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Characterization of the strict convexity
of the Besicovitch-Musielak-Orlicz
space of almost periodic functions

MOHAMED MORSLI, MANNAL SMAALI

Abstract. We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic
functions and consider its strict convexity with respect to the Luxemburg norm.

Keywords: Besicovitch-Orlicz space, almost periodic functions, strict convexity

Classification: 46B20, 42A75

1. Introduction

We denote by C%.p. the linear set of all continuous almost periodic functions
(u.a.p.). Let A be the subspace of CY%.p. whose elements are the generalized
trigonometric polynomials i.e.,

n
A= Py(t) =) aje™'a;€C A eRnEN
j=1

The class CYa.p. is in fact the closure of A in the uniform norm of C(R) (the
space of continuous and bounded functions on R).

This topological characterization is used to define widest classes of almost
periodic functions as the closure of the linear set A with respect to some specific
norms.

The first extension was obtained by A.S. Besicovitch (cf. [2]) in the context of
LP spaces. Namely he defined the Sg_p_, Wg_p_ and Bg_p_ spaces (resp. Stepanoff,
Weyl and Besicovitch spaces of almost periodic functions). Later on, T.R. Hill-
mann (cf. [5]) used a similar approach to obtain an extension in the context of
Orlicz spaces.

Most of the Hillmann’s work concerns topological and structural properties of
the new spaces.

In [9], [10], [11], there are considered the fundamental geometric properties of
the Besicovitch-Orlicz spaces of almost periodic functions.

443



444 M. Morsli, M. Smaali

In this paper, we consider the natural extension of almost periodicity to the
context of Besicovitch-Musielak-Orlicz spaces, in particular the case when the
function ¢ generating the space depends on a parameter.

The theory of spaces of generalized almost periodic functions was since its be-
ginning a subject of great interest. This was essentially motivated by the devel-
opment of the theory of differential and partial differential equations with almost
periodic terms (cf. [1], [8], [13]).

Actually this interest is still in growth and is enlarged to cover new domains
of applications.

2. Preliminaries

In the sequel ¢ : Rx [0,+00[ — [0,400[ will be a continuous function on
Rx [0, 400 satisfying:
(i) For every t € R, ¢(t,0) = 0.

(ii) For each t € R, ¢(t,u) is convex with respect to u € [0, +o00].

(iii) For every u € [0, +00[, ¢(t, u) is periodic with respect to ¢t € R, the period
7 being fixed and independent of u € [0, +o00[. Without loss of generality
we may suppose that 7 = 1.

(iv) For each o > 0, we have infycr @(t, @) = ¢(a) > 0.

We denote by M (R) the space of all real valued Lebesgue measurable functions.
The functional

po : M (R) — [0,+00]

_ +T
£ o) = o [ et

T—+00 -T

is a convex pseudomodular (cf. [10], [12]).
We define the Besicovitch-Musielak-Orlicz space associated to this pseudomod-
ular by

B2 ®) = {1 € M (®) s imy () =0}
={f€MR):py(af) <+oo, forsome a>0}.

The space B¥(R) is naturally endowed with the pseudonorm

|f|@:inf{k>0?%(£)§1}, f € B (R).

Let A be the set of all generalized trigonometric polynomials, i.e.,

n
A= Py(t) =) aje™' a;€C N ERnEN
j=1
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We denote by B, (R) (resp. BY, (R)) the closure of A with respect to the
pseudomodular py, (resp. with respect to the pseudonorm ||.||,,), more precisely:

By ®) = {7 € BF®):3fu € .30 >0, I _py (ko (fn— 1) =0}
Bf, (R) = {fer(R):afn € ANE >0, Tim_py(k(fu /) _o}
= {feB%O(R):aneA,nli)Tooﬁn_f”@_o}_

B, (R) and B¢, (R) will be called Besicovitch-Musielak-Orlicz spaces of al-
most periodic functions.
It is clear that
Bf,. (R) € BE,, (R) C B (R).

