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Eberlein spaces of finite metrizability number

I. Juhász(a), Z. Szentmiklóssy(a), A. Szymanski(b)

Abstract. Yakovlev [On bicompacta in Σ-products and related spaces, Comment. Math.
Univ. Carolin. 21.2 (1980), 263–283] showed that any Eberlein compactum is hereditarily
σ-metacompact. We show that this property actually characterizes Eberlein compacta
among compact spaces of finite metrizability number. Uniformly Eberlein compacta and
Corson compacta of finite metrizability number can be characterized in an analogous way.
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Classification: Primary 54A38, 54A15; Secondary A15

A compact space is called an Eberlein compactum if it is homeomorphic to a
weakly compact subset of some Banach space. Answering a question of Arhan-
gel’skii, E. Michael and M.E. Rudin showed that any compact space which is
the union of two metrizable subspaces is an Eberlein compactum (cf. [10]). Upon
noticing there are easy examples of compact spaces that can be represented as the
union of three metrizable subspaces which are not even Corson compacta, neither
them nor anybody else (to our best knowledge) have pursued this line of research.
The aim of this paper is to determine which compact spaces of finite metrizability
number, i.e. representable as unions of finitely many metrizable subspaces, are
Eberlein.
The paper is organized as follows. In Section 1, we characterize internally

open subspaces of Eberlein compacta as well as other Eberlein type compacta,
like uniform Eberlein or Corson compacta. In Section 2, we give proofs showing
that these Eberlein type spaces enjoy some hereditary properties (along the lines
Yakovlev did in [12]). Then we utilize a representation theorem for locally compact
spaces of finite metrizability number (Ismail and Szymanski cf. [6]) to show that
the appropriate hereditary properties characterize the spaces in question, provided
that they have finite metrizability number. Concerning our characterization, it
should be mentioned that in 1984 G. Gruenhage obtained a characterization of
Corson and Eberlein compacta in a similar vein. Namely, he showed (cf. [5,
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Theorem 2.2]) that a compact space X is a Corson (resp. Eberlein) compactum
if and only if X2 is hereditarily metalindelöf (resp. σ-metacompact).
All undefined terms and notions can be found in [4] or in [7].

1. Open subspaces of Eberlein and Eberlein like compacta

Let κ be a cardinal and let P be a family of subsets of a set X .
P is a point-κ family if |{U ∈ P : x ∈ U}| ≤ κ for each x ∈ X . P is a

point-finite family in X if |{U ∈ P : x ∈ U}| < ω for each x ∈ X . P is a σ-point
finite family in X if P is the union of countably many point-finite subfamilies.

P is a T0 separating family in X if for any two distinct points x, y in X there
is U ∈ P such that U contains exactly one of x, y. (If it is so, we use the phrase:
U separates x and y). P is an F -separating family in X if for any two distinct
points x, y in X there is U ∈ P such that x ∈ U and y /∈ clU or vice versa. Let us
point out that any separating family in X covers all but, perhaps, a single point
of X .
For the purposes of our paper, we need the following topological characteriza-

tions of Eberlein compacta.

Theorem 1 (H.P. Rosenthal [11]). A compact spaceX is an Eberlein compactum
if and only if there is a collection of non-empty open Fσ subsets of X which is T0
separating and σ-point finite in X .

Theorem 2 (E. Michael and M.E. Rudin [9]). A compact Hausdorff space is an
Eberlein compact if and only if it has a collection of open subsets of X which is
σ-point finite and F -separating in X .

We recommend [1] and [8] as basic sources for, other than topological, contexts
related to Eberlein compacts.
One of the goals of this section is to study open subspaces of Eberlein compacta.

The following general lemma comes very handy in this respect.

Lemma 1. Let C be a class of compact spaces closed under continuous images.
A non-compact space Y is homeomorphic to an open subspace of a space X ∈ C if
and only if Y is locally compact and the one-point compactification of Y belongs
to C.

