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Club-guessing, good points and diamond

Pierre Matet

Abstract. Shelah’s club-guessing and good points are used to show that the two-cardinal

diamond principle ♦κ,λ holds for various values of κ and λ.

Keywords: Pκ(λ), diamond principle

Classification: 03E05

Let κ be a regular cardinal greater than or equal to ω2, and λ be a
cardinal greater than κ. In [4] Jech introduced the following notions. Pκ(λ)
denotes the collection of all subsets of λ of size less than κ. A subset C of Pκ(λ)
is closed unbounded if (a) it is cofinal in the partially ordered set (Pκ(λ),⊂), and
(b) for any infinite ordinal θ < κ and any sequence 〈aα : α < θ〉 of elements of
C such that aβ ⊂ aα whenever β < α < θ,

⋃

α<θ aα ∈ C. A subset S of Pκ(λ)
is stationary if S ∩ C 6= ∅ for every closed unbounded subset C of Pκ(λ). The
principle ♦κ,λ asserts the existence of a sequence 〈sa : a ∈ Pκ(λ)〉 with sa ⊆ a
such that for any X ⊆ λ, {a : sa = X ∩ a} is a stationary subset of Pκ(λ). Jech
showed that ♦κ,λ could be introduced by forcing. Moreover, he proved that ♦κ,λ

holds in the constructible universe L. It was shown in [2] that if 2<κ < λ, then
♦κ,λ holds. In this paper we show that if 2

<κ ≤ µ+ for some cardinal µ such

that ω < cf(µ) < κ < µ ≤ λ, then ♦κ,λ holds. So if either 2
<κ = λ and λ is

the successor of a cardinal of uncountable cofinality less than κ, or 2<κ = λ+

and ω < cf(λ) < κ, then ♦κ,λ holds (and hence the nonstationary ideal on Pκ(λ)

is not 2λ-saturated). Our result is proved by modifying the argument used by
Foreman and Magidor in [3] to show that if cf(λ) < κ, then there is a family of
λ++ stationary subsets of Pκ(λ) such that any two of them have nonstationary
intersection.

We need a few lemmas.

Lemma 1 (Solovay [9]). Let ρ be a regular uncountable cardinal. Then every
stationary subset of ρ is the union of ρ disjoint stationary sets.

Given two regular infinite cardinals θ < ρ, E
ρ
θ denotes the set of all infinite

limit ordinals α < ρ such that cf(α) = θ.
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Lemma 2 (Shelah see [5]). Let ρ > ω1 be a regular cardinal, and S be a station-
ary subset of E

ρ
ω . Then one can find a cofinal, order-type ω subset cγ of γ for

each γ ∈ S so that {γ ∈ S : cγ ⊆ C} is stationary in ρ for any closed unbounded
subset C of ρ.

Our source for the following notions and facts is [1]. Let µ > κ be a singular
cardinal of uncountable cofinality ν < κ. Suppose 〈µi : i < ν〉 is an increasing
sequence of regular cardinals such that κ < µ0 and sup{µi : i < ν} = µ. Given
f, g ∈

∏

i<ν µi, f <
∗ g means that |{i : f(i) ≥ (i)}| < ν. Similarly, f ≤∗ g means

that |{i : f(i) > g(i)}| < ν. By a scale of length ξ, ξ an ordinal, we mean a
sequence 〈fα : α < ξ〉 of elements of

∏

i<ν µi such that (a) fβ <∗ fα whenever
β < α < ξ, and (b) for every g ∈

∏

i<ν µi, there is α < ξ with g <∗ fα. Shelah

proved that the µi can be chosen so that there exists a scale of length µ
+. Let

〈fα : α < µ+〉 be such a scale. Given an infinite limit ordinal α < µ+, an exact
upper bound for the sequence 〈fβ : β < α〉 is an element g of

∏

i<ν µi such that
(i) fβ <∗ g for any β < α, and (ii) for every h ∈

∏

i<ν µi with h <
∗ g, there is

β < α with h <∗ fβ . By a good point , an infinite limit ordinal α < µ+ is meant
such that cf(α) > ν and there exists an exact upper bound gα for 〈fβ : β < α〉
with the property that for any i < ν, gα(i) is an infinite limit ordinal of cofinality
cf(α). Letting S denote the set of good points α such that cf(α) = κ, S is
stationary in µ+. Now consider the sequence 〈hα : α < µ+〉 defined by: hα = fα
if α /∈ S, and hα = gα otherwise. Then 〈hα : α < µ+〉 is a scale. Moreover, for
each α ∈ S, hα is an exact upper bound for 〈hβ : β < α〉. Let us sum it up all in
the following.