When ¢(t,|z|) = ||, we denote by BY(R) and Bla.p.(R) the respective spaces.
The notation p; is used for the associated pseudomodular.

Recall that the function ¢ is said to be strictly convex if p(t, Au + (1 — A\)v) <
Ap(t,u) + (1 — A)e(t,v) for almost all ¢ € R and for every 0 < u < v < +00,
0<A<l.

A normed linear space (X, ||.||) is strictly convex if

Iyl =1 and |z —y[| > 0.

We say that ¢ satisfies the Ag-condition (¢ € Ag) if there exist k > 1 and a
measurable nonnegative function h such that p,(h) < 400 and ¢(t, 2u) < ko(t, u)
for almost all t € R and all u > h(t).

x—;yH < 1 whenever ||z|| =

3. Auxiliary results

The space By p.(R) can be regarded as a subspace of measurable functions on
R with respect to Lebesgue measure. However, the theory of B p.(R) spaces is
different from that of L¥(R) spaces: the usual convergence results of the Lebesgue
measure theory are not valid in the Bf , (R) spaces (see [11]).

To handle Bf , (R) spaces as L?(R) ones, we introduce the set function f.

Let ¥ = ¥(R) be the o-algebra of all Lebesgue measurable subsets of R. We
denote by i the set function defined on ¥ by

_ 1 +T _ 1
i(A) = T — tydt = T — W(AN[-T,+T
fi(A) pim o /_T xa(t) o 2Tu( [-T,+T1)),

where i denotes the Lebesgue measure on R.
It is easily seen that the set function f is not o-additive.
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A sequence {fn,} C B¥(R) is said to be fi-convergent to some f € B¥(R) (in

symbol f,, —— f) when, for every a > 0, we have

lim_fi{o € R: |fal@) - f(2)] > a} =0,

n

We give here some technical results that are the key arguments in the proof of
the main theorem.

Lemma 1. Let v(A) =limy_ o o fj—:,? ©(t, x(t)) dt. Then the set function
i is absolutely continuous with respect to v, i.e., for every € > 0 there exists § > 0
such that

(3.1) (AeX,v(d) <d) = (B(A4) <e).

PROOF: Suppose that (3.1) is false. Then for some gy > 0 we will have the
following:
for each n € N, there exists Ey, € ¥ s.t. v(Ep) < zln and fi(En) > eo. Thus

T
v(En)= Tm = /_+T o (b X, (1) dt

. 1 +T
= o [ et

> ¢(L)a (En) > ¢(1)eo,
a contradiction. (]
Lemma 2. Let {fn},>1 C Bip.(R) be a sequence modular convergent to f €
BE, (R), ie., limpy—to0 po(fn — f) = 0. Then f,, - f.
ProOF: Notice first that we have also limy,— 400 pg(fn — f) = 0. Then from a

similar result for functions without parameter (cf. [10]) it follows that f,, —— f.
(]

Lemma 3. Let h € B¥(R) be such that p,(h) = a > 0. Then for every § € (0,1)
there exist constants 8 > 0, Tp > 0 and a set G = {t € R, |h(t)| < B} such that

(3.2) p{GN[-T,+T)} > 62T, for T >Ty.

PROOF: It is clear that h € B?(R). Then if pe(h) > 0 the conclusion follows from
a similar result for the function ¢ without parameter (cf. [10]). The conclusion is
immediate if pg(h) = 0. O



Characterization of the strict convexity 447

Lemma 4. Let g € B (R). Then for all € > 0 there exist § > 0 and Ty > 0
such that p,(g9xq) < €, for all Q € ¥ satisfying p{Q N [T, +T1} < 26T, T > Tp.

