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SP-scattered spaces; a new

generalization of scattered spaces

M. Henriksen, R. Raphael, R.G. Woods

Abstract. The set of isolated points (resp. P -points) of a Tychonoff space X is denoted
by Is(X) (resp. P (X)). Recall that X is said to be scattered if Is(A) 6= ∅ whenever
∅ 6= A ⊂ X. If instead we require only that P (A) has nonempty interior whenever
∅ 6= A ⊂ X, we say that X is SP-scattered . Many theorems about scattered spaces
hold or have analogs for SP-scattered spaces. For example, the union of a locally finite
collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf

or paracompact scattered spaces hold also in case the spaces are SP-scattered. If X

is a Lindelöf or a paracompact SP-scattered space, then so is its P -coreflection. Some
results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf
or paracompact when at least one of the factors is SP-scattered. We relate our results
to some on RG-spaces and z-dimension.

Keywords: scattered spaces, SP-scattered spaces, CB-index, sp-index, P -points, P -spaces,
strong P -points, RG-spaces, z-dimension, locally finite, Lindelöf spaces, paracompact
spaces, P -coreflection, Gδ-topology, product spaces

Classification: 54G10, 54G12

1. Introduction

A space X is said to be scattered if each of its nonempty subpaces has an
isolated point. To determine if a space X is scattered, one begins by deleting its
set Is(X) of isolated points, followed by deleting Is(X \ Is(X)) from X \ Is(X)
and continuing the process possibly transfinitely until a stage is reached when
there are no isolated points left to delete. As is well-known, X is scattered if and
only if one reaches the empty set in this way. There is a very large mathematical
literature on such spaces; see for example those listed in our references. (Scattered
spaces are sometimes called dispersed .) The reason that these spaces appear in
so many places is that this concept arises naturally in many parts of general
topology and functional analysis, as does the process of creating them. There
are also many generalizations and we create another one by removing P -points
instead of isolated points. (Recall that if the set of open neighborhoods of a point
p of X is closed under countable intersection, then p is called a P -point . If each

The research of the second and third named authors was supported by the NSERC of Canada.
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point of X is a P -point, then X is called a P -space.) We denote the set of
P -points of X by P (X).
Trying naively to duplicate the procedure for creating scattered spaces

by deleting P -points instead of isolated points is not productive because
while all subsets of Is(X) are open, this is not the case for P (X). Instead, we
delete interiors of sets of P -points. That is we delete intP (X) from X , then
intX\intP (X) P (X \ intP (X)) from X \ intP (X) and continue (transfinitely when

necessary) as before.
If this iteration eventually produces the empty set, we say that X is SP-

scattered . Clearly every scattered space is SP-scattered. The converse fails as
is witnessed by any (nonempty) P -space without isolated points.
The theme of this paper is that the behavior of SP-scattered spaces generalizes

that of scattered spaces. In particular, it is shown that “scattered” can be re-
placed by “SP-scattered” in the hypotheses of several previously known theorems
concerning Lindelöf and paracompact scattered spaces.
We summarize the contents of subsequent sections. In Section 2 we formally

define SP-scattered spaces and study their internal structure. We show that
the union of a locally finite family of SP-scattered subspaces of a space is SP-
scattered. We also show that the property of being SP-scattered is preserved by
perfect continuous (but not closed continuous) surjections.
In Section 3 we study Lindelöf SP-scattered spaces. Our principal result is

that the P -coreflection of such a space is Lindelöf. We derive several consequences
of this.
In Section 4 we prove analogously that the P -coreflection of an SP-scattered

paracompact space must be paracompact. These two results generalize theorems,
due to Levy and Rice [LR81], which state that P -coreflections of scattered Lindelöf
(resp. paracompact) spaces are Lindelöf (resp. paracompact).
In Section 5 we apply our results to the class of RG-spaces introduced in

[HRW02], and show that an SP-scattered Lindelöf space with finite sp-index
(defined in 2.3 below) must be an RG-space. We also discuss the relationship
between our new concepts and z-dimension in the sense of Martinez and Zenk (an
analogue of Krull dimension in [MZ05]).
The paper concludes with a final section devoted to questions and some an-

swers.
All topological spaces that appear are assumed to be Tychonoff unless the

contrary is stated explicitly. A familiarity with results and terminology in the
Gillman-Jerison text and the one by Engelking is assumed as well as standard
results about scattered spaces. Some of these results will be repeated for the sake
of completeness. See, in particular [E89], [GJ76], [LR81], and [S59].

2. The structure and images of SP-scattered spaces

2.1 Definitions. A point p in a topological space X is called a strong P -point
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if it has a neighborhood consisting of P -points. The set of all strong P -points of
X is denoted by SP(X).

Observe that SP(X) = intX P (X).
We leave the verification of the following as exercises.

2.2 Proposition. (a) SP(X) is an open subset of X containing the set Is(X)
of isolated points of X .

(b) If p ∈ SP(X) has a compact neighborhood or if {p} is a Gδ, then p ∈
Is(X). Hence if X has countable pseudocharacter (for instance, if X is
countable, first countable, or perfectly normal), or if X is locally compact,
then SP(X) = Is(X).

(c) SP(X) = X if and only if X is a P -space.
(d) SP(X) = ∅ if and only if X has a dense set of non P -points.

2.3 Definitions. Let S0(X) = X , S1(X) = X \ SP(X), and let Sα+1(X) =
S1(Sα(X)) for any ordinal α ≥ 1. If λ is a limit ordinal λ, let Sλ(X) =⋂

α<λ Sα(X).

Observe that Sα(X) is a closed subspace of X for each α.
If there is an ordinal δ such that Sδ(X) = ∅, then X is said to be an SP-

scattered space and the least ordinal δ for which Sδ(X) = ∅ is called the SP-index
of X and is denoted by sp(X).
The proofs of the following assertions are left as exercises.

2.4 Proposition. (a) sp(X) = 1 iff X is a P -space.
(b) If X has countable pseudocharacter or is locally compact, then sp(X) is
the Cantor-Bendixson index CB(X). (See [LR81] or [S59] for the definition
of CB(X).)

