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Small sets and hypercyclic vectors

F. Bayart, É. Matheron, P. Moreau

Abstract. We study the “smallness” of the set of non-hypercyclic vectors for some clas-
sical hypercyclic operators.
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Classification: 47A16, 28A05

1. Introduction

Let X be a separable Fréchet space. A continuous linear operator T on X is
said to be hypercyclic if there exists some vector x ∈ X whose T -orbit OT (x) :=
{Tn(x); n ∈ N} is dense in X . Such a vector is said to be hypercyclic for T , and
the set of hypercyclic vectors is denoted byHC(T ). We refer to [6] for background
on hypercyclicity.
It is easy to see that if T ∈ L(X) is hypercyclic, then HC(T ) is a dense Gδ

subset of X . Thus, X \ HC(T ) is always “small” in the sense of Baire cate-
gory, provided HC(T ) 6= ∅. However, there exist many other natural notions of
smallness in infinite-dimensional analysis. In this note, we consider two of them:
σ-porosity, and Haar-negligibility.

In a metric space (E, d), a set A is said to be porous if the following property
holds true: for each point a ∈ A, there exists some positive constant λ and a
sequence of positive numbers (rn) tending to 0 such that, for each n ∈ N, one
can find x ∈ B(a, rn) with B(x, λrn) ∩ A = ∅. The set A is said to be σ-porous
if it can be covered by countably many porous sets. Porosity was introduced by
E.P. Dolženko in 1967 ([4]), and extensively studied since then; see [9] and [10]
for more details.
In a Polish abelian group G, a universally measurable set A is said to be Haar-

null if there exists some Borel probability measure µ on X such that µ(A+x) = 0
for all x ∈ G. This notion was discovered by J.P.R. Christensen in 1972 ([3]), and
it has received much attention in the last few years; see e.g. [7].

In this note, we study the smallness of the set of non-hypercyclic vectors for
weighted backward shifts on c0(N) or ℓ

p(N) (1 ≤ p <∞) and operators commut-
ing with translations on the space of entire functions H(C). We first recall the
definitions.
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LetX = c0(N) or ℓ
p(N) (1 ≤ p <∞), and let us denote by (ei)i∈N the canonical

basis of X . If w = (wi)i≥1 is any bounded sequence of positive numbers, then
the weighted backward shift on X associated to w is the operator Bw : X → X
defined by Bw(e0) = 0 and Bw(ei) = wiei−1, i ≥ 1. By a result of H. Salas ([8]),
Bw is hypercyclic if and only if

lim sup
n→∞

n
∏

i=1

wi =∞.

For example, the operator T = 2B is hypercyclic, whereB is the usual, unweighted
backward shift on X . This is a classical result of S. Rolewicz.
If λ ∈ C, then the translation-by-λ operator on H(C) is the operator τλ defined

by τλf(z) = f(z + λ). By a classical result of G.D. Birkhoff, τλ is hypercyclic
whenever λ 6= 0. More generally, it was proved by G. Godefroy and J.H. Shapiro
([5]) that if T ∈ L(H(C)) is not a scalar multiple of the identity and commutes
with all translation operators, then T is hypercyclic. A typical example is the
derivation operator D: this is another classical result, due to S. McLane.

The first two sections of the paper concern σ-porosity, which had already been
considered in [1]. We show that if a weighted backward shift T has at least one
orbit staying away from 0, then the set of non-hypercyclic vectors for T is not
σ-porous; this improves the first main result in [1]. On the other hand, we give
a criterion for an operator to be “σ-porous hypercyclic”, which can be applied
to an interesting shift constructed by D. Preiss (unpublished), and to translation
operators on H(C) for a certain class of metrics; here, of course, an operator T
is said to be σ-porous hypercyclic if the set of non-hypercyclic vectors for T is
σ-porous. The final section concerns Haar-negligibility. We show that weighted
backward shifts with large weights are not “Haar-null hypercyclic”, and we get the
same conclusion for a class of operators on H(C) commuting with translations.

2. Weighted shifts which are not σ-porous hypercyclic

In this section, we exhibit a class of non σ-porous subsets in Banach spaces,
and we apply the result to show that quite a lot of weighted backward shifts on
c0(N) or ℓ

p(N) are not σ-porous hypercyclic.