Lemma 3 (Shelah see [1]). Let µ > κ be a singular cardinal of uncountable
cofinality ν < κ. Then one can find sequences 〈µi : i < ν〉 and 〈hα : α < µ+〉 and
a set S such that (a) 〈µi : i < ν〉 is an increasing sequence of regular cardinals
such that κ < µ0 and sup{µi : i < ν} = µ, (b) 〈hα : α < µ+〉 is a scale of length

µ+ in
∏

i<ν µi, (c) S is a stationary subset of E
µ+

κ , and (d) for each α ∈ S,

ran(hα) ⊆ Eµ+

κ and hα is an exact upper bound for 〈hβ : β < α〉.

Suppose µ is a cardinal greater than κ. For n < ω, let Rµ
n be the set of all

increasing functions from n to E
µ+

κ . Let Tµ be the collection of all nonempty
subsets T of

⋃

n<ω R
µ
n such that for any n < ω and any t ∈ T ∩ Rµ

n, {t ↾ ℓ : ℓ <

n} ⊆ T and {α ∈ E
µ+

κ : t ∪ {n, α} ∈ T } is stationary in µ+.

Lemma 4 (Shioya [8]). Suppose that µ > κ is a cardinal, T ∈ Tµ, n < ω and

ϕ : T ∩ (
⋃

n<q<ω R
µ
q ) → µ+ is such that for every t ∈ dom(ϕ), (a) ϕ(t) ∈ t(n),

and (b) ϕ(t ↾ q) ≤ ϕ(t) for n < q < dom(t). Then one can find T ′ ∈ Tµ ∩ P (T )
and ψ : T ∩ Rµ

n → µ+ so that (i) T ′ ∩ Rµ
n = T ∩ Rµ

n and (ii) ϕ(t) ≤ ψ(t ↾ n) for
any t ∈ T ′ ∩ (

⋃

n<q<ω R
µ
q ).
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For A ⊆ Pκ(λ), Gκ,λ(A) denotes the following two-person game lasting ω
moves. Player I makes the first move. I and II alternately pick members of Pκ(λ),
thus building a sequence 〈an : n < ω〉 with the condition that a0 ⊆ a1 ⊆ . . . II
wins the game just in case

⋃

n<ω an ∈ A. Let NGκ,λ be the set of all B ⊆ Pκ(λ)
such that II has a winning strategy in Gκ,λ(Pκ(λ) \B).

Lemma 5 (Matet [6]). NGκ,λ is a normal ideal on Pκ(λ).

Proposition 6. Suppose 2<κ ≤ µ+ for some cardinal µ such that κ < µ ≤ λ
and ω < cf(µ) < κ. Then there is a sequence 〈sa : a ∈ Pκ(λ)〉 with sa ⊆ a such

that for any X ⊆ λ, {a : sa = X ∩ a} ∈ NG+
κ,λ
.

Proof: Let µ be a fixed cardinal such that ω < cf(µ) < κ < µ ≤ λ and 2<κ ≤ µ+.

Fix a stationary subset H of E
µ+

ω . Using Lemma 2, select an increasing function
γ from ω into γ for each γ ∈ H so that ran(γ) is cofinal in γ for every γ ∈ H ,
and {γ ∈ H : ran(γ) ⊆ C} is stationary in µ+ for any closed unbounded subset
C of µ+.

Set ν = cf(µ) and let 〈µi : i < ν〉, 〈hα : α < µ+〉 and S be as in the statement
of Lemma 3. For α < µ+, set xα = ran(hα). For b ∈ Pκ(µ), define gb ∈

∏

i<ν µi

by gb(i) = sup(b ∩ µi). Define ρ : Pκ(µ) → µ+ by ρ(b) = the least β < µ+

such that gb ≤∗ hβ . For α ∈ S and b ∈ Pκ(µ), define g
α
b ∈

∏

i<ν hα(i) by
gα
b (i) = sup(b ∩ hα(i)). For α ∈ S, define ρα : Pκ(µ) → α by ρα(b) = the least

β < µ+ such that gα
b ≤∗ hβ . Note that given any sequence 〈bn : n < ω〉 of

elements of Pκ(µ), ρ(
⋃

n<ω bn) = sup{ρ(bn) : n < ω}. Moreover, for every α ∈ S,
ρα(

⋃

n<ω bn) = sup{ρα(bn) : n < ω}.
We will prove that there is a sequence 〈sa : a ∈ Pκ(λ)〉 such that for anyX ⊆ λ,

{a : ρ(µ ∩ a) ∈ H and sa = X ∩ a} ∈ NG+
κ,λ
.

For n < ω and 0 < ζ < κ, let F
ζ
n be the set of all (n + 1)-tuples (f0, . . . , fn) of

functions from ζ to 2. By Lemma 1, S can be partitioned into disjoint stationary
subsets Zn, n < ω. Again by Lemma 1, for each n, Zn can be decomposed into

disjoint stationary subsets Z(f0, . . . , fn), (f0, . . . , fn) ∈
⋃

0<ζ<κ F
ζ
n .