Proof: The sufficiency is obvious. To prove the necessity, suppose that Y is
homeomorphic to the open subspace G of a space X ∈ C. Then Y is locally com-
pact and F = X − G is a non-empty closed subset of X . Since the quotient map
q : X → X/F (obtained by collapsing the set F to a single point) is continuous,
the quotient space X/F ∈ C. Clearly, Y is homeomorphic to X/F − {F}. �

Theorem 3. For a locally compact space Y , the following conditions are equiv-
alent:

(i) Y is homeomorphic to an open subspace of an Eberlein compact;
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(ii) Y has a σ-point finite, T0 separating collection of non-empty open Fσ sets

with compact closures;

(iii) Y has a σ-point finite, F -separating collection of non-empty open Fσ sets

with compact closures;

(iv) Y has a σ-point finite, F -separating collection of non-empty open sets
with compact closures.

Proof: The theorem is non-trivial only in the case when Y is not compact.
The following argument proves both implications (i)⇒(ii) and (ii)⇒(iii).
By the theorem of Y. Benyamini, M.E. Rudin, and M. Wage [2], the class of

Eberlein compacta is closed under continuous images. By Lemma 1, Y = X−{p}
for some Eberlein compactum X and p ∈ X . Let P be a σ-point finite, T0
separating collection of non-empty open Fσ subsets of X . For each U ∈ P fix
open Fσ sets U(n), n ∈ ω, such that:

(a) clU(n) ⊆ U(n+ 1) for each n ∈ ω;
(b)

⋃
{U(n) : n ∈ ω} = U .

For each U ∈ P and for each n ∈ ω, fix a closed Gδ set Ũ(n) such that

clU(n) ⊆ Ũ(n) ⊆ U(n+ 1). We set

Q =
{
U(n) : p /∈ U ∈ P , n ∈ ω

}
∪

{
X − Ũ(n) : p ∈ U(n), U ∈ P , n ∈ ω

}
.

To see that Q is σ-point finite, notice that {U(n) : p /∈ U ∈ P , n ∈ ω} is the
union of countably many σ-point finite families Qn = {U(n) : p /∈ U ∈ P} and

that {X − Ũ(n) : p ∈ U ∈ P , n ∈ ω} is a countable family.
To see that Q is F -separating, take two distinct points x, y of X−{p}. Suppose

U ∈ P separates x and y, say x ∈ U and y /∈ U . If p /∈ U , then take an n ∈ ω
such that x ∈ U(n). Thus y /∈ clU(n). Clearly U(n) ∈ Q. If p ∈ U , then p, x ∈ U

and y /∈ U . Take an n ∈ ω such that p, x ∈ U(n). Hence X − Ũ(n) F -separates x

and y. Clearly, Y − Ũ(n) ∈ Q.

From the definition of sets U(n) and Ũ(n), it follows immediately that every
member of Q is Fσ as well as that the closure of every member of Q is a compact
subset of the space X − {p}.
Since the implication (iii)⇒(iv) is obvious, it remains to prove the implication

(iv)⇒(i). Assume that Y is a locally compact non-compact space, and let Q
be a σ-point finite, F -separating collection of non-empty open sets with compact
closures in Y . We may assume that

⋃
Q = Y . If X is the one-point compactifica-

tion of Y , then X is a compact space in which Q is a σ-point-finite, F -separating
collection of non-empty open sets. Thus X is an Eberlein compactum. �

A similar line of arguments can be used to characterize open subspaces of
uniform Eberlein compacta or of Corson compacta. We need pertaining definitions
and facts first.
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A compact Hausdorff space X is called a uniform Eberlein compactum if there
are a separating collection P of non-empty open Fσ subsets of X , a function
ϕ : ω → ω, and a decomposition P =

⋃
{Pn : n ∈ ω} such that each point x ∈ X

belongs to at most ϕ(n) many members of Pn.
A compact Hausdorff space X is called a Corson compactum if there is a

collection of non-empty open Fσ subsets of X which is separating and point
countable in X .
Since the class of uniform Eberlein compacta and the class of Corson compacta

are both closed under continuous images (see Y. Benyamini, M.E. Rudin, and
M. Wage [2] and E. Michael and M.E. Rudin [2]???, respectively), the next two
theorems can be proved virtually the same way as Theorem 3.