PROOF: We may suppose py(g) > 0.
Let e > 0 and P: € A be such that p,(2(9—P:)) < §. Using the properties of ¢
we have ¢(t,2|P=(t)|) € COa.p. (cf. [4]). We then put M. = sup,cg ¢(t, 2|P:(t)]).
We choose 6 € (0,1) satisfying M:(1 — 6) < 5. Then by Lemma 3 there exist
B >0 and aset G = {t € R,|g(t)] < B} for which u{G N [-T,+T]} > 20T,
VT > Ty, for some Ty > 0. Hence, denoting by G’ the complement of G, we will
have for all T' > Ty,

1
= (t, |g(t)]) dt
2T Jarl-T,+T)
1 1
(3-3) < 5 (ﬁ/_ [p (t,21g9(t) — P= (D)]) + ¢ (¢, 2 | P=()])] dt)
G'N[~T,+T]
€ 1 ~ €
< -4+ =M (1-0)2T < —.
=1t e ( )2T < 2
We put ¢ = m and let @ C R be such that u{QN[-T,+T]} < 26T
for T > Tj.
Then if Q1 = QNG and Q2 = QN G’, we will have
L ot lg(t)) dt < ot 0) dt
2T Joinj-1,1) " 2T Jon-11
< o0 (Q1)sup (2, 8
5T ( )teR (t, 8)
< Ssupp(t,f) < =
teR 2

Similarly using (3.3) we get

1 1

— t,lg(t)|) dt < =— t,lg(t)])dt <
5T Jo, PO < o [ 9l

| ™

Finally for all T' > Tp, we have

1

— o(t, |g(t)]) dt <e,
2T Jon[-1,+T]

which means that py(g9xg) < e. O
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Proposition 1. Let f € By, (R). Then o(t, |f(t)]) € Bé_p_(R) and consequently
the limit limp_ | o, oy fj:,r{ o(t,|f(t)]) dt exists and is finite.

PRrROOF: Let {f,} be a sequence of trigonometric polynomials such that ||f, —

fllo — 0. Then using Lemma 2 we have also fp £, f-

Let 6 € (0,1). In view of Lemma 3, there exist § > 0 and Ty > 0 for which
i(G) > 0 with G = {t e R: | f(t)| < B}

Let @ > 0 and AS = {t € R : |fn(t) — f(¥)| > a}. It is easily seen that
|fn(t)] < B+a,Vte Gn(AY).

Now, the function ¢ being continuous on R X [0, +-00], is also uniformly contin-
uous on [0, 1] x [0,« + []. Moreover, using the periodicity of (¢, u) with respect
to ¢t € R, it follows that ¢ is uniformly continuous on R x [0, a + f].

Then for every n > 0 there exists a; > 0 such that

Ve GN(AYY ot fa (D) — o (L1F OD] = 1= 1fal) = FO) > an.
Hence, since fp, B, f we get also

lim i {teGnA) e b1 = ¢ (LIF @D = n} =0.

e
Consequently,
it eR: et |fa () — ¢ (L 1FOD] = 0}
<a{teGnA) ot 1fa ) =@ &1 ) =0}
a{te () le (b1 0D = o (17O = n}

i
+ (1-6) + (A7),
Letting n tend to infinity, we will have

lim f{teR:[o(t]fu®)) =@ IfOD =0} < (1-6).

n—-4oo

Finally, since 6 € (0,1) is arbitrary, we deduce that for all > 0

(34) Jim a{t €R ot fn (@)) =@ & 1F @] 20} =0.
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On the other hand, using Lemma 4, it is easy to see that given € > 0 there
exist 6 > 0 and ng € N such that for all n > ng the following implication holds

(Q € %,(Q) <6) = max (py (fxq) »pp (faxq)) < e

Let E5 = {t € R : |o(t, |fn(t)]) — ¢, |f#)|)] > €}. Then since by (3.3),
A(ES) < 6 for n > ng, we get

o +T
o / 0 (& fn()]) — (k. [f )] di

-7
_ 1
< T 2T/E%O[_T’T]I<p(,|f O = o (6. 1f )]
+1'_—/ tfn @) =@ @) f @) dt
STy SN A GO
<2e+¢e=3¢.