In what follows, X is a Banach space over K = R or C, and we assume that X
has an unconditional basis (ei)i∈N. We denote by (e

∗
i ) the associated sequence of

coordinate functionals. We will consider subsets of X of the form

FA
[L] = {x ∈ X ; ∀n ∈ N Ln(x) ∈ A},

where A is a subset of KN and [L] = (Ln) is a sequence of continuous linear maps

from X into KN. We view a sequence [L] = (Ln) ⊂ L(X,KN) as an infinite matrix
(Lnj) with entries in X

∗, and we denote by L the family of all such matrices.
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We will say that a matrix [L]′ = (L′
n) ∈ L is an admissible modification of a

matrix [L] if L′
nj = αnjLnj for all (n, j) ∈ N2, where (αnj) is a bounded sequence

of scalars.

Finally, we say that a set A ⊂ KN is monotone if, whenever (uj) ∈ A and
|vj | ≥ |uj | for all j ∈ N, it follows that (vj) ∈ A.

Theorem 2.1. Let A be a monotone subset of KN, and let [L] ∈ L. Assume

that FA
[L] 6= ∅, and that the following properties hold:

• Lnj ∈
⋃

i Ke∗i for all pairs (n, j) ∈ N2;

• FA
[L]′ is closed in X for each admissible modification [L]

′ of [L].

Then FA
[L] is not σ-porous.

From this, we get the following improvement of the first main result of [1].

Corollary 2.2. Let T be a weighted backward shift on X = c0(N) or ℓ
p(N),

1 ≤ p <∞. If there exists some point x ∈ X such that infn ‖Tn(x)‖ > 0, then T
is not σ-porous hypercyclic.

Proof: It is enough to show that the set

F = {x ∈ X ; ∀n ∈ N ‖Tn(x)‖ ≥ 1}

is not σ-porous. Now, the set F is nonempty and has the form FA
[L], with

Lnj(x) = 〈e∗j , T
n(x)〉 and A = {(uj) ∈ KN; ‖

∑

j uj ej‖ ≥ 1}, where we have

put ‖
∑

j uj ej‖ =∞ if (uj) does not define an element of X .

Since Lnj = T
∗n(e∗j ) and T is a shift, we have Lnj ∈ Ke∗n+j for each (n, j) ∈ N2.

Moreover, if [L]′ = (L′
n) is an admissible modification of [L], so that L

′
nj = αnjLnj

for some bounded sequence of scalars (αnj), then each L
′
n : X → KN defines

a bounded operator T ′
n : X → X , namely T ′

n(
∑

j xjej) = Tn(
∑

j αnjxjej).

Therefore, FA
[L]′ = {x ∈ X ; ∀n ∈ N ‖T ′

n(x)‖ ≥ 1} is closed in X . Thus, we may

apply 2.1. �

To prove 2.1, we will use a version of Foran’s Lemma (see [9, Lemma 4.3]),
which is essentially the only known tool to check that some sets are not σ-porous.
A subset A of a metric space (E, d) is said to be λ-porous (λ > 0) at some

point a ∈ E if there exists a sequence of positive numbers (rn) tending to 0 such
that, for each n ∈ N, one can find x ∈ B(a, rn) with B(x, λrn) ∩ A = ∅. The
set A is said to be λ-porous if it is λ-porous at each point a ∈ A. It is proved
in [10] that given λ ∈ (0, 12 ), any σ-porous set A ⊂ E can in fact be covered
by countably many λ-porous sets. From this and Lemma 4.3 in [9] applied to
the porosity relation V defined by V (x,A) ⇔ A is λ-porous at x, one gets the
following result.
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Lemma 2.3. Let (E, d) be a complete metric space, and let λ ∈ (0, 12 ). Let also
F be a family of nonempty closed subsets of E. Assume F has the following
property: for each set F ∈ F and each open set V such that V ∩ F 6= ∅, one can
find F ′ ∈ F such that F ′ ⊂ F , F ′ ∩ V 6= ∅ and F is λ-porous at no point of F ′.
Then no set F ∈ F is σ-porous.

Proof of Theorem 2.1: Let us denote by [L]0 the matrix given in the hy-
potheses of Theorem 2.1, and by L0 the family of all matrices [L] ∈ L which are

admissible modifications of [L]0 and satisfy F
A
[L] 6= ∅. For notational simplicity,

we will drop the superscript A in FA
[L] and simply write F[L].