(c) If X is a P -space with no isolated points, then sp(X) = 1, but X is not
scattered.

2.5 Proposition. If E is a subspace of X and α ≥ 1 is an ordinal, then:

(a) E ∩ P (X) ⊂ P (E), and equality holds if E is open or dense in X ;
(b) E ∩ SP(X) ⊂ SP(E);
(b)’ if E is open in X , then E ∩ SP(X) = SP(E);
(c) S1(E) ⊂ E ∩ S1(X);
(c)’ if E is open in X , then E ∩ S1(X) = S1(E);
(d) Sα(E) ⊂ E ∩ Sα(X);
(d)’ if E is open in X , then E ∩ Sα(X) = Sα(E).

Proof: (a) Verifying the inclusion is an exercise.
Suppose conversely that E is open, x ∈ P (E), and G is a Gδ-set of X that

contains x. Then E ∩ G is a Gδ-set of E that contains x. So by assumption
and the fact that E is open, x ∈ intE(E ∩ G) = intX(E ∩ G) ⊂ intX G. So,
x ∈ E ∩ P (X).
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Suppose finally that E is dense in X , p ∈ P (E), and G is a Gδ-set of X
containing p. Then G =

⋂
{U(n) : n ∈ ω}, where each U(n) is open in X . We

may assume that {U(n) : n ∈ ω} is a decreasing sequence. By using regularity and
a straightforward induction, we can find a decreasing sequence {V (n) : n ∈ ω} of
X-open sets such that p ∈

⋂
{V (n) : n ∈ ω} and clX V (n+1) ⊂ V (n) ⊂ U(n) for

each n.

Since p ∈ P (E), there is an X-open set H such that p ∈ E∩H ⊂
⋂
{E∩V (n) :

n ∈ ω}. It will be shown finally that H ⊂ G, from which it follows that p is a
P -point of X . For otherwise, there is a k ∈ ω such that H \ U(k) 6= ∅, and so
H \ clX [V (k+1)] is a nonempty X-open set. Because E is dense in X , this open
set meets E, contrary to the definition of H .

(b) Each x in E∩SP(X) has anX-open neighborhoodW consisting of P -points
of X , so W ∩ E is a neighborhood of x in E consisting of P -points of E.

(b)’ Since E is open, SP(E) = intE P (E) = intX P (E) = intX(E ∩ P (X)) =
intX E ∩ intX P (X) = E ∩ SP(X).
(c) By (b), S1(E) = E \ SP(E) ⊂ E \ [E ∩ SP(X)] = E ∩ (X \ SP(X)) =

E ∩ S1(X).

(c)’ By (b)’, the inclusion above is an equality.

(d) will be shown by transfinite induction.

By (c), this holds if α = 1. Assume that it holds for α = γ. Then we may
apply (c) using E ∩ Sγ(X) in place of X and Sγ(E) in place of E to obtain:

(i) S1(Sγ(E)) ⊂ Sγ(E) ∩ S1(E ∩ Sγ(X)).

Next we apply (c) again replacing X by Sγ(X) and E by E ∩ Sγ(X) to obtain:

(ii) S1(E ∩ Sγ(X)) ⊂ [E ∩ Sγ(X)] ∩ S1(Sγ(X)) = E ∩ Sγ(X) ∩ Sγ+1(X) =
E ∩ Sγ+1(X).

Combining (i) and (ii) yields:

Sγ+1(E) = S1(Sγ(E)) ⊂ Sγ(E) ∩ S1(E ∩ Sγ(X))

⊂ Sγ(E) ∩ E ∩ Sγ+1(X) = E ∩ Sγ+1(X).

So (d) holds for α = γ + 1. It remains to show that it holds for a limit ordinal λ
if it holds for all ordinals α < λ. By the preceding we have

Sλ(E) =
⋂

α<λ

Sα(E) ⊂
⋂

α<λ

[E ∩ Sα(X)] = E ∩
⋂

α<λ

Sα(E) = E ∩ Sλ(X)

which completes the proof of (d).

(d)’ This proof is identical to that of (d) except that inclusions are replaced
(using (c)’) by equalities. �
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2.6 Remark. If X = N ∪ {∞} is the one-point compactification of a countably
infinite discrete space N and E = {∞}, then P (X) = N , while P (E) = E. So
the equation E ∩ P (X) = P (E) in Proposition 2.5(a) need not hold if E fails to
be open in X .

An immediate consequence of (d) is:

2.7 Theorem. Each subspace of an SP-scattered space is SP-scattered.

Next a characterization of SP-scattered spaces is given.

2.8 Theorem. If X is any space, then the following are equivalent:

(a) X is SP-scattered;
(b) if A ⊂ X is nonempty, then intA P (A) 6= ∅.

Proof: Assume that (b) fails and A is a nonempty subset of X for which
intA P (A) = ∅. Then S1(A) = A, and more generally Sδ(A) = A for each ordinal
δ. Thus A is not SP-scattered, so by Theorem 2.7, (a) fails.
Assume next that (b) holds. Since Sγ+1(X) = Sγ(X) \ intSγ(X) P (Sγ(X)),

it follows from (b) that the nonempty members of {Sγ(X) : γ an ordinal} form
a strictly decreasing sequence of subspaces of X . Therefore, if γ(0) is the least
ordinal greater than |X |, it follows that Sγ(0) = ∅ and (a) holds. �

2.9 Corollary. If X is SP-scattered, then SP(A) is dense in A for each subspace
A of X .

Proof: Suppose to the contrary that A \ clA(intA P (A)) = E is nonempty for
some subspace A of X . By 2.5(a), P (E) = E ∩ P (A) since E is open in A.
Consequently intE P (E) = ∅, so E is not SP-scattered. By Theorem 2.7, it
follows that X is not SP-scattered. �

Next we record a series of results that culminate in showing that the union of
a locally finite collection of SP-scattered subspaces is SP-scattered.