Finally by € > 0 being arbitrary we deduce that

_ +T
tim B g [ e () e (117 O] de=o.

n—4+oo T —4o00

It remains to see that o(t,|fn(t)]) € CPa.p. This follows from the properties
of the function ¢ and the fact that f, € A (see [4]). O

Lemma 5. Let {fp}n C Bé.p_(R) be such that f, £, fe Bé_p.(R). Suppose
there exists g € B;.p.(R) for which max(|fn(t)],|f(#)]) < g(t), t € R. Then
p1(fn) = p1(f)-

PrOOF: Take € > 0 and let § > 0 be associated to ¢g as in Lemma 4. We put

AS = {t € R: |fn(t)— f(t)] > §}. Then since f,, —— f it follows that (AS) < &
for all n > ng and then by Lemma 4

p1(Ifn = flxaz) < p1(29xa5) <

N ™

Consequently, for all n > ng we have

p1(lfn = f1) <1 (|fn —fle%) +p1 <|fn —flx(A%),>
_|_

ie., limp—yoo p1(fn) = p1(f)- H
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Lemma 6. Let f € B, (R). Then the functional X — py, ({) is continuous on
10, +o0].

PRrROOF: First, notice that since f € Bgp (R) we have py(af) < 4oo for each

a > 0. Indeed, f being in By, (R) there exists a sequence {fn}, C A such that

limy, o0 || f = fnlle = 0 or equivalently limy, oo py(a(f — fn)) = 0 for every o > 0.
Let a > 0 and ng € N such that p,(20(f — fn,)) < 1. Then

pe(f) < 500 (20 (F = Fu)) + 59 (20tfag)

consequently, using the fact that the trigonometric polynomial fy, is uniformly
bounded, it follows that p,(af) < 4o0.

Let now Ag € |0, +o0[ and {A,} be a sequence of real numbers which converges
to Ag. We have

ff
Pcp(x—/\—o)ﬁ

Then limy, 4 o0 pp (% - T{)) —0.

1 1

N pp(f) for every n > ny.

Now, using Lemma 2 we get % £, )\io and then ¢ (t, |J;(i)|) LN © (t, |f§é)|)

(see the proof of Proposition 1). Furthermore

max (i (1 200) o (1 200)) < (1 2 00

and by Proposition 1 we have ¢ (t, %|f(t)|) € Bé_p_(R). Consequently, using

() (E)

This means that A — py, ({) is continuous on ]0, +o00|. O

Lemma 5 we deduce

Corollary 1. Let f € Bg . (R). Then

(1) [[fllo < 1if and only if py(f) < 1;

(2) Ifllo =1 if and only if py(f) = 1.
PROOF: We prove briefly (2), the assertion (1) follows then easily.

Let f € By p (R) with ||f|l, = 1. Then for £ > 0 we will have p,, (1—_{_5) <1
and using Lemma 6 it follows that p,(f) < 1.

We have also p,, (1—{6) > 1 and again by Lemma 6 we get p,(f) > 1. Finally,

pe(f) = 1.

The converse implication is known for a general modular space. (Il
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Remark 1. We recall that a similar result holds in classical Musielak-Orlicz
spaces under the additional Ag-condition. This condition is not necessary in our
case since Lemma 6 holds with the restriction f € Bf , (R).

Lemma 7. Let f € BYp (R) with ||f|l, = 1. Then there exist real numbers
0 < a< fandb € (0,1) such that if G1 = {t € R: a < |f(t)| < B} we have
i(G1) = 6.

PROOF: Let 6 € (0,1). Then from Lemma 3 there exist § > 0 and T > 0 such
that p{G N [-T,+T|} > 02T,VT > Ty, where G = {t e R: |f(t)| < 8}.
We claim that the following is also true:
e for each § € (0,1) there exist § € (0,1), To > 0 and a set G = {t € R,
o(t, |f()]) <1 -6} such that for T > Ty

(3.5) " {G N[-T, +T]} < 62T,

For, let § € (0,1) and P, be a sequence of trigonometric polynomials approxi-
mating f, i.e., ||f — Pallp — 0. We take Ps such that p,(2|f — Ps|) < § and put
M = supgeg ¢(t, 2F5(t))-

Let € > 0 be such that (% + M&) < 0 and suppose that (3.5) is not satisfied.