If L ∈ L0, we can choose a map (n, j) 7→ 〈n, j〉 from N2 into N such that
Lnj ∈ Ke∗〈n,j〉. We do not indicate explicitly that the map 〈 , 〉 depends on the

matrix [L], but this will cause no confusion.

Finally, for each set J ⊂ N, we denote by πJ the canonical projection from X
onto span {ei; i ∈ J}. This projection is well-defined by unconditionality of the
basis (ei).

Let L ∈ L0. For each triple p = (ε,K, I), where ε > 0, K > 1 and I is a finite
subset of N, we define a new matrix [Lp] in the following way:

Lpnj =

{

(1 + ε)−1Lnj if 〈n, j〉 ∈ I;

K−1 Lnj if 〈n, j〉 /∈ I.

Then [Lp] is an admissible modification of [L], and hence an admissible mod-
ification of the matrix [L]0 we started with. Moreover, if x ∈ F[L], then y :=

(1 + ε)πI(x) + KπN\I(x) satisfies L
p
nj(y) = Lnj(x) for all (n, j) ∈ N2, whence

y ∈ F[Lp]. Thus [F
p] 6= ∅, so that [Lp] ∈ L0. Notice also that F[Lp] ⊂ F[L] by

the monotonicity property of A.

Claim 1. Let [L] ∈ L0, and let K > 1 be given. If V ⊂ X is an open set
such that F[L] ∩ V 6= ∅, then one can find ε, I such that F[Lp] ∩ V 6= ∅, where

p = (ε,K, I).

Proof: Here, the basis (ei) needs not be unconditional because we consider
projections on finite or co-finite sets only. Choose a point x ∈ V ∩ F[L] and

r > 0 such that B(x, r) ⊂ V . Since (ei) is a basis for X , one can choose a
finite set I ⊂ N such that ‖πN\I(x)‖ is very small, and then ε > 0 such that

y := (1 + ε)πI (x) + KπN\I(x) satisfies ‖y − x‖ < r. This point y shows that

F[Lp] ∩ V 6= ∅. �

Claim 2. Let [L] ∈ L0 and λ ∈ (0, 1). If K > 0 is large enough, then, for each
p = (ε,K, I), the set F[L] is λ-porous at no point of F[Lp].
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Proof: Let α ∈ (0, 1) to be chosen later. If x ∈ X , ε > 0 and a finite set I ⊂ N

are given, one can find δ = δ(x, ε, I) > 0 such that if y ∈ X satisfies ‖y − x‖ < δ,
then

|〈e∗i , y〉| ≥ (1 + ε)
−1|〈e∗i , x〉| for all i ∈ I.

Since (ei) is unconditional, one may associate to each such point y another
point ỹ ∈ X such that

〈e∗i , ỹ〉 =

{

〈e∗i , y〉 if i ∈ I or |〈e∗i , y〉| >
α
2 |〈e

∗
i , x〉|;

α〈e∗i , x〉+ (1− α)〈e∗i , y〉 otherwise.

Then |〈e∗i , ỹ〉| ≥ (1 + ε)
−1|〈e∗i , x〉| if i ∈ I, and |〈e∗i , ỹ〉| ≥

α
2 |〈e

∗
i , x〉| if i /∈ I, by

the triangle inequality. Thus, if K ≥ 2α−1, we get that for any p = (ε,K, I) and
each point y ∈ B(x, δ), the following implication holds:

x ∈ F[Lp] ⇒ ỹ ∈ F[L].

Moreover, we also have |〈e∗i , ỹ − y〉| ≤ α |〈e∗i , x− y〉| for all i ∈ I, so that

‖ỹ − y‖ ≤ Cα‖x− y‖,

where C is the unconditionality constant of the basis (ei). If we now choose
α < C−1λ, we conclude that if K ≥ 2α−1, then F[L] is λ-porous at no point

x ∈ F[Lp] when p has the form (ε,K, I). �

It follows from the above claims that the family F := (F[L])L∈L0
satisfies the

hypotheses of Lemma 2.3. Thus, no set F[L] is σ-porous ([L] ∈ L0), and the proof
of 2.1 is complete. �

3. A criterion for σ-porosity

It is well-known that an operator T ∈ L(X) is hypercyclic if and only if it is
topologically transitive, which means that for each pair (U, V ) of nonempty open
subsets of X , one can find n ∈ N such that Tn(U) ∩ V 6= ∅ (see [GE]). In this
section, we show that if an operator is “topologically transitive with estimate”,
then it is σ-porous hypercyclic. The following easy lemma will be needed.