Theorem 4. For a locally compact Hausdorff space Y , the following conditions
are equivalent:

(j) Y is homeomorphic to an open subspace of a uniform Eberlein compactum;
(jj) Y has a separating collection P of non-empty open Fσ sets with compact

closures for which there is a function ϕ ∈ ωω and a decomposition, P =⋃
{Pn : n ∈ ω}, such that each x ∈ Y belongs to at most ϕ(n) sets in Pn;

(jjj) Y has an F -separating collection P of non-empty open Fσ sets with com-

pact closures for which there is a function ϕ ∈ ωω and a decomposition,
P =

⋃
{Pn : n ∈ ω}, such that each x ∈ Y belongs to at most ϕ(n) sets

in Pn.

Theorem 5. For a locally compact Hausdorff space Y , the following conditions
are equivalent:

(⋄) Y is homeomorphic to an open subspace of a Corson compactum;
(⋄⋄) Y has a point countable, separating collection of non-empty open Fσ sets

with compact closures;

(⋄ ⋄ ⋄) Y has a point countable, F -separating collection of non-empty open Fσ

sets with compact closures;

(⋄v) Y has a point countable, F -separating collection of non-empty open sets
with compact closures.

A space homeomorphic to an open subspace of an Eberlein compactum is
going to be called an Eberlein space. Similarly, a space homeomorphic to an
open subspace of a uniform Eberlein (or Corson) compactum is going to be called
a uniform Eberlein (resp. Corson) space.

Proposition 1. Let X be a locally compact Hausdorff space that can be repre-
sented as X = G ∪ H , where G is an open Eberlein subspace and H ∩ G = ∅.
Suppose further that there is a σ-point finite collection P of open sets in X that
coversH and such that the family P ↾ H = {U∩H : U ∈ P} consists of σ-compact
sets and is separating in H . Then X is an Eberlein space.
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In particular, if X is compact Hausdorff and X = G ∪ H , where G is an open
Eberlein subspace and H is compact and metric, then X is an Eberlein compact.

Proof: We shall show that X has a σ-point finite, F -separating collection Q
of non-empty open sets with compact closures. Towards this goal, take a family
Q1 that is a σ-point finite, F -separating collection of non-empty open sets with
compact closures in G. We may assume that this family covers G and thus Q1 F -
separates any pair of distinct points ofX if at least one of them is in G. It remains
to construct another σ-point finite collection of open subsets ofX that F -separates
any pair of distinct points fromH . For U ∈ P , let {E(U, n) : n ∈ ω} be a sequence
of compact sets such that

⋃
{E(U, n) : n ∈ ω} = U ∩ H . For each set E(U, n)

pick an open set V (U, n) ⊆ X such that E(U, n) ⊆ V (U, n) ⊆ clV (U, n) ⊆ U and
clV (U, n) is compact. Then Pn = {V (U, n) : U ∈ P} is σ-point finite collection
of open sets in X , hence so is Q2 =

⋃
{Pn : n ∈ ω}. Notice that Q2 F -separates

any pair of distinct points from H . Thus Q = Q1 ∪ Q2 is as required. �

Remark. There exists a compact Hausdorff space X such that X = G ∪ H ,
where G is an open Eberlein subspace and H is an Eberlein compactum but the
space X itself is not an Eberlein compactum. Take, for example, X to be the
one-point compactification of a Ψ-space. Thus X = ω ∪M∪ {∞}, whereM is a
MAD on ω. It is well known that X is not an Eberlein compactum, however ω is
its open Eberlein subspace andM∪ {∞} is an Eberlein compactum.