Then taking 6 =1 — ¢, there will exists a sequence {Tp,} increasing to infinity for
which u{G N [T, +Tn]} > 02T;,. We then get

1 +Thn 1

T ) o (t,|f (8)]) dt (6, [f (1)) dt

a 2Tn éﬂ[_Tny“l‘Tn}
1
2Tn J(G)'A[~Tn,+Tu]
1

e
(1=9) 2Tn J(G) A[=Tn,+Tx]

@ (&1 f (D)) dt

(6, 1f (1)) dt.

Moreover, we have

1
— t|f (4)]) dt
5 ey g amy F 1 O
1 1
<= | —= £,21f (t) — Ps(t)]) dt
<3l /@)'n[-n,w‘”( £ () = Ps(®)])
1

— t,2|Ps(t)]) dt
s Sy £ 20D

1[4 )
<Z |24+ < .
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Then
L o) di<1—64 <1 ?
2T, | = 2= 2"

Hence, letting n tend to infinity we will have p,(f) < 1 — % Finally, using

Corollary 1 it follows || f||, < 1. This contradicts the fact that || f||, = 1.

We now show the statement of the lemma. Let ¢ € (0,1) and « > 0 be such that
supyepr @(t, @) < 1—8. We choose 6 as in (3.5) and then take § > § as in Lemma 3.
If B > « is a fixed number we define the set G1 = {t € R: a < |f(t)| < 5}. Then
since

(GO N[-T,T) = {t € [-T,T): |f(t)| < a}U{t € [-T,T]: f(t) >} c GU(G)’,

it follows that for T' > Ty we have
(G N[1T) < 0 (GNI=T.70) + 1 ((G) N [=T.7])
<027+ (1-6) 2T = (1— (é—é))QT,
or equivalently

1 (GLN[=T,T]) > (é - é) oT, for T > Tp.
0

Lemma 8. Let {an}n, an > 0 be a sequence of real numbers and o € (0,1). To
each n we associate a measurable set A,, such that

(i) AinAj=¢, fori# jandJ,>; An C 0,0, a<1;

() Ypso fo @t anxa, (1) dt < +oo.
Consider the function f =", < anXx 4, on [0,1] and let f be the periodic exten-
sion of f to the whole R (With_period 7 =1). Then fe f?ff,p,.

PROOF: Let us first remark that since fol o(t,an) dt < 400, for n > 1 there exists
a set Ap C [0, af for which fol @(t,anxa, (t))dt < n% It is also clear that we
may choose the A,’s so that the conditions of the lemma are satisfied. Now, for
an arbitrary e > 0 we fix ng such that >_, -, fol o(t,anxa,(t))dt < § and put
f1=>"1" aixa, on [0,1[. Let then M = m;XiSno supse(o,1] ¥(t; 2a;) and § < 357
(remark that we may suppose 1 — a > 9).

Let f] denote the restriction of f1 to [0,1 —6]. Then by Luzin’s theorem there
exists a continuous function g7 on [0,1 — §] such that

3

plt € 0,1- 8 9 (6 F1(0) — () > 0} < 5
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Moreover since f; is bounded so is g7 (with the same bound).
Let now g. be a linear extension of gl to [0, 1], more precisely g. is such that
ge = gL on [0,1 — 4], ge is linear between 1 — ¢ and 1 and satisfies g-(1) = gZ(0).
We then get

Az{uum;%mwﬁ

! Lf (@) = f1@®)] + [f1(t) — ge ()]
S/O go(t, )dt

2

1
<3 [ ewlrw-sio i [ oin®- oo

< / t, > anxa,( )

n>ng

1-0 1
= ¢@uﬁw—¢mnw+§/ o (8110 - ge(t)) dt

1
t dt M— M—

Finally, the continuous function g : [0, 1] — R satisfies

1 —
9:(0) = g=(1) and /0 w(t,M) dt <

Let now f and g. be the respective periodic extensions of f and g. to the whole
R (with the period 7 = 1). Clearly ge is w.a.p. and then it is also in Bf , (R).