Lemma 3.1. Let (E, d) be a metric space, and let A ⊂ E. Assume there exist
δ0 > 0, a dense set D ⊂ E and some constant c > 0 such that: for all u ∈ D and
every δ ∈ (0, δ0), one can find x ∈ E such that d(x, u) < δ and B(x, cδ) ∩ A = ∅.
Then A is porous.

Proof: Let a be any point of E. For any δ ∈ (0, δ0), one can find u ∈ D with

d(u, a) < δ
2 , and then x ∈ E with d(x, u) < δ

2 and B(x, c
δ
2 ) ∩ A = ∅. Then we
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have x ∈ B(a, δ) and B(x, c
2 δ) ∩A = ∅, which shows that A is c

2 -porous at each
point a ∈ E (actually very porous in the sense of [9]). �

Since this involves no additional complication, we formulate the announced
criterion for an arbitrary sequence of continuous maps Tn : E → E from a metric
space (E, d) into itself. The sequence T = (Tn)n∈N is said to be universal if there
is some x ∈ E such that the set {Tn(x); n ∈ N} is dense in E, and the set of
universal points for T is denoted by Univ(T).
If T : (E, d)→ (E, d) is a continuous map, then, for each r > 0, we denote by

ω−1(T, r) the largest number δ ∈ [0, 1] such that d(x, y) < δ ⇒ d(T (x), T (y)) < r.

Theorem 3.2. Let (E, d) be a separable metric space, and let T = (Tn) be a
sequence of continuous maps, Tn : E → E. Assume there exist a dense set D ⊂ E
and for each pair (v, r) ∈ D × (0, 1), a dense set Dv,r ⊂ E and positive real
constants δv,r, cv,r such that the following holds true. For each u ∈ Dv,r and
every δ ∈ (0, δv,r), one can find x ∈ E and n ∈ N such that

(a) d(x, u) < δ and d(Tn(x), v) < r;
(b) ω−1(Tn, r) ≥ cv,rδ.

Then X \Univ(T) is σ-porous.

Proof: It is enough to show that for each pair (v, r) ∈ D × (0, 1), the set

Av,r := {x ∈ E; ∀n ∈ N d(Tn(x), v) ≥ 2r}

is porous. Indeed, E \Univ(T) is a countable union of such sets Av,r , by separa-
bility of E. Now, it follows from the triangle inequality that for each u ∈ Dv,r and
every δ ∈ (0, δv,r), one can find x ∈ B(u, δ) and n ∈ N such that d(Tn(y), v) < 2r
for all y ∈ B(x, cr,vδ), hence B(x, cv,rδ)∩Av,r = ∅. Since Dv,r is dense in X , this
shows that Av,r is porous by 3.1. �

In the linear setting, we get from 3.2 the following “universality criterion with
estimate”, which is a natural variant of the well-known Hypercyclicity Criterion
(see [6]).

Corollary 3.3. Let X be a separable Banach space, and let T = (Tn) be a
sequence of continuous linear operators on X . Assume there exist a dense set
D∗ ⊂ X and for each pair (v, r) ∈ D∗ × (0, 1), a dense set D∗

v,r ⊂ X and positive
real constants δ∗v,r, Cv,r such that the following holds true. For each u ∈ D∗

v,r
and every δ ∈ (0, δ∗v,r), one can find n ∈ N and z ∈ X such that

(a1) ‖Tn(u)‖ < r;
(a2) ‖z‖ < δ and ‖Tn(z)− v‖ < r;

(b) ‖Tn‖ ≤
Cv,r

δ .

Then X \Univ(T) is σ-porous.
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Proof: One can apply 3.2 with Dv,r := D∗
v,r/2, δv,r := δ

∗
v,r/2 and cv,r :=

r
Cv,r/2

.

Given u ∈ D∗
v,r/2 and δ ∈ (0, δ∗v,r/2), choose n and z according to 3.3 and set

x := u+ z. �

Remark. It follows from the above proofs that, in 3.2 as well as in 3.3, the set
X \ Univ(T) can in fact be covered by countably many closed sets which are
σ-very porous in the sense of [9].