2.10 Lemma. Suppose S1 and S2 are subspaces of a space X such that

(i) S1 ∪ S2 = X ;
(ii) SP(Si) is dense in Si for i = 1, 2;
(iii) P (X) has empty interior.

Then each Si is dense in X .

Proof: If S1 = X , then since the S1-interior of P (S1) is nonempty and coincides
with its X-interior, (iii) is violated. Hence S1 6= X . Similarly S2 6= X .
Suppose that S1 is not dense in X . There is an open subset W of X such that

intS2 P (S2) = W ∩ S2. By (i), the nonempty open set X \ clX S1 is contained
in S2. So by (ii) it follows that

(X \ clX S1) ∩ (S2 ∩ W ) 6= ∅.
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Since X \ clX S1 ⊂ S2 and S2 ∩ W is a P -space, it follows that

(X \ clX S1) ∩ W = (X \ clX S1) ∩ (S2 ∩ W )

is a nonempty open P -space contained in X contrary to (iii). Hence S1 is dense
in X , and a similar argument shows that S2 is dense in X . �

2.11 Lemma. If S1 and S2 are subspaces of a space X such that (i) and (ii) of
Lemma 2.10 hold, then P (X) has a nonempty interior.

Proof: If instead intX P (X) = ∅, then by Corollary 2.9, each of the Si is dense
in X . Choose Ui open in X such that Ui ∩ Si = intSi

P (Si) for i = 1, 2. Then by
(ii), each Ui∩Si is a P -space that is dense in Si and hence in X . Thus U1 and U2
are dense open subsets of X . It follows that U1 ∩U2 is a dense open subset of X .
Since the intersection of an open dense subspace and a dense subspace is dense,
it follows from 5(a) that for i = 1, 2, U1 ∩U2 ∩Si is a P -space that is dense in X .
Hence by 2.5(a), for i = 1, 2,

P (X) ∩ (U1 ∩ U2 ∩ Si) = P (U1 ∩ U2 ∩ Si) = U1 ∩ U2 ∩ Si.

Therefore, U1 ∩ U2 is a dense open subset of X contained in P (X), contrary
to the assumption that intX P (X) = ∅. �

2.12 Proposition. The union of finitely many SP-scattered subspaces of a space

X is SP-scattered.

Proof: It suffices to show this for the union of two such spaces. Suppose X =
S1 ∪ S2 where S1 and S2 are SP-scattered. If A is a nonempty subspace of X ,
then by Theorem 2.7, each Si∩A is SP-scattered. So by Corollary 2.9, SP(A∩Si)
is dense in A ∩ Si for i = 1, 2. By Lemma 2.11, SP(A) is nonempty. Hence by
Theorem 2.8, X is SP-scattered. �

2.13 Theorem. If X is a union of open SP-scattered subspaces, then it is SP-
scattered.

Proof: Suppose X =
⋃
{Tα : α < λ}, where each Tα is an open SP-scattered

subspace. By Theorem 2.8, for each ordinal α < λ, there is an ordinal σ(α) such
that Sσ(α)(Tα) = ∅. Let γ = sup{σ(α) : α < λ} + 1. Clearly Sγ(Tα) = ∅ for all
α < λ.
By Proposition 2.5(d)’, for every α < λ, we have Tα ∩ Sγ(X) = Sγ(Tα) = ∅.

Therefore:

Sγ(X) = X ∩ Sγ(X) = (
⋃
{Tα : α < λ}) ∩ Sγ(X)

=
⋃
{Tα ∩ Sγ(X) : α < λ} = ∅.

So X is SP-scattered. �
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2.14 Theorem. If X is the union of a locally finite family F of SP-scattered
subspaces, then X is SP-scattered.

Proof: If x ∈ X , then there is an open neighborhood V (x) of x such that F(x) =
{F ∈ F : V (x) ∩ F 6= ∅} is a finite set. Then V (x) =

⋃
{V (x) ∩ F : F ∈ F(x)}.

By Theorem 2.12, each V (x) ∩ F is SP-scattered, so by Theorem 2.13 above,
each V (x) is SP-scattered. But X =

⋃
{V (x) : x ∈ X}, so X is SP-scattered by

Theorem 2.13. �

2.15 Remark. “Locally finite” cannot be replaced by “point finite” in the hy-
pothesis of Theorem 2.14. To see this, let Q denote the space of rational numbers.
If q ∈ [0, 1) ∩ Q, let F (q) = {q + n : n ∈ Z} and note that each F (q) is a discrete
subspace of Q. The family F ={F (q) : q ∈ [0, 1)∩Q} partitions Q into countably
many SP-scattered subspaces, but Q =

⋃
F is not SP-scattered. Note that this

collection is point finite since it is a partition, but not locally finite.

2.16 Definitions. Suppose f : X → Y is a closed continuous surjection.

(a) If f←(y) is compact whenever y ∈ Y , then f is called a perfect map.
(b) If f [A] 6= Y whenever A is a proper closed subset of X , then f is called
an irreducible map.

2.17 Theorem. A perfect image of an SP-scattered space is SP-scattered.

Proof: Suppose f : X → Y is a perfect map; and X is SP-scattered. By 6.5(c)
of [PW88], there is a closed subspace B of X such that f |B : B → Y is a perfect
irreducible surjection. Moreover, by Theorem 2.7, B is SP-scattered. So we may
assume that f : X → Y is a perfect irreducible surjection.

By Theorem 2.8(b), intX P (X) is dense in X . So by 6.5(d)(2) of [PW88] its
nowhere dense closed complement X \ intX P (X) is mapped by f onto a nowhere
dense closed subset of Y . Thus S = Y \f [X \ intX P (X)] is a dense open subset of
Y . Observe next that f←[S] ⊂ intX P (X) and hence is a P -space. Moreover, by
1.8(b)(2) of [PW88], the restriction of f to f←[S] is a perfect surjection. Because
closed continuous maps are quotient maps and a quotient image of a P -space is
a P -space, (see 4K(5) of [GJ76]) it follows that S is a P -space and a dense open
subset of Y . Hence intY P (Y ) is dense in Y .

