. Then using Lemma 3.3 ii)
we get 19?2 = ajagh with ag € Ag, h € HN (A). Clearly h € Lp(Q), since
Lrp(Q) C Aut@ by Proposition 3.7, it follows h® € hAg for every a € A (see
Lemma 3.3 vi)). The conjugacy closedness of Q/Z(Q) implies h € coreq Z(G)H,
whence h® € hZ(G). Similarly h® € hZ(G) for every b € B. As G = (A, B) we
can conclude h € Z(Inn @), whence clearly Lrp(Q) C Z(Inn@). In a similar way
we get Rp(Q) C Z(Inn Q). O

In case of Buchsteiner loops we have a necessary and suflicient condition that
Q/Z(Q) is a group:

Proposition 3.10 ([9, Lemma 7.2]). Let Q be a Buchsteiner loop. Then Q/Z(Q)
is a group, i.e. A(Q) < Z(Q) if and only if [A, B] < Z(Inn Q).

We generalize this result in the following way:

Proposition 3.11. Let Q be a loop such that N < @, Q/N is an abelian group
and [A,B] < Z(Inn Q). Then Q/Z(Q) is a group, i.e. A(Q) < Z(Q).

PRrROOF: Let G = Mt Q, H = Inn Q. By Lemma 3.3 ii) G/AgH is abelian. We
show [A,B] < Z(AoH). By Lemma 3.3 v) Ag < Cg([A, B]). The condition
[A,B] < Z(H) implies [A,B] < Z(AgH). Since Z(ApH) = (Z(G) N Ag) %
(Z(ApH) N H) and ApH < G, by Lemma 3.3 iii), ii) it follows Z(AgH) 4 G.
Thus we get Z(AgH) < coreg Z(G)H, consequently Q/Z(Q) is a group. O

In case [A, B] < Aut @ the above mentioned sufficient condition can be proved
to be necessary.

Proposition 3.12. Let Q be a loop such that N < Q, Q/N is an abelian group
and [A, B] < Aut Q. Then Q/Z(Q) is a group if and only if [A, B] < Z(Inn Q).

PROOF: Let G =Mt Q and H = Inn Q.

i) First suppose [A4, B] < Z(Inn Q). Then our statement follows by Proposi-
tion 3.11.

ii) Suppose Q/Z(Q) is a group. Then [A, B] < coreq Z(G)H. Since [A, B] <
Aut Q N H, using Lemma 3.3 v) we get t* € tAg for every ¢t € [A, B] and a € A.
Consequently ¢* € tZ(G). Similarly we get t* € tZ(G) for every b € B. As
G = (A, B) we can conclude that t € Z(H), i.e. [A,B] < Z(H). O

In the following we study the case of abelian inner mapping group.

Proposition 3.13. Let Q be a Buchsteiner loop with abelian inner mapping
group. Then

1) Q/Z(Q) is a group;

i) @ is nilpotent of class at most three.

PROOF: i) See Proposition 3.10.
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ii) Since a CC loop with abelian inner mapping group is nilpotent of class at
most two [5, Proposition 2.5], our statement follows. O

We analyze the general case:

Theorem 3.14. Let Q be a loop with abelian inner mapping group such that
N <@ and Q/N is an abelian group. Then the following statements are true.
i) Q/Z(Q) is a group.

ii) @ is nilpotent of class at most three.

PROOF: i) See Proposition 3.11.
ii) See the proof of Proposition 3.13 ii). O

In case of abelian inner mapping group under the conditions of Proposition 3.5
we can prove more, namely the nilpotency of class at most three of the multipli-
cation group.

For this aim we need the following

Lemma 3.15. Let QQ be a loop with abelian inner mapping group such that
N <@ and Q/N is an abelian group. Let G = MIt Q, H = Inn Q, and Gy is the
normal closure of H in G. Then
i) h® € h(Z(G) N Gy), h* € h(Z(G) N Gyp) for every h € H N AutQ and
a€ A be B;
ii) a1? € a1(Z(G) N Gy) for every a1 € AgN Gy, a € A.