We now give two illustrations of 3.2. The first one is a recent unpublished
result of D. Preiss, and the second one is a generalization of the second main
result in [1]. We would like to thank D. Preiss for allowing us to include his
example in this paper.

Example 1 (Preiss). There exist weighted backward shifts on X = c0(N) or
ℓp(N) (1 ≤ p <∞) which are σ-porous hypercyclic.

Proof: We apply Corollary 3.3 with D∗ = c00, the space of all finitely sup-
ported vectors x ∈ X , and D∗

v,r = c00 for all (v, r) ∈ c00 × (0, 1). Let Tw be a
backward shift on X associated to some bounded sequence of positive numbers
w = (wk)k≥1, and let us see what properties of w are needed. For p ≤ q ∈ N,
we set wp,q =

∏

p≤k≤q wk (where we have put w0 = 0). Finally, we denote by

(ei)i∈N the canonical basis of X .
Let v =

∑

i v(i)ei ∈ c00 be supported on some interval [0, p). If n is any
positive integer, then the vector

zn :=

p−1
∑

i=0

v(i)

w1+i,n+i
en+i

satisfies Tn
w(zn) = v, and we have ‖zn‖ ≤ ‖v‖ max{(w1+i,n+i)

−1; 0 ≤ i < p}.
Moreover, if u ∈ c00, then T

n
w(u) = 0 if n is large enough. Finally, we have

‖Tn
w‖ = sup{w1+i,n+i; i ∈ N}. Thus, we see that Tw will be σ-porous hypercyclic

provided for each positive integer p the following holds for suitable constants Mp

and Cp: for every M ≥Mp, one can find infinitely many integers n satisfying

(a) w1+i,n+i > M for all i ∈ {0; . . . ; p− 1};
(b) w1+i,n+i ≤ CpM for all i ∈ N.

A weight sequence w with that property can be obtained as follows. Let us
denote by N∗ the set of all positive integers, and let (pj , rj)j≥1 be a sequence
in N∗ × (0,∞) to be specified later. Then one can construct a sequence w =
(wk)k≥1 ⊂ (0, 2) and an increasing sequence of positive integers (nj)j≥1 such
that the following properties hold for each j:

(i) w1,k = rj for all k ∈ [nj , nj + pj);
(ii) w1+i,nj+i ≤ 2 for all i ≥ pj .
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To do this, first choose n1 so that one can find w1, . . . , wn1 ∈ (0, 2) with w1,n1 =
r1. Set wk = 1 for k ∈ (n1 , n1 + p1) in order to have (i) for j = 1. Then
choose wn1+p1 , . . . , w2n1−1+p1 ∈ (0, 1) small enough to ensure w1+i,n1+i ≤ 2 for
all i ∈ [p1, n1+p1). At this point, choose ε1 > 0 such that (1+ε1)

n1 ≤ 2, and find
n2 large enough to ensure that one can construct w2n1+p1 , . . . , wn2 ∈ (0, 1 + ε1)
with w1,n2 = r2. Then (ii) is satisfied for j = 1 and all i ∈ [p1 , n2−n1]. Repeating
the procedure, one gets the sequences (nj) and (wk).

Now assume that the sequence (pj , rj) enumerates N∗ × Q+, where Q+ is the
set of all positive rational numbers. Fixing p and setting Np := {nj ; pj = p},
we show that (a) and (b) hold with suitable constants Mp and Cp and infinitely

many n ∈ Np. If n = nj ∈ Np, then, writing w1+i,n+i =
rj

w1,i
if i < p, we see

that property (i) and (ii) give

{

aprj ≤ w1+i,n+i ≤ bprj for all i ∈ {0; . . . ; p− 1},

w1+i,n+i ≤ 2 for all i ≥ p,

where ap, bp depend only on p. Thus, (a) and (b) are satisfied for a given M

provided M
ap

< rj ≤
CpM

bp
and CpM ≥ 2. Choosing Cp >

bp

ap
, this holds for

infinitely many j’s whenever M ≥Mp :=
2

Cp
. �

Our second illustration concerns translation operators on H(C). Since porosity
makes sense only when a metric is given, we first have to choose some compatible
metric on H(C). There are various reasonable ways of doing so. For example,
to each sequence of positive numbers ε = (εn) such that

∑∞
0 εn < ∞, one may

associate the metric dε defined by

dε(f, g) =
∞
∑

0

εnmin(1, ‖f − g‖Kn
),

where Kn is the disk D(0, n) and ‖f‖K = sup{|f(z)|; z ∈ K}. With that kind of
metrics, we have the following result.