If T is a nonempty subset of Y , then using 1.8f(2) of [PW88], the restriction
f |f−1[T ] is a perfect map from f−1[T ] onto T , so by 6.5(c) of [PW88], there is an
E ⊂ X such that f |E → T is a perfect irreducible surjection. By Theorem 2.7,
E is SP-scattered. So by the conclusion of the previous paragraph, intT P (T ) is
dense in T , and we may conclude from Theorem 2.8 that Y is SP-scattered. �

2.18 Remarks on closed continuous images of SP-scattered spaces

In [KV77], the authors construct, using CH, a locally compact, countably
compact, first countable, separable scattered Hausdorff (and hence Tychonoff)
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space which is totally disconnected but not strongly zero-dimensional that ad-
mits a closed continuous map onto [0,1]. Thus, if CH holds, the property of being
an SP-scattered space need not be preserved by closed continuous maps.

Without using CH, an example is given in [KV77] of a zero-dimensional scat-
tered Hausdorff (and hence Tychonoff) space whose image under a closed con-
tinuous map is not scattered, and a simpler one is given in [T77]. We do not
know if there is such an example in ZFC whose closed continuous image is not
SP-scattered.

In [T68], it is shown that every paracompact scattered space is strongly zero-
dimensional. We do not know if this conclusion holds for paracompact SP-
scattered spaces.

3. Lindelöf SP-scattered spaces

3.1 Definitions. (a) For any space X , the topology obtained by letting every
Gδ subset of X be open is called the Gδ-topology and the space so obtained is
denoted by Xδ.

(b) A space X such that |f(X)| is countable for every f ∈ C(X) is said to be
functionally countable.

Note that Xδ is always a P -space and that if Xδ is Lindelöf, then X is func-
tionally countable. That the converse of this latter assertion is false is shown in
Example 6 of [LR81].

The proof of the next result is modelled after that of 5.2 in [LR81], where our
Xδ is denoted by bX .

3.2 Theorem. If X is an SP-scattered Lindelöf space, then Xδ is a Lindelöf

space.

Proof: Suppose not and let X denote a counterexample for which sp(X) is
minimal. Thus we are assuming that:

(i) X is an SP-scattered Lindelöf space such that Xδ is not a Lindelöf space,
and

(ii) if Y is any SP-scattered Lindelöf space and τ = sp(Y ) < sp(X), then Yδ

is a Lindelöf space.

We will show first that τ is not a limit ordinal.

For otherwise, ∅ = Sτ (X) =
⋂

α<τ Sα(X) is the intersection of a decreasing
collection of nonempty closed subsets of the Lindelöf space X . So there is a
countable subset {αi : i < ω} of [0, τ) such that

⋂
i<ωSαi(X) = ∅, and τ =

sup{αi : i < ω}. Now X =
⋃

i<ω(X \ Sαi(X)). If U is a cover by cozerosets of
X that refines {X \ Sαi(X) : i < ω}, then since X is a Lindelöf space, there is a
countable subcover {Us : s < ω} of U whose union is X such that for all s < ω,
there is an i(s) < ω such that Ui(s) is contained in X \ Sαi(s)

(X).
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If s < ω, then by Lemma 2.5(d)’, Sαi(s)
(Us) = Us ∩ Sαi(s)

(X) = ∅. Thus

sp(Us) ≤ αi(s) < τ . So by the minimality of τ and the fact that Us is a cozeroset

of a Lindelöf space, it follows that (Us)δ is a Lindelöf space; consequently
so is

⋃
s<ω(Us)δ. This contradicts the choice of X , so τ is not a limit ordinal

as claimed. Hence there exists an ordinal γ such that τ = γ + 1, in which case
∅ = Sγ+1 = S1(Sγ(X)). Therefore Sγ(X) is a nonempty P -space and is a Lindelöf
space since it is closed in X .
Suppose C is a cover of X by zerosets of X . To show that Xδ is Lindelöf, we

must show that C has a countable subcover. Note first that the Lindelöf space
Sγ(X) is z-embedded in X . (See [B76].) Since Sγ(X) is a Lindelöf P -space,
there is a countable subfamily {Zi : i < ω} of C that covers Sγ(X).
We disjointify this family as follows. Let

T1 = Z1, T2 = Z2 \ T1, T3 = Z3 \ (T1 ∪ T2), . . . , Tn = Zn \ (
n−1⋃

i=1
Ti), . . .

Then {Ti∩Sγ(X) : i < ω} is a countable partition of Sγ(X) into clopen sets, and
hence for each i < ω, there is a Vi ∈ coz(X) such that Ti∩Sγ(X) = Vi∩Sγ(X). If
B = X \

⋃
i<ωV i, then B is Lindelöf. By Lemma 2.5(d), Sγ(B) ⊂ B∩Sγ(X) = ∅,

so sp(B) ≤ γ < τ . Thus by the minimality of τ , Bδ is Lindelöf, and so there is a
countable subfamily E of C that covers Bδ.
Now Vi \ Zi ⊂ X \ Sγ(X) since Vi ∩ Sγ(X) = Ti ∩ Sγ(X) ⊂ Zi and Vi is

Lindelöf. Arguing as was done with B, we obtain sp(Vi \Zi) ≤ γ < τ . Hence each
(Vi \ Zi)δ is Lindelöf, so T =

⋃
i<ω(Vi \ Zi)δ is a Lindelöf space. Thus, there is

a countable subfamily A of C that covers T . Hence A ∪ E ∪ {Zi : i < ω} is the
required countable subfamily of C. �

3.3 Corollary. Suppose X is SP-scattered. Then:

(a) if X is Lindelöf, then it is functionally countable;
(b) if X is locally Lindelöf, then it is locally functionally countable.

Our next result generalizes Theorem 2.7 of [G84].

3.4 Theorem. (a) A product
∏

n<ω Xn of countably many SP-scattered Lin-

delöf spaces is Lindelöf.