Consequently, there exists P € A for which p, (gEEPE) <5

l\DIﬁ)

On the other hand f and g being periodic with period 7 = 1, using the peri-
odicity of ¢ (with 7 = 1), we get

p¢<f~_2§€>— lim i/_—;TSD t’w dt

T—+oco 2T

jf@@u@;%@gﬁ

IN

Finally,

ie., fe Ef,p.. O
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4. Results

Lemma 9. Let ¢(t,u) be strictly convex with respect to u > 0 and fpn,gn €
B&p.(R) be sequences such that, for some r > 0, we have

Jn + 9n -
5 .

Pe (fn) <r, Po (gn) <r and nh_{réo P (

Then (fn, — gn) ..

PROOF: Suppose that limy,—oo(fn — gn) # 0 in the fi-convergence sense. Then
there exist ¢ > 0, 0 > 0 and ny, /" oo such that if B, = {t € R : | fi, (t) —gn,, (t)| >
o} we have i(Ep) > e.

Take a number k. > 1 such that (see Lemma 1) there holds

r

_ 15
ME) > == py(xp) > —,
4 ke

where r > 0 is the constant from the lemma.
Then putting

Ap={t e R |fn,(t)] > ke},
By ={teR: |g’ﬂk(t)| > ke}

we obtain
T2 Pe (fnk)
- 1 +T
= 1 — t t)|) dt
LN @ (t, | fr (D))
S 1
> lim o (t, ke) dt

T T—+o0 ﬁ ApN[=T,T)

>k T o f
6T—>-i—oo 2T ApN[=T.T)

fi(Ay) <
<.

o(t,1) dt = kepy (xa,) -

It follows that py(x 4, ) < kLE and then
In the same way we show that fi(By) <
Now, define the set

PSS

Q= {(UJU) € R2/|u| < ke, |U| < ke, |u_U| > U}v

and consider the function
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Since ¢ is strictly convex we have F(t,u,v) < 1, for all (¢,u,v) € R x Q. Then
using the continuity of ¢ on R x Q (where Q is a compact set of R?) and its
periodicity with respect to ¢, it follows that

sup F(t,u,v) =1—0 for some § > 0.
RxQ

More precisely, for (¢, u,v) € RxQ we have

(p<t’u—2|—v) S(l_g)w.

Let now t € Ei\(Ag U By). Then fn, (t), gn, (t) € Q and consequently

o (1 0 om0 gy 2O oy )

Hence

> Po (fnk)‘;Pgo (gnk) ~ Py (fnk ;gnk)

> lim L /
T—+o00 2T J[By\(AyUBy)IN[-T,+T)

(t, | fri (O]) + 9 (@, 1gn, (1)]) | frp. (t) + gny (2)]
@ 2<p g _@(t, 29 ﬂ i@t

— 1
lim

9 o7 U fn (B)]) + @ (2, |gn, (2)])] dt
TS RN IO IR NCT)

>4 Tim —/ @QMM
T—+oo 2T JIE,\(ARUBL)N[-T.+T] 2

250(3) (-5 =030 5)

Finally,
fn"’gn € o
— > 00— _
r p¢< 5 52¢(2)>0,

a contradiction with the hypothesis p, (f”;g") — 7. (]
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Theorem 1. B(f,p,(R) is strictly convex if and only if ¢ is strictly convex and ¢
satisfies the As-condition.

PRrOOF: Sufficiency. Suppose that ¢ is strictly convex and satisfies the Ao-

condition but B¢, (R) is not strictly convex. Then for some f and g € B, (R)
we will have || f]lo = [l = 1 and ||f — g]l, > 0 but ‘%Hp = 1. From Corol-

ftg

lary 1 we will have also py(f) = py(9) = py ( ) = 1. Then from Lemma 9 it

follows that for each « > 0, i{t € R: |f — g| > a} = 0. Finally, using Lemma 7
we get p,(f — g) = 0. Contradiction.