Example 2. Let ε = (εn) be a summable sequence of positive numbers, and
assume there exists some constant c > 0 such that

∑

k>n εk ≥ c εn for all n ∈ N.
If T 6= id is a translation operator on H(C), then T is σ-porous hypercyclic with
respect to the metric dε.

Proof: The operator T is defined by Tf(s) = f(s + α), where α ∈ C \ {0}.
We check that the hypotheses of Theorem 3.2 are satisfied with D = H(C) and
Dv,r = H(C), δv,r = 1 for all (v, r) ∈ H(C) × (0, 1). Thus, we have to find some
suitable constants cv,r. Let us fix a pair (v, r) ∈ H(C) × (0, 1), together with
u ∈ H(C).
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For simplicity, we will write d instead of dε and ‖ · ‖n instead of ‖ · ‖Kn
. We

fix a positive integer p ≥ |α| and η > 0 such that

‖f − g‖p < η ⇒ d(f, g) < r.

Finally, we assume without loss of generality that
∑∞
0 εn = 1.

Let δ ∈ (0, 1), and setN := min{n ∈ N;
∑

k>n εk <
δ
2}. To ensure property (a)

in 3.2, it is enough to find some function x ∈ H(C) and some integer n such that

‖x−u‖N < δ
2 and ‖T

n(x)−v‖p < η. In other words, we require |x(s)−u(s)| < δ
2

on KN and |x(s) − v(s − nα)| < η on nα + Kp. Now, the two disks KN and
nα+Kp are disjoint whenever n|α| > N + p, and in that case Runge’s Theorem
provides an x ∈ H(C) satisfying the required properties. Let n be the smallest
integer satisfying n|α| > N + p. Then (a) is satisfied with n and some x ∈ H(C),
so it only remains to show that (b) holds for some suitable constant cv,r.
By the choice of n and since p ≥ |α|, we have n|α| ≤ N + 2p and hence

‖Tn(f)−Tn(g)‖p ≤ ‖f − g‖N+3p for all f, g ∈ H(C). By the choice of p and η, it
is therefore enough to find some constant c, which may depend on v, r, p, η but
must be independent of δ (and hence of N) such that

(1) d(f, g) < cδ ⇒ ‖f − g‖N+3p < η.

By assumption on ε, there exists some constant cp such that

∑

k≥N+3p

εk ≥ cp
∑

k≥N

εk ≥ cp
δ

2
,

where the second inequality comes from the choice of N . By definition of the
metric dε, it follows that for any f, g ∈ H(C), we have

cp
2
δ min(1, ‖f − g‖N+3p) ≤ d(f, g).

Therefore, (1) will be satisfied provided c <
cp

2 min(1, η). This concludes the
proof. �

Remark 1. We do not know what happens if the sequence (εn) tends very quickly
to 0. We do not know either what can be said about the derivation operator D,
another classical example of hypercyclic operator on H(C). In view of 2.1 and
since D is a weighted backward shift with increasing weights, it seems reasonable
in that case to “conjecture” that, at least for a certain class of metrics dε, the
operator D is not σ-porous hypercyclic.

Remark 2. Let X be a separable Fréchet space whose topology is generated by
an increasing sequence of semi-norm (ρn)n∈N, and define a metric d on X by

d(x, y) =

∞
∑

0

εn min(1, ρn(x− y)),
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where (εn) is as in Example 2. Then one proves in exactly the same way that an
operator T ∈ L(X) is σ-porous hypercyclic provided it has the following property:
given (u, v) ∈ X ×X and (N, p) ∈ N × N, one can find for each ε ∈ (0, 1) a point
x ∈ X and an integer n such that

• ρN (x − u) < ε and ρp(T
n(x)− v) < ε;

• ρp(T
n(z)) ≤ Ap ρN+Bp

(z) for all z ∈ X , where Ap > 0 and Bp ∈ N

depend only on p.