(b) The product of an SP-scattered Lindelöf space X and a Lindelöf space
Y is Lindelöf.

Proof: (a) By Theorem 3.2, each (Xn)δ is a Lindelöf P -space. As noted in 2.6
of [G84], N. Noble showed in [N71] that a countable product of Lindelöf P -spaces
is Lindelöf. Consequently its continuous image

∏
n<ωXn is also Lindelöf.

(b) By Theorem 3.2, Xδ is a Lindelöf P -space. It is well-known that the
product of a Lindelöf P -space and a Lindelöf space is Lindelöf. So Xδ × Y is
Lindelöf as is its continuous image X × Y . �
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3.5 Remark. The result of (b) is stated in [A87] and the reader is referred to
[A88] for a proof. However, it is easier to prove (b) directly with an argument
that apes the proof that the product of a compact space and a countably compact
space is countably compact.

Corollary 3.3(a) cannot be generalized by replacing “Lindelöf” by “realcompact
and weakly Lindelöf”. This possibility is closed off by an example due to Alan
Dow used in [HRW02] for other reasons.

3.6 Example. A realcompact weakly Lindelöf SP-scattered space that is not
Lindelöf.
Strengthen the usual topology on [0, 1] by first making each rational point

isolated, and for each irrational x, finding a sequence s(x) of distinct rationals
that converges to x. Define a new neighborhood base at x consisting of sets of the
form {x} ∪ (s(x) \ F ), where F is a finite subset of s(x). X is locally compact,
realcompact (by 8.17 of [GJ76]) and is scattered with CB(X) = sp(X) = 2.
Because the set Q of rationals is dense in X , it is separable and hence weakly
Lindelöf. But X \ Q is uncountable, closed, and discrete, so X is not Lindelöf.
Observe also that X is locally Lindelöf. �

Recall that if a space Y is homeomorphic to a dense subspace of a space X ,
then X is called an extension of Y .

3.7 Theorem. (a) Every locally Lindelöf but not Lindelöf space Y has a
one-point Lindelöf extension X = Y ∪ {q} (where q /∈ Y ).

(b) If, in addition, Y is SP-scattered, then so is X , and henceX is functionally
countable.

Proof: (a) follows from results in [MRW72] by letting the property PJ in that
paper stand for “Lindelöf space” and using their Theorems 3.1 and 4.1.
(b) follows by applying (a), Theorem 2.12, Theorem 3.2, and Corollary 3.3(a).

�

3.8 Remark. It seems natural to ask whether every SP-scattered locally Lindelöf
space has a one-point Lindelöf extension in which the added point is a P -point.
The answer is “no” as is shown by the (Mrowka-) Isbell space Y in 5I of [GJ76].
It is scattered and locally compact, but if Y ∪ {p} were any one-point extension
of Y , then p cannot be a P -point of this space. For if it were, Y ∪ {p} \N would
a Y ∪ {p}-neighborhood of p, which it cannot be since N is dense in Y ∪ {p}.

4. Paracompact SP-scattered spaces

Three well-known facts that will be used below are recalled in the next lemma.

4.1 Lemma. (a) Every paracompact space has a locally finite refinement con-
sisting of cozerosets.
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(b) The union of a locally finite family of cozerosets is a cozeroset.
(c) An Fσ-subspace of a paracompact space is paracompact.

Proof: (a) See Lemma 4.3 of [CN75].
(b) This is a special case Theorem 1.5 of [Na70]. For convenience we include a

simple direct proof. Suppose {coz fi : i ∈ I} is a locally finite family of cozerosets
of functions fi ∈ C(X). We may assume 0 ≤ fi ≤ 1 for each i ∈ I. For each
x ∈ X , let f(x) =

∑
i∈I fi(x). It follows easily from the local finiteness of this

family that f ∈ C(X) and coz f =
⋃
{cozfi : i ∈ I}.

(c) See 5.12.8 of [E89]. �

The result that follows generalizes 5.1 of [LR81]. Its proof is patterned to some
extent on the proof of this latter result.

4.2 Theorem. If X is an SP-scattered paracompact space, then Xδ is a para-

compact space.

This will be shown by contradiction with the aid of a number of lemmas. That
is, we will assume the theorem is false and show that it follows that there must
be an example showing it to be false that is minimal in a sense we will describe
next. Then we will show that this “minimal” counter example is paracompact;
thereby proving the theorem. Suppose the contrary and let τ = min{α : there
is a paracompact SP-scattered space S such that Sδ is not paracompact and
sp(S) = α}. There is a space X such that:

(i) X is paracompact and SP-scattered, sp(X) = τ , and Xδ is not paracom-
pact, and

(ii) if Y is paracompact and SP-scattered with sp(Y ) < sp(X), then Yδ is
paracompact.

4.3 Lemma. τ is not a limit ordinal, so there is an ordinal γ ≥ 1 such that
τ = γ + 1.

Proof: For, otherwise, ∅ =
⋂

α<τSα(X). Since each Sα(X) is closed in X ,⋃
α<τ (X \ Sα(X)) = X . Because X is paracompact, the open cover C = {X \

Sα(X) : α < τ} has a σ-discrete cozero refinement U =
⋃

i<ωUi, where each
Ui is a collection of cozerosets of X with the property that each x ∈ X has
a neighborhood that meets at most one member of Ui. Each member of U is
paracompact since it is an Fσ subset of a paracompact space. Because U is a
refinement of C, for each U ∈ U , there is an α(U) < τ such that U ⊂ X\Sα(U)(X),

so Sα(U)(U) = U ∩ Sα(U)(X) = ∅. Therefore sp(U) ≤ α(U) < τ , while U

is SP-scattered and paracompact. So, by the minimality of τ , the space Uδ is
paracompact. Moreover, because U is a cozeroset, Uδ is clopen in Xδ.
For each i, {Uδ : Ui ∈ Ui} is a discrete (locally finite) family of clopen subsets