2. Spaces of finite metrizability number and Eberlein like spaces

A topological space X is said to be σ-metacompact if every open cover of X
has a σ-point finite refinement; X is hereditarily σ-metacompact if every (open)
subspace of X is σ-metacompact.
A topological space X is said to be metalindelöf if every open cover of X

has a point countable open refinement; X is hereditarily metalindelöf if every
(open) subspace of X is metalindelöf. In [12], N. Yakovlev proved the following
remarkable facts.

Theorem 6. (a) If X is an Eberlein compactum, then X is hereditarily
σ-metacompact.

(b) If X is a Corson compactum, then X is hereditarily metalindelöf.

We shall augment Yakovlev’s results by exhibiting a similar hereditary property
of uniform Eberlein compacta.
For a given collection P of non-empty subsets of a set X and for any point

x ∈ X let P+(x) = {U ∈ P : x ∈ U} and P−(x) = {U ∈ P : x /∈ U}. Clearly,
for each x ∈ X , P+(x) ∩ P−(x) = ∅ and P+(x) ∪ P−(x) = P . Notice that P is
separating iff

⋂
{U : U ∈ P+(x)}∩

⋂
{X−U : U ∈ P−(x)} = {x} for each x ∈ X .

If P is F -separating, then
⋂
{U : clU ∈ P+(x)} ∩

⋂
{X − U : U ∈ P−(x)} = {x}

for each x ∈ X .
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Now assume that P is a family of non-empty open Fσ subsets of a compact
space X . For each U ∈ P , fix a sequence {U(n) : n ∈ ω} of open sets such that
clU(n) ⊆ U(n+1), for each n ∈ ω, and

⋃
{U(n) : n ∈ ω} = U . For A, B ∈ [P ]<ω

and n, m ∈ ω, let

V (A, B, n, m) =
⋂

{U(n) : U ∈ A} ∩
⋂

{X − clU(m) : U ∈ B}.

The set V (A, B, n, m) is called a P-canonical neighborhood of a point x ∈ X if
A ∈ [P+]<ω, B ∈ [P−]<ω , and x ∈ U(n) for each U ∈ A. Under the assumptions
on P and X , as above, we have the following lemma.

Lemma 2. If P is an F -separating collection in X and x ∈ X , then the family
of all P-canonical neighborhoods of x is a base at x.

Proof: Let W be an open neighborhood of a point x. Since
⋂
{clU : U ∈

P+(x)} ∩
⋂
{X − U(m) : U ∈ P−(x), m ∈ ω} = {x}, there exists a finite subset

A of P+(x), a finite subset B of P−(x), and m ∈ ω such that
⋂
{clU : U ∈

A} ∩
⋂
{X − U(m) : U ∈ B} ⊆ W . Pick an n ∈ ω such that x ∈ U(n) for each

U ∈ A. Then V (A, B, n, m) is a P-canonical neighborhood of x contained in W .
�

P is said to be uniformly σ-point-finite if P =
⋃
{Pn : n ∈ ω}, where each Pn

is a point-ϕ(n) family for some function ϕ : ω → ω.
A topological space X is called uniformly σ-metacompact if every open cover

of X has a uniformly σ-point finite refinement; X is hereditarily uniformly σ-
metacompact if every (open) subspace of X is uniformly σ-metacompact.

Theorem 7. If X is a uniform Eberlein compactum, then X is hereditarily

uniformly σ-metacompact.