A similar property, called Runge transitivity, is introduced in [2].

4. Haar-negligibility

In this section, we give some examples of hypercyclic operators which are not
Haar-null hypercyclic. The main tool will be the following well-known and simple
lemma (see [3]).

Lemma 4.1. Let G be a Polish abelian group, and let A be a universally mea-
surable subset of G. If A contains a translate of each compact set K ⊂ G, then
A is not Haar-null.

Our first result will be applied below to weighted shifts. Let us say that a
sequence (fi)i∈N in a Banach space X is semi-basic if there exists some finite
constant C such that for all finitely supported sequences of scalars (λi)i∈N and
each p ∈ N, we have

|λp| ‖fp‖ ≤ C ‖
∑

i

λifi‖.

Proposition 4.2. Let X be a Banach space with a Schauder basis (ei)i∈N, and

let T ∈ L(X). For each integer n ≥ 1, set θn := lim supi→∞
‖T n(ei)‖

‖ei‖
. Assume

the following properties hold true.

(a) All sequences (Tn(ei))i∈N are semi-basic, with uniformly bounded con-
stants.

(b) For each increasing sequence of natural numbers (pn)n≥1, the series
∑ 1

θn
epn is convergent.

Then X \HC(T ) is not Haar-null.

Proof: Replacing ei by
ei

‖ei‖
, we may assume that the Schauder basis (ei) is

normalized. It is enough to show that the set

F = {x; ∀n ∈ N ‖Tn(x)‖ ≥ 1}

is not Haar-null. We show that F contains a translate of each compact subset
of X . If K ⊂ X is compact, then the sequence of coordinate functionals (e∗i )
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tends to 0 uniformly on K, because infi ‖ei‖ > 0. Writing xi instead of 〈e
∗
i , x〉, it

follows that one can choose an increasing sequence of integers (pn)n≥1 such that

{

∀x ∈ K |xpn | ≤
1
θn

‖Tn(epn)‖ ≥ 1
2θn.

Now, put z =
∑∞
1
2
θn
epn . For all x ∈ K and all n ≥ 1, we have

‖Tn(x+ z)‖ =

∥

∥

∥

∥

∥

∞
∑

i=0

(zi + xi)T
n(ei)

∥

∥

∥

∥

∥

≥ C−1 |zpn + xpn | ‖T
n(epn)‖

≥
θn
2C

(

2

θn
−
1

θn

)

=
1

2C
,

where C is a constant independent of n and K. It follows that K+z ⊂ (2C)−1F .
Since K is an arbitrary compact subset of X , this concludes the proof. �

From 4.2, we immediately get the following result, which says that weighted
shifts with “large” weights are not Haar-null hypercyclic.

Corollary 4.3. Let T be a weighted backward shift on X = c0(N) or ℓ
p(N)

(1 ≤ p < ∞), with weight sequence (wn)n≥1. For each integer n ≥ 1, set
θn := lim supi→∞ θni, where θni =

∏

i−n<j≤iwj . If the sequence (1/θn)n≥1

defines an element of X (i.e. if the series
∑ 1

θi+1
ei is convergent in X), then T is

not Haar-null hypercyclic. This holds in particular if infn wn > 1.

Remark. The hypothesis in 4.3 is stronger than the corresponding one in 2.2.
Indeed, choosing some increasing sequence of integers (in)n≥1 with θnin ≥ 1

2 θn
for all n and setting x :=

∑∞
1

1
θnin

ein , we have ‖T
n(x)‖ ≥ 1 for each positive

integer n.

We now turn to operators on H(C) which commute with translations. By
a result of Godefroy and Shapiro ([5]), these are exactly the operators of the
form T = Φ(D), where D is the derivation operator and Φ is an entire function of
exponential type. Moreover, we recall that such an operator is always hypercyclic,
unless it is a multiple of the identity ([5]).

In what follows, we denote by ck(f), k ∈ N, the Taylor coefficients of a function
f ∈ H(C). Let E be the class of all functions Φ : C → C satisfying the following
properties:

• Φ is an entire function of exponential type;
• for all k, n ∈ N, one can write ck(Φ

n) = ak bn pnk, where pnk ≥ 0.
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Clearly, the family E contains all entire functions of exponential type with non-
negative coefficients, and all exponential functions eα z , α ∈ C. More generally, it
is easily checked that E contains all entire functions of exponential type Φ such
that ck(Φ) ∈ αkR+, for all k ∈ N and some fixed complex number α.