of Xδ, so if Si =
⋃
Ui, then (Si)δ =

⋃
{Uδ : U ∈ U} is a clopen subset of Xδ

that is a free union since the sets involved are pairwise disjoint. A free union of
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paracompact spaces is paracompact, so each (Si)δ is paracompact and clopen
in Xδ.
Now let K denote an open cover of Xδ. For each i < ω, {K ∩ (Si)δ : K ∈ K} is

an open cover of (Si)δ. So, by the paracompactness of (Si)δ, this open cover has
a locally finite open refinement Fi. Since (Si)δ is open in Xδ, the members of Fi

are also open in Xδ, and it is clear that U =
⋃
{Ui : i < ω} covers X . It follows

that F = {F : F ∈ Fi for some i < ω} is a σ-locally finite open refinement of
K. Therefore, each open cover of Xδ contains a σ-locally open refinement, so Xδ

is paracompact. This contradiction establishes that τ is not a limit ordinal. To
see that γ ≥ 1, note that if τ = sp(X) = 1, then by 2.4(a), X is a P -space. So
X = Xδ is paracompact, contrary to (i) above. Thus τ > 1 and γ ≥ 1. �

Henceforth we will denote Sγ(X) by S.

4.4 Lemma. If T ⊂ X is paracompact and disjoint from S, then Tδ is para-

compact.

Proof: T is SP-scattered by Theorem 2.7 since it is a subspace of the SP-
scattered space X . By Proposition 2.5(a), Sγ(T ) ⊂ T ∩ Sγ(X) = ∅, so sp(T ) ≤
γ < γ + 1 = τ . Thus Tδ is paracompact by the minimality of τ . �

The balance of the proof of 4.2 is modeled after the argument in lines 2–13 of
page 233 of [LR81]. It will be complete when we show that the assumptions made
above imply Xδ is paracompact.
Since Z(X) is an open base for Xδ, to show that X is paracompact it suffices

to show that if U is an open cover of X by zerosets, then it has an open locally
finite refinement in the topology of Xδ.
Each x ∈ S is a member of some Zx ∈ U . Because S is closed in the (normal)

paracompact space X , it is z-embedded. So because Zx ∩ S is a zeroset of the
P -space S, it is clopen in S, and hence its complement in S is in Z(S). By the
z-embedding cited above, there is a cozeroset Vx of X such that Vx ∩S = Zx ∩S.
Now {Vx : x ∈ S} ∪ {X \ S} is an open cover of the paracompact space X ,

so by Lemma 4.1(a), it has a locally finite refinement C consisting of cozerosets
of X . If x ∈ S, there are Cx ∈ C and a(x) ∈ S such that x ∈ Cx ⊂ Va(x). Thus

(#) Cx ∩ S ⊂ Va(x) ∩ S = Za(x) ∩ S.

Since {Cx : x ∈ S} is a locally finite collection of cozerosets of X , its union is
a cozeroset of X by Lemma 4.1(b).
If H = X \

⋃
{Cx : x ∈ S}, then H ∈ Z(X). So by our previous assumptions,

H is paracompact, Hδ is clopen in Xδ, and H ∩ S = ∅. So Hδ is paracompact
by 4.4. Hence the open cover {U∩Hδ : U ∈ U} has a locally finite open refinement
W in the topology of Hδ, each member of which is open in Xδ. It follows from
the above that each member of W is a subset of some member of U .
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Next consider the collection J = {Cx ∩ Za(x) : x ∈ S}. Each of its members is

clopen in Xδ, and since {Cx : x ∈ S} is X-locally finite, J is locally finite in Xδ.
Finally, each member of J is a subset of Za(x) which belongs to U .

Now for each x ∈ S, the set Cx \ Za(x) is a cozeroset (and hence an Fσ-set) of

the paracompact space X and hence by Lemma 4.1(c) is paracompact as well as
clopen in Xδ. By (#) above, (Cx\Za(x))∩S = ∅, so (Cx\Za(x))δ is paracompact.

Hence its open cover {(Cx\Za(x))∩U : U ∈ U} has a locally finite open refinement

in the topology of (Cx \ Za(x))δ, which will be denoted by G(x). It follows that

G(x) is a locally finite collection of open sets of Xδ each of whose members is a
subset of some member of U .
Finally, let

B =W ∪ J ∪ [
⋃
{G(x) : x ∈ S}]

and observe that it is a union of collections of sets. It has been shown above
that each of the sets in the members of B is open in Xδ, and that each of them
is a subset of some member of U . To contradict the assumptions made at the
beginning of the proof of Theorem 4.2, we need to show that

(1) B covers Xδ, and
(2) B is a locally finite collection of sets of Xδ.

To prove (1), we consider three cases.

(i) If x ∈ H , it follows from the definition ofW that x is in some member ofW .
(ii) If x ∈ Cx ∩ Za(x) for some x ∈ S, then x is in some member of J .

(iii) If x ∈ Cx \ Za(x) for some x ∈ S, then x is in some member of G(x).

So (1) holds.

To prove (2), we suppose b ∈ X and consider two cases.

(i) If b ∈ H , then since W is locally finite in Xδ, there is an Xδ-neighborhood
G of b meeting only finitely many members of W . Because Hδ is disjoint from
each member of J and each member of each G(y) for each y ∈ S, it follows that
G ∩ Hδ is an Xδ-neighborhood G of b meeting only finitely many members of B.
(ii) If b /∈ H , then there is an x(b) ∈ S such that b ∈ Cx(b). Since {Cx : x ∈ S}

is X-locally finite (and hence point finite), there is a finite subset F (b) of S such
that b ∈ Cx if and only if x ∈ F (b). If L =

⋂
{Cx : x ∈ F (b)}, then Lδ is a

neighborhood of b that meets no members of W and only finitely many members
of J .
For each x ∈ F (b), there is a neighborhood K(x) of b in Xδ that meets only

finitely many members of G(x). Thus
⋂
{K(x) : x ∈ F (b)} is an Xδ-neighborhood

of b that meets only finitely many members of
⋃
{G(x) : x ∈ F (b)}, finitely many

members of J , and no members of W — and thus of B.
Hence our “minimal” counterexample is paracompact, so Theorem 4.2 holds.