Necessity. Let L¥ = L¥([0,1]) = {f € M(R fo A f@)])dt < +oo
for some A > 0} be the usual Musielak-Orlicz space and ||.||pe its associated
Luxemburg norm.

We consider the injection map

i:L¥— B¢, (R), i(f)=".

where fis the periodic extension (with period 7 = 1) of f to R. We show first
that i(L¥) € BY, (R).

Let f € L¥([0,1]). Then there exists A > 0 such that ¢(t, \|f(¢)]) € L([0,1]).
From usual arguments of Lebesgue theory we have limy_, 1 oo (V) = 0, where

Vn={te[0,1]: ot A[f{)]) = N}.
Let Ey = {t €[0,1] : |f(t)] > N}. Then for ¢ € Ey we have
@ (LAF@O]) = o(t, AN) = ANp(t,1) = AN$(1),
where ¢(1) = infycpg 1 (t, 1), ¢(1) > 0 (we may suppose ¢(1) = 1). It follows

that Ey C Vyn and then we get limy_. 1o p(En) = 0.
Consider the following functions for N € N,

[ f®) i fHEN
i) = { N )N

It is clear that the sequence {fn} is increasing and f < f. Moreover, since

lmy 100 #(EN) = 0 we have limpy_, 1 fEN o(t, Al f(t)])dt = 0.
Then for a given € > 0 there is an N. € N such that

1
| oAl fvohds [ el d<e
0 ENE
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Now for fp_ being bounded there exists a sequence of simple functions (Sy_)n

uniformly convergent to fy.. In particular, there exists a simple function Sy,

such that sup;epp 1) [A (fn, (¢) — Sn. (1)) < € and then

1
o (3150 = sw.on) ar
1 1
S%/O et N[f(t) — fa. (D)) dt—i—%/o o (LA fN. () = Sn. (1)) dt <.

We denote by ]7, st and S N. the respective periodic extensions (with period
7 = 1) of the functions f, fy. and Sy_. We have from the periodicity properties

of ¢, f, fn. and Sy.:

po (5 (F-3n) ) = pim o /_;Tw (1370~ 3. 0] )
= [T (15170 - sx 01) ar <

Moreover, from Lemma 8 we have S N. € BY p.(R). Then there exists P- € A
for which p,, (%(gNs - Pg)) < ¢ (see the proof of Lemma 8).
Finally, putting o = min ()\,

1)
e (5 (7)) <30 (3

(F-3) ) +0e (5 (8- 7)) } <
This means that f € B, (R).

Now, since i : L¥([0,1]) — B?f,p,(]R) is an isometry, the strict convexity of
B p.(R) implies the strict convexity of L#([0, 1]).
Consequently o(t,u), t € [0,1], u > 0 is strictly convex and satisfies the Ag-

condition for Musielak-Orlicz spaces (see [6], [7]) i.e., there exist k > 1 and h > 0

with fol h(t) dt < oo such that p(t, 2u) < ko(t,u)+h(t) for all w > 0 and almost all
t € [0,1]. The periodically (with 7 = 1) extended functions ¢(t,u), t € R, uw >0
and h(t), t € R satisfy the conditions h € BY(R) and o(t,2u) < ko(t,u) + h(t)

for u > 0 and almost all ¢ € R.

Now, putting f(£) = sup{u > 0 : ¢(t,u) < h(t)} it follows that f is measurable

and (¢, f(t)) = h(t) for t € R. Finally, we get

p(t,2u) < kp(t,u) + h(t) < (k + 1)p(t, u)

for w > f(t) and almost all ¢ € R, i.e., ¢ satisfies the Ag-condition for Besicovitch-
Musielak-Orlicz spaces.

O
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