Proof: By Theorem 4(jjj), X has an F -separating collection P of non-empty
open Fσ sets for which there are a function ϕ : ω → ω and a decomposition
P =

⋃
{Pn : n ∈ ω} such that each x ∈ X belongs to at most ϕ(n) sets in

Pn. For each U ∈ P , fix a sequence {U(n) : n ∈ ω} of open sets such that
clU(n) ⊆ U(n + 1), for each n ∈ ω, and

⋃
{U(n) : n ∈ ω} = U . Without loss of

generality we may assume that P0 ⊆ P1 ⊆ · · · ⊆ Pn ⊆ . . .
Let Q be any collection of non-empty open subsets of X . By transfinite induc-

tion, it is easy to construct a collection of points {xξ : ξ < β}, and a collection
{Vξ : ξ < β} of P-canonical sets that satisfy the following conditions:

(1) for each α < β, Vα = V (Aα, Bα, nα, mα) is a P-canonical neighborhood
of xα such that, for some n ∈ ω, Aα ∪ Bα ⊆ Pn and Aα = P+n (xα);

(2) for each α < β, xα /∈
⋃
{ Vξ : ξ < α}; (3) {Vξ : ξ < α} is a refinement

of Q.

Claim. For each k, m, n ∈ ω and A ∈ [P ]<ω there is at most one ξ < β such

that: Aξ = A and nξ = n and mξ = m and Aξ ∪ Bξ ⊆ Pk and Aξ = P+
k
(xξ).
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For otherwise, there would exist ξ < ζ < β such that P+
k
(xξ) = P+

k
(xς ). Thus

Bξ ∈ P−(xζ) which would imply that xς ∈ Vξ , contradicting (2).
For each k, m, n ∈ ω, let

Q(k, n, m) =
{
Vξ : nξ = n, mξ = m, Aξ ∪ Bξ ⊆ Pk, and Aξ = P+

k

(
xξ

)}
.

Clearly, each Vξ belongs to at least one of the familiesQ(k, n, m). To end the proof

we show that Q(k, n, m) is point-2ϕ(k). To see this, let x be in the intersection of

a subfamily R of Q(k, n, m). By the claim, there will be at most |2P
+

k
(x)| ≤ 2ϕ(k)

members of R. The proof of the theorem is finished. �

Let Π be a property of collections of subsets of a given set (like being
(σ-)disjoint, (σ-)point finite, point-countable, etc.). A collection D of subsets
of a space X is said to be Π-good in X if there exists a collection P with property
Π of open subsets of X such that

⋃
D ⊆

⋃
P and every element of P intersects

exactly one element of D. The space X is said to be a Π-witness if each discrete
(in X) collection D of closed 2nd countable subsets of X is Π-good in X . The fol-
lowing statements are then obvious from the definitions. (In fact, 2nd countability
of the members of D is not used in them.)

Proposition 2. (a) If X is collectionwise normal, then X is a Π-witness for
Π = disjoint.

(b) If X is uniformly σ-metacompact, thenX is aΠ-witness for Π = uniformly
σ-point finite.

(c) If X is σ-metacompact, then X is a Π-witness for Π = σ-point finite.
(d) If X is metalindelöf, then X is Π-witness for Π = point countable.

The following lemma is trivial but also indispensable for our forthcoming ar-
guments.

Lemma 3. Let X be a locally compact Hausdorff space. Suppose that F is a
compact subset of X and a subset of an open set U . There exists an open Fσ set

V such that F ⊆ V ⊆ clV ⊆ U and clV is compact.

Theorem 8. LetX be a locally compact Hausdorff space and letD be a collection
of disjoint, closed, 2nd countable subsets of X . Let Π be one of the properties:

σ-disjoint;

σ-point k; k ∈ ω;

uniformly σ-point finite;

σ-point finite;

point countable;

point-κ; κ > ω.
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If D is Π-good in X , then there is a collection P with property Π of open Fσ

subsets of X with compact closures such that:

(N) If x ∈ F ∈ D and V is an open neighborhood of x in F then there exists
U ∈ P such that x ∈ U and clU ∩ (

⋃
D) ⊆ V .