�
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Next, we turn to the question of when the product of an SP-scattered para-
compact space and a paracompact space is paracompact. Our first partial answer
follows.

4.5 Theorem. If X is a paracompact P -space and Y is a Lindelöf space, then
X × Y is paracompact.

Informal conversation with K. Alster revealed that he was aware of 4.5, al-
though it seems not to appear in the literature.
To prove this, we begin with a lemma that is well-known.

4.6 Lemma. Every open cover C of a Lindelöf space Y has a countable locally
finite open refinement.

Proof: Since Lindelöf spaces are paracompact, C has an open locally finite
refinement, which must be countable since Y is Lindelöf by 5.1.24 of [E89]. �

Some notational conventions follow. The projection map of the product X ×
Y onto X (resp. Y ) is denoted by pX (resp. pY ). It is well-known that these
mappings are continuous open surjections. The product U ×V of an open subset
U of X and an open subset V of Y is called a rectangular open subset of X × Y .
It is well-known and easily seen that X × Y is paracompact if and only of each
open cover of X×Y by rectangular open sets has a locally finite open refinement.

4.7 Lemma. If S is a cover of X × Y by rectangular open sets and x ∈ X ,
then there is an open neighborhoodW (x) of x and a countable locally finite open
cover {D(x, j) : j ∈ ω} of Y such that for each j ∈ ω, there is a T (x, j) ∈ S that
satisfies W (x)× D(x, j) ⊂ T (x, j).

Proof: Since S covers X ×Y , for each y ∈ Y , there is an S(x, y) ∈ S containing
(x, y). It follows that {pY [S(x, y)] : y ∈ Y } is an open cover C(x) of Y . By
Lemma 4.6, since Y is a Lindelöf space, C(x) has a countable locally finite open
refinement {D(x, j) : j ∈ ω}. Thus

⋃
j∈ω D(x, j) = Y .

For each j ∈ ω there is a yj ∈ Y such that S(x, yj) ∈ S and

(1) D(x, j) ⊂ pY [S(x, yj)].

Now (x, yj) ∈ S(x, yj) for each j ∈ ω, and so x is in the open set pX [S(x, yj)].
Since X is a P -space, W (x) =

⋂
j∈ω{pX [S(x, yj)]} is an open neighborhood of x

and

(2) W (x) ⊂ pX [S(x, yj)] for each j ∈ ω.

Combining (1) and (2), we see that for each j ∈ ω,

W (x)× D(x, j) ⊂ pX [S(x, yj)]× pY [S(x, yj)] = S(x, yj).

Hence S(x, yj) is the element T (x, j) of S that is required. �

The notation in Lemma 4.7 will be used in the next two lemmas and the proof
of Theorem 4.5.
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4.8 Lemma. There is a locally finite open cover H = {H(x) : x ∈ X} for which
x ∈ H(x) ⊂ W (x) for all x ∈ X .

Proof: Since X is paracompact, the open cover {W (x) : x ∈ X} has a locally
finite open refinement B. For each x ∈ X , choose Bx ∈ B such that x ∈ Bx. Let
H(x) = Bx ∩ W (x). Then x ∈ H(x) ⊂ W (x). If H ={H(x) : x ∈ X}, then H is
an open cover of X . To see that H is locally finite, note first that any a ∈ X has
an X-neighborhood M that meets only finitely many members of B and hence
only finitely many members of H since H(x) ⊂ Bx for each x ∈ X . �

4.9 Lemma. If G = {H(x) × D(x, j) : x ∈ X and j ∈ ω}, then G is a locally
finite open refinement of S.

Proof: Clearly each member of G is open in X×Y . If (x, y) ∈ X×Y , then since
{D(x, j) : j ∈ ω} covers Y , there is an jy ∈ ω such that y ∈ D(x, jy). Clearly
(x, y) ∈ H(x) × D(x, jy) ∈ G, so G covers X × Y .
It will be shown next that G is locally finite. Suppose that (a, b) ∈ X × Y .

Because H is locally finite, a has an X-neighborhood L such that {x ∈ X :
L ∩ H(x) 6= ∅} is a finite subset F of X .
If x ∈ F , then b has a Y -neighborhood J(x) such that {j ∈ ω : D(x, j)∩J(x) 6=

∅} is a finite subset A(x) of ω because each {D(x, j) : j ∈ ω} is locally finite. If
J =

⋂
{J(x) : x ∈ F}, then J is a Y -neighborhood of b, so L × J is an X × Y -

neighborhood of (a, b).
Suppose next that L × J meets H(z) × D(z, j) for some z ∈ X and j ∈ ω.

Then L∩H(z) 6= ∅, so z ∈ F . Also J ∩D(z, j) 6= ∅, so since z ∈ F , it follows that
J(z) ∩ D(z, j) 6= ∅. Thus j ∈ A(z). We may conclude that H(z) × D(z, j) is a
member of the finite subfamily {H(x)×D(x, j) : x ∈ F and j ∈

⋃
[A(x) : x ∈ F ]}

of G. Thus L×J is a neighborhood of (a, b) that meets only finitely many members
of G.
We will show finally that G refines S. For any x ∈ X and j ∈ ω, the members

of G have the form H(x) × D(x, j). By Lemma 4.8, H(x) ⊂ W (x), and by
Lemma 4.7, there is a T (x, j) such that

W (x)× D(x, j) ⊂ T (x, j).

Thus H(x)× D(x, j) ⊂ T (x, j) ∈ S, so G refines S. �

Proof of Theorem 4.5: The lemmas above show that every cover of X × Y
by rectangular open sets has a locally finite open refinement, so we may conclude
that X × Y is paracompact. �

5. RG-spaces and spaces with finite z-dimension

In this section, the relationship between SP-scattered spaces and two other
classes of spaces is studied.
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5.1 Definitions. If f ∈ C(X), let f∗(x) = 1
f(x)

if x ∈ coz(f), and let f∗(x) = 0

if x ∈ Z(f), and let G(X) denote the set of finite sums of functions fg∗ from
X into R. It is not difficult to see that G(X) is a subalgebra of C(Xδ). If
G(X) = C(Xδ), then X is said to be an RG-space.