PROOF: i) Let h € HNAut Q. Then ha~" € hAg by Lemma 3.3 vi). Since Ag < G
(see Lemma 3.3 iv)) and Gy < G we get ha !l € hAg N Gg. Clearly AgH > G,
whence Gg = (Ag N Go)H, consequently hal e h(Ag N Gp). Let b€ BNaH, in
a similar way we can show R € h(Bg N Gg). The commutativity of H implies
ha ™'t — h, whence h¢ " = RV € h(Ag N By). Since Ag N By C Z(G) we get
he € h(Z(G) N Go), h® € h(Z(G) N Gy) for every a € A, b€ B.

ii) By Theorem 3.14 we have that Q/Z(Q) is of nilpotency class at most two.
Hence clearly Q/Z(Q)/Z(Q/Z(Q)) is an abelian group. Let U = coreq Z(G)H.
Then MIt(Q/Z(Q)) = Mt Q/U. Let Z* be the inverse image of Z(Mlt Q/U).
Since Q/Z(Q)/Z(Q/Z(Q)) is an abelian group it follows Z*Inn@Q < Mlt Q.
By Proposition 2.4 iii), Go < Z*Inn@. Applying Z(MltQ) € AN B for
ZMIt Q/Z(Q)) we get bl_lal € UNH for every a1 € GoNAp, b1 € BNayH. Thus
(bl_lal)“ € bl_lalU for every a € A. We have by € Gy N By < Ci(A), whence
a1 € a1U. Since U = coreg Z(G)H it follows a1* = ajz1h; with z1 € Z(G),
h1 e UNH. As Ag < G (see Lemma 3.3 iv)), a1® = a1 z1 holds. Gy < G implies
z1 € Z(G) N Go. O

We return to our statement.
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Theorem 3.16. Let Q) be an A, ;-loop with abelian Inn Q such that N < Q, Q/N
is an abelian group. Suppose [A, B] < Aut Q. Then @ and Mlt Q are nilpotent of
class at most three.

PRrROOF: By Theorem 3.14 @ is nilpotent of class at most three.

Let G =Mt Q, H =Inn@Q. Let M = (A)[A, B]. We show M < G. Using that
[A, B] < Aut@ and that H is abelian, Lemma 3.15 i) implies Z(G)[A, B] < G.
Since Z(G) < (A) it follows M < G. We have (A) N H < Aut Q, [A, B] < Aut Q.
Using (A, B) = G and Lemma 3.15 i), we get M < G.

Let Z1 = Z(G)NGy (G is the normal closure of H in G), D = GoNM and A1 =
GoNAg. We show D/Z; < Z(G/Z1). Using Lemma 3.15 ii), 41 < Cg(B) and
G = (A, B) we can conclude A171/Z1 < Z(G/Z1). As DN H = ((A) N H)[A, B]
and ((A) N H)[A, B] < Aut @, Lemma 3.15 i) implies D/Z; < Z(G/Z1). Since
G/M = H/H N M it follows G/M is abelian. Using G/G is abelian too we get
G' < M NGy = D, consequently G/D is abelian. Thus G is nilpotent of class at
most three. (]

Using the previous result we describe the structure of Buchsteiner loop with
abelian inner mapping groups. For this aim we need the following:

Proposition 3.17 ([9, Lemma 7.2, Proposition 7.3]). If @ is a Buchsteiner loop
with abelian inner mapping group, then QQ/N is an elementary abelian 2-group.

Corollary 3.18. Let Q be a Buchsteiner loop with abelian Inn @, let Ag =
{L¢|c € N}. Then Mlt Q/AoInn @ is an elementary abelian 2-group.

PRrROOF: The structure of the multiplication group of the factorloop and Proposi-
tion 3.17 imply this statement. (I

Proposition 3.19. Let Q be a Buchsteiner loop with abelian Inn Q. Then the
following statements are true.

i) @ and MIt Q are nilpotent of class at most three.
ii) aab € Ag for every a € A, b€ BNalnnQ, where Ay = {L. | ¢ € N'}.
iii) (A) NInn @ is an elementary abelian 2-group.