Proof: We give a proof only in the case Π = σ-disjoint, the other cases being
quite analogous.
Let Q be a σ-disjoint family of open subsets of X that covers

⋃
D and every

U ∈ Q intersects exactly one FU ∈ D. We have Q =
⋃
{Qn : n ∈ ω}, where

each Qn is a disjoint open family of X . Consider one of those families, say Q0.
Fix a countable open base BF in F for every member F of the collection D. Let
{FU (n) : n ∈ ω} be all the elements of the base BFU

that are contained in U ∩FU .
Let {FU (n, m) : m ∈ ω} be open sets in F such that

⋃
{FU (n, m) : m ∈ ω} =

FU (n), clFU (n, m) ⊆ FU (n), and clFU (n, m) is compact.

Now, for each U ∈ Q0 and n ∈ ω, let F̃U (n) be an open subset in X such that

F̃U (n) ⊆ U and F̃U (n) ∩ (
⋃
D) = FU (n). Applying Lemma 3 to the open set

F̃U (n) and its compact subset clFU (n, m) we get an open Fσ subset VU (n, m) of
X such that

(2.1) clFU (n, m) ⊆ VU (n, m) ⊆ clVU (n, m) ⊆ F̃U (n)

and clVU (n, m) is compact. Let Q0(n, m) = {VU (n, m) : U ∈ Q0}. From con-
struction, Q0(n, m) is a disjoint family consisting of open Fσ sets with compact

closures. Analogously, we construct families Qk(n, m) for each k ∈ ω. We set:

P =
⋃
{Qk(n, m) : k, m, n ∈ ω}. It remains to show that P satisfies condition (N).

Let x ∈ F ∈ D and let x ∈ U ∈ Qk for some k ∈ ω. If V is an open
neighborhood of x in F , then x ∈ FU (n, m) ⊆ FU (n) ⊆ V for some m, n ∈ ω.

By 2.1, the set VU (n, m), that belongs to Qk(n, m) ⊆ P , satisfies the condition
clVU (n, m) ∩ (

⋃
D) ⊆ V . �

The metrizability number m(X) of a space X is the smallest cardinal number κ
such that X can be represented as the union of κ many metrizable subspaces. Lo-
cally compact Hausdorff spaces with finite metrizability number are studied e.g.,
in [6]. Typical examples include the one-point compactification of an uncountable
discrete space, the Alexandroff duplicate of the unit segment, and the space Ψ.
We need the following representation theorem (cf. [6, Corollaries 7 and 8]):

Theorem 9. Let X be a locally compact Hausdorff space with m(X) = n,
2 ≤ n < ω. Then

(a) X can be represented as X = G ∪ F , where G is open dense metrizable
subspace of X , G ∩ F = ∅, and m(F ) = n − 1;

(b) X can be represented as X = H ∪ E, where H is open dense subspace of
X with m(H) = n − 1, G ∩ E = ∅, and E is metrizable.

We can state and prove our main results.
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Theorem 10. Let X be a locally compact Hausdorff space of finite metrizability
number. Let Π be the property of being σ-point finite. The following conditions
are equivalent:

(1) X is hereditarily σ-metacompact;
(2) every dense open subspace of X is a Π-witness;
(3) X is an Eberlein space.

Proof: The implication (1)⇒(2) is obvious. The implication (3)⇒(1) follows
from Theorem 6(a). It remains to prove (2)⇒(3). We will use induction on the
metrizability number m(X).
The case m(X) = 1 is obvious.
Assume that any locally compact Hausdorff space with metrizability number

≤ n and whose every dense open subspace is a Π-witness (for Π = σ-point finite)
is an Eberlein space. Let X be a locally compact Hausdorff space with every dense
open subspace a Π-witness and m(X) = n + 1. By Theorem 9(b), X = H ∪ E,
where H is open dense subspace of X with m(H) = n, H ∩ E = ∅, and E is
metrizable. By the induction assumption, H is an Eberlein space. So H has a σ-
point finite, (F -)separating collection Q of non-empty open Fσ sets with compact
closures. Since E is a locally compact metric space, E can be represented as the
topological sum, E =

⊕
{Eξ : ξ < κ}, of its second countable subspaces Eξ . Since

X is a Π-witness, by Theorem 8 applied to D = {Eξ : ξ < κ}, there is a collection
P with the property Π of non-empty open Fσ subsets of X with compact closures
such that (N) holds for P . Then P∪Q is a required family for X to be an Eberlein
space. �

Proofs of our other two main theorems can be done virtually the same way
as the proof above. We have to make only suitable references to Theorem 6(b),
in case of Corson spaces, or to Theorem 7, in case of uniform Eberlein spaces.
Therefore we do not include the proofs of these two theorems.