The class of RG-spaces includes all Lindelöf scattered spaces of finite Cantor-
Bendixon index. See 2.12 of [HRW02].

If f ∈ G(X), then we let rg(f) = min{n < ω : there are fi, gi in C(X) for
1 ≤ i ≤ n such that f =

∑n
i=1 fi, g

∗
i }, and we let rg(X) = sup{rg(f) : f ∈ C(X)}

if such a finite ordinal exists, or ∞ otherwise.

Next we generalize a portion of 2.11 and 2.12 of [HRW02]. Note that in that
paper, the authors use Dα in place of our Sα.

5.2 Theorem. If X is a Lindelöf SP-scattered space and S1(X) = X \
intX P (X) is an RG-space, then X is an RG-space.

Proof: Suppose s ∈ C(Xδ). The second and third paragraphs of the proof
of 2.11(a) in [HRW02] establish that S1(X) ⊂ Z(r) for some r ∈ C(Xδ). Because
X is a Lindelöf SP-scattered space, Xδ is a Lindelöf P -space by Theorem 3.2.
So, for all x ∈ coz(r), there is an E(x) ∈ Z(X) contained in coz(r). Using the fact
that coz(r) is Lindelöf, it follows that there is a sequence {xi}i<ω of elements of
coz(r) such that coz(r) =

⋃
i<ω E(xi). Because each E(xi) is open in the P -space

intX P (X), it follows that each E(xi) is clopen in X .

Let A1 = E(x1), and if n > 1, let E(xn) = E(xn) \
⋃n−1

i=1 Ai. Then {Ai}i<ω

partitions coz(r) into countably many clopen nonempty sets. Because Z(r) is
clopen in X , there is an m ∈ C(X) whose cozero set is coz(r). Armed with this
information, we may apply the argument beginning on line 5 of page 9 in [HRW02]
to conclude that s ∈ G(X) and hence that X is an RG-space. �

5.3 Theorem. If X is a Lindelöf SP-scattered space with finite sp-index, then
X is an RG-space and rg(X) is finite.

Proof: Apply Theorem 5.2 and the proof of 2.11(b) in [HRW02]. �

In [MZ05], a space X is said to have finite z-dimension if there is a positive
integer k such that no chain of prime z-ideals in the ring C(X) has length ex-
ceeding k. (A precise definition of z-dimension is in this paper.) In Sections 4
and 5 these authors show that a compact space has finite z-dimension if and only
if it is scattered and has finite CB-index. In [HRW03], it is shown that if X is
compact or metrizable, then X is an RG-space with rg(X) finite if and only if X
is scattered with finite CB-index. Hence we have:

5.4 Theorem. A compact space is an RG-space if and only it has finite z-
dimension.
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Martinez and Zenk note that no space containing a copy of the space of count-
able ordinals or of βω has finite z-dimension. They note also that the finiteness
requirement in Theorem 5.4 may not be omitted.

5.5 Theorem. Suppose X is a locally compact metrizable SP-scattered space
with finite CB-index, then X is a free union of locally compact metrizable spaces
with finite z-dimension.

Proof: Because X is locally compact and paracompact space, it is a free union
of locally compact σ-compact (and hence Lindelöf) RG-spaces {Xi}i∈I , and there
is a positive integer k such that rg(Xi) ≤ k for all i ∈ I. The conclusion follows
from Section 3 of [HRW03], 4.7 of [MZ05], and Theorem 5.4 above. �

6. Questions and some answers

6.1 Question. Must the product of a paracompact SP-scattered space and a

paracompact space be paracompact?

Answer

A negative answer to this question appears in Example 1 of [A06] where K. Al-
ster shows that there is a Lindelöf (and hence paracompact) P -space X of weight
ω1 and a paracompact space Y such that X × Y is not normal.

6.2 Questions. (a) Must the product of a paracompact scattered space and a
paracompact space be paracompact?

(b) What can be said about countable products of scattered paracompact
spaces?

Answer

(a) A positive answer to this question may be deduced from results in [T71]
as follows. Near the top of p. 60, the class of spaces whose product with every
paracompact space is paracompact is denoted by Π. Near the bottom of this
page, the class of C-scattered spaces is defined and it is noted that scattered
spaces are C-scattered. On p. 68, the class of Π∗ is introduced and it is observed
that Π∗ is contained in Π, and in Theorem 23, it is shown that every C-scattered
paracompact space is in Π∗. Combining these results yields a positive answer
to (a). The author shows also that no P -space without isolated points can be
C-scattered.
(b) Also, it is shown in [RW83] that a countable product of scattered paracom-

pact spaces is paracompact.

6.3 Question. Must a product of paracompact P -spaces be paracompact?

Answer

A negative answer to this question follows immediately from an example of a
paracompact P -space X such that X × X is not normal whose existence follows
from Theorem 6 in [AE72]. See also [A06].
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6.4 Question. Must the product of an SP-scattered paracompact space and a

Lindelöf space be paracompact?

Answer

Unknown except that by Theorem 4.5, the answer is yes if the first factor is a
paracompact P -space.

6.5 Conjecture. If X is a Lindelöf space, then the following are equivalent:

(a) X is an RG-space;
(b) X is SP-scattered and has finite SP-index;
(c) X is an RG-space and rg(X) is finite.

6.6 Question. If X is metacompact and scattered (or SP-scattered), must Xδ

be scattered (or SP-scattered)?

6.7 Question. If X is a metacompact P -space and Y is Lindelöf, must X × Y
be metacompact?

Added in proof. The absolute E(X) (see [PW88, Chapter 6]) of a P -space X
without isolated points and of non-measurable cardinality witnesses the fact that
the perfect irreducible continuous preimage of an SP-scattered space X need not
be SP-scattered. This contrasts with Theorem 2.17.
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