PROOF: i) By Theorem 3.14 @ is nilpotent of class at most three. We have @ is
an A, ;-loop, N < Q, Q/N is an abelian group, [A4, B] = (A)NInn Q = (B)NInn Q
(see Proposition 3.2) whence [A, B] < Aut @, so we can apply Theorem 3.16.

ii) See the definition of Buchsteiner loops and Corollary 3.18.

iii) By ii) aa® € Ag for every a € A, b € BNalm@Q. Let by € B be
arbitrary. Clearly a® = ah, a®* = ahy with h, hy € Inn Q, whence aa® = (aab)b1 =
ahiahih? = a2h1%h k. Lemma 3.15 i) implies h1® = hyz1, hY = hz with 212 €
Z(Mlt Q). Hence (aab)?* = a?hh12z12 = aah. Thus hy? = e. O

We give a characterization theorem about the Buchsteiner loops with abelian
inner mapping group.
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Theorem 3.20. Let (Q be a loop. Then @ is a Buchsteiner loop with abelian
inner mapping group if and only if Q = Q1 X Q2, where Q1 is a Buchsteiner
loop with abelian inner mapping of order 2! and Qs is a group of odd order
with abelian inner mapping group. Additionally M1t Q = Mt Q1 x Mt Q2 where
Mlt Q1 € Syly(Mlt Q).

PRrROOF: i) Clearly, if Q = Q1 x Q2 with the given properties, then @ is a Buch-
steiner loop with abelian Inn Q.

ii) Conversely suppose @ is a Buchsteiner loop with abelian Inn Q). Let G =
Mlt Q, H = Inn Q. By Proposition 3.19 i) G is nilpotent of class at most three.
So G =8 x T, where S € Syly(G).

First we show S = (SN A)(SN H). Let S € Syly((A)). Since (4) I G (see
Proposition 3.2) it follows S < G. Let Sy € Syly(H), then S1S59 < G. Using
(A)H = G we can conclude 5159 = S € Syly(G). As (A) N H is an elementary
abelian 2-group (see Proposition 3.19 iii)). S > (A) N H holds, whence S; =
SN(A) = (SNA)((AYNH). We have S = 5150, consequently S = (SNA)(SNH).
In a similar way S = (SN B)(SN H).

Since G/AgH is an elementary abelian 2-group (see Corollary 3.18) and S >
(A) N H we can conclude T' < AgH and T1 = T N (A) < Ap. As G is nilpotent
and T is a Hall subgroup of G, by Hall’'s theorems 77 < G. We have H = Sy x Tj
where Tg < T is a Hall subgroup of H. Using T' < AgH, AgNH =1and Ag I G
it follows T = Ty - To = (T' N (Ag))(T' N H). Similarly T = (T' N Bo)(T N H).

Let

Ag=SNA, Ap=TnN A,
Bg=SNnB, Bpr=1TnNDkBy.

Since AgA = A, ByB = B we have Ay Ag C A, BrBg C B. Clearly |ApAg| =
|Ar||Agl, |BrBs| = |Brl|Bs|. Using G — S x T, § = (S0 A)YS N H) =
(SNB)(SNH), T=(TNA)TNH)=(TNBy)(TNH) we get A= ApAg,
B = BrBg.

Let

Q1 ={ceQ]Lce S},
Q2={deQ|LgeT}
As SH < G and TH < G we can conclude (01 and Q2 are normal subloops of Q.

We show Mlt Q1 = S and Mlt Q2 = T. By Niemenmaa and Kepka’s theorem [13]
it is enough to show:

1) (SNA,SNB)=S, i) coreg(SNH)=1,1i3) [SNASNB]<SNH,
j1) (TN Ay, TNBy) =T, j2) corep(TNH)=1,j3) [TNAy, TN By <TnNH.
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We have (A, B) = G, since A = ApAg, B = BprBg and G = S x T i1) and j1)
are true.

G = S x T implies coreg(SN H) < SN Cq(T) and coreg(SN H) < G. Using
coreq H =1 we get coreg(S N H) = 1. In a similar way jo) follows.

i3) and j3) are consequences of [A, B] < H.

Clearly Q1 is a Buchsteiner loop of order 2! with abelian InnQq (= S N H).

Since Mlt Q2 = (T'NAg)(TNH), TN(A) < Ag, Ag < Mlt Q it follows that Qo
is a group of odd order with abelian Inn Qo (=T N H). O
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