Theorem 11. Let X be a locally compact Hausdorff space of finite metrizability
number. Let Π be the property of being uniformly σ-metacompact. The following
conditions are equivalent:

(1) X is hereditarily uniformly σ-metacompact;
(2) every dense open subspace of X is a Π-witness;
(3) X is a uniform Eberlein space.

Theorem 12. Let X be a locally compact Hausdorff space with a finite metriz-
ability number. Let Π be the property of being point countable. The following
conditions are equivalent:

(1) X is hereditarily metalindelöf;
(2) every dense open subspace of X is Π-witness;
(3) X is a Corson space.
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Next, for each natural number n ≥ 2, we will construct a hereditarily screenable
uniform Eberlein compactum of metrizability number exactly n. We first state
a proposition. Since its proof follows the same line of argument as the previous
ones, we again omit it here.

Proposition 3. Let X be a locally compact Hausdorff space of finite metriz-

ability number. Let Π be the property of being σ-disjoint. If X is a Π-witness,
then X has a σ-disjoint, F -separating collection of non-empty Fσ open sets with

compact closures. In particular, X is a uniform Eberlein compactum.

We may now present the spaces promised above.

Example 1. Let Y0 denote the one-point compactification of the discrete
space ω1. Notice that Y0 is hereditarily screenable compact and m(Y0) = 2.
By induction, let Yn+1 be the one-point compactification of ω1×Yn. Clearly, Yn+1

is hereditarily screenable and compact. It remains to show that m(Yn+1) = n+3
provided that m(Yn) = n+ 2.
It is clear (by induction) that m(Yn+1) ≤ n + 3. Assuming to the contrary that
m(Yn+1) ≤ n + 2, from Theorem 9(b), we would get that Yn+1 = G ∪ F , where
G is an open dense subspace of Yn+1 with m(G) ≤ n + 1, Since F can have at
most countably many pairwise disjoint open sets, G must contain one of subspaces
{α} × Yn, which is of metrizability number n+ 2; a contradiction.

Remark 2. Let X be a compact Hausdorff space with m(X) = 2.

(a) From the representation theorem, it follows thatX has a σ-disjoint, separating
collection of non-empty open Fσ sets. Thus X is a uniform Eberlein compact
(cf. [10]).

(b) Let Y be the one-point compactification of a discrete space of cardinality ω1,
say Y = ω1∪{∞}. Let Z be the one-point compactification of a discrete space
of cardinality ω, say Z = ω ∪ {∞}. Then X = Y × Z is a compact Hausdorff
space and m(X) = 2. However X − {(∞,∞)} is not normal: ω1 × {∞} and
{∞}×ω are closed in X −{(∞,∞)} and cannot be separated. This example
gives a negative answer to a question by J. Gerlits (who found, independently,
another such example).

Let us conclude by noting that hereditary metalindelöfness (resp. hereditar-
ily σ-metacompactness) alone does not characterize Corson (resp. Eberlein) com-
pacta among compact spaces. Indeed, it is well known that Alexandrov’s “double-
arrow” space is not a Corson compactum although it is hereditarily lindelöf, and
thus hereditarily paracompact. But the metrizability number of Alexandrov’s
double-arrow space is equal to continuum, hence to show that our results are
sharp, we would need a compact space of countable metrizability number that
is hereditarily metalindelöf or (hereditarily σ-metacompact) but not Corson (or
Eberlein). At present, we do not have such an example.
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