Proposition 4.4. Let T be an operator on X = H(C) of the form T = Φ(D),
where D is the derivation operator and Φ ∈ E. Assume there exists at least one
T -orbit whose closure does not contain 0. Then X \HC(T ) is not Haar-null.

In particular, we get

Corollary 4.5. If T is the derivation operator or a translation operator onH(C),
then T is not Haar-null hypercyclic.

Proof: In both cases, the operator T has the required form, and there exists a
function f ∈ H(C) whose orbit stays away from 0: if T is the derivation operator,
one may take f(z) = ez , and if T is a translation operator f = 1. �

The proof of 4.4 relies on the following lemma.

Lemma 4.6. Let T be as in 4.4. Then there exists a sequence (an) ⊂ C such
that the following property holds true: for each compact set K ⊂ X , one can find
a single function ϕ ∈ X such that

(i) ∀n ∈ N Tnϕ(0) ∈ R+an;
(ii) ∀ f ∈ K ∀n ∈ N |Tnf(0)| ≤ |Tnϕ(0)|.

Proof: Write ck(Φ
n) = an bk pnk, with pnk ≥ 0. We show that (an) does the

job. Let K be a compact subset of H(C), and for each k ∈ N, put

ck = sup{|ck(f)|; f ∈ K}.

By Cauchy’s inequalities, we have limk→∞ c
1/k
k = 0. Thus, there exists an en-

tire function ϕ such that bk ck(ϕ) = |bk| ck for all k ∈ N. Since Tnf(0) =
[Φn(D)f ](0) = an

∑

k pnk k! bk ck(f) for each n ∈ N and all f ∈ X , this function
ϕ clearly works. �

Proof of 4.4: We fix a sequence (an) satisfying the conclusion of the previous
lemma. By assumption, there exist some function f0 ∈ X and some neighbour-
hood U of 0 inX such that Tnf0 /∈ U for all n ∈ N. We may assume that U has the
form {u ∈ X ; supK0 |u(z)| < ε0} for some compact set K0 ⊂ C and some ε0 > 0;
and replacing f0 by f0/ε0, we may assume that ε0 = 1. Thus, we have at hand
some compact setK0 ⊂ C and some f0 ∈ X such that sup{|Tnf0(z)|; z ∈ K0} ≥ 1
for all n ∈ N. Since T commutes with all translation operators, this means that
sup{|Tnf(0)|; f ∈ K0} ≥ 1 for all n, where K0 = {τzf0; z ∈ K0}. Since K0 is a
compact subset of X , one can apply Lemma 4.6 to get ϕ ∈ X such that

∀n ∈ N Tnϕ(0) ∈ R+an and |Tnϕ(0)| ≥ 1.
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Now, let K be any compact subset of X . By Lemma 4.6, one can find ψ ∈ X such
that Tnψ(0) ∈ R+an and |Tnf(0)| ≤ |Tnψ(0)|, for all f ∈ K and each n ∈ N.
Putting h = ϕ+ψ, we have |Tn(h)(0)| = |Tnϕ(0)|+ |Tnψ(0)| ≥ 1+ |Tnψ(0)| for
each n ∈ N, hence |Tn(f +h)(0)| ≥ 1 for all f ∈ K and each n ∈ N. In particular,
it follows that K + h ⊂ X \ HC(T ). Thus, we have proved that X \ HC(T )
contains a translate of each compact subset of X . �

From the above propositions, the following questions obviously come to mind.

• Does there exist a weighted backward shift on ℓ2(N) which is Haar-null
hypercyclic?

• Does there exist a nontrivial operator on H(C) commuting with transla-
tions which is Haar-null hypercyclic?

References

[1] Bayart F., Porosity and hypercyclic vectors, Proc. Amer. Math. Soc. 133 (2005), no. 11,
3309–3316.

[2] Bonilla A., Grosse-Erdmann K.-G., Frequently hypercyclic operators and vectors, Ergodic
Theory Dynam. Systems 27 (2007), no. 2, 383–404.

[3] Christensen J.P.R., On sets of Haar measure zero in abelian Polish groups, Israel J. Math.
13 (1972), 255–260.
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