For b ⊆ λ, let e(b) : o.t. (b)→ b be the function that enumerates the elements
of b in increasing order. For a, b ∈ Pκ(λ) with a ⊆ b, let χ(a, b) : o.t. (b) → 2 be
defined by (χ(a, b))(δ) = 1 if and only if (e(b))(δ) ∈ a.

The proof will go as follows. Given A ∈ NG∗
κ,λ and X ⊆ λ, we will construct

an and αn for n < ω, f i
n for i ≤ n < ω, and a and γ so that (a) a0, a1, . . . ∈ Pκ(λ)

and a0 ⊆ a1 ⊆ . . . , (b) f i
n = χ(ai, an) for i < n and fn

n = χ(X ∩ an, an),
(c) a =

⋃

n<ω an, a ∈ A and γ = ρ(a ∩ µ), (d) αn+1 = the least α such that

γ(n) < α < µ+ and ran(hα) ⊆ a, and (e) αn+1 ∈ Z(f0n, f
1
n, . . . , f

n
n ).



214 P.Matet

The guessing sequence 〈sa : a ∈ Pκ(λ)〉 is now defined in the obvious way.
Given a ∈ Pκ(λ), put ξ = o.t. (a) and γ = ρ(a ∩ µ). Let (∗) assert that γ ∈ H
and there exist ζn and αn+1 for n < ω and f i

n for i ≤ n < ω such that (0)
0 < ζn < κ, (1) f i

n is a function from ζn to 2, (2) αn+1 = the least α < µ+ such
that α > γ(n) and ran(hα) ⊆ a, and (3) αn+1 ∈ Z(f0n, f

1
n, . . . , f

n
n ). sa can be any

subset of a if (∗) does not hold. Now suppose that (∗) holds. By induction on θ,
define aθ

n for θ < ξ and n < ω as follows. Put a0n = φ for every n < ω. If θ is

an infinite limit ordinal, set aθ
n =

⋃

η<θ a
η
n for all n < ω. Assuming aθ

n has been

defined for all n, look for a j < ω such that (α) for j < n < ω, o.t. (aθ
n) ∈ dom(f

j
n)

and f
j
n(o.t. (a

θ
n)) = 1, and (β) for ℓ < j ≤ n < ω, o.t. (aθ

n) ∈ dom(f ℓ
n) and

f ℓ
n(o.t. (a

θ
n)) = 0. If there is no such j, set a

θ+1
n = aθ

n for every n < ω. If there

is one, it must be unique. Set aθ+1
n = aθ

n for n < j, and aθ+1
n = aθ

n ∪ {(e(a))(θ)}
for j ≤ n < ω. Finally, set sa =

⋃

n<ω sn, where sn = {(e(an))(η) : η ∈
dom(fn

n ) ∩ o.t. (an) and f
n
n (η) = 1}.

Now fix A ∈ NG∗
κ,λ and X ⊆ λ. We must find a ∈ A such that sa = X ∩

a. Let τ be a winning strategy for player II in the game Gκ,λ(A). Define k :
⋃

n<ω R
µ
n+1 → Pκ(λ) as follows. Set k(t) = τ(xt(0)) for any t ∈ R

µ
1 . Given

0 < n < ω and t ∈ R
µ
n+1, define am and bm for m ≤ n by: a0 = xt(0), am =

bm−1 ∪ xt(m) for m > 0, and bm = τ(a0, . . . , am), and set k(t) = bn.

Define Wn for n < ω by induction as follows. Set W0 = R
µ
0 , W1 = R

µ
1 and

W2 =
{

t ∈ Rµ
2 : t(1) ∈ Z(χ(X ∩ k(t ↾ 1), k(t ↾ 1))

}

.

For n ≥ 2, let Wn+1 be the set of all t ∈ R
µ
n+1 such that t ↾ n ∈ Wn and t(n)

belongs to Z(f0, . . . , fn−1), where fi = χ(k(t ↾ (i+1)), k(t ↾ n)) for i < n−1, and
fn−1 = χ(X ∩k(t ↾ n)), k(t ↾ n)). Put T0 =

⋃

n<ω Wn. For 0 < r < ω, define ϕr :

T0∩(
⋃

r<q<ω R
µ
q )→ µ+ by ϕr(t) = ρt(r)(µ∩k(t)). Using Lemma 4, select Tr ∈ Tµ

and ψr : Tr ∩ R
µ
r → µ+ for 0 < r < ω so that Tr ⊆ Tr−1, Tr ∩ R

µ
r = Tr−1 ∩ R

µ
r ,

and ϕr(t) ≤ ψr(t ↾ r) for every t ∈ Tr ∩ (
⋃

r<q<ω R
µ
q ). Set T =

⋂

r<ω Tr.

Let C be the set of all γ with κ < γ < µ+ such that for any r with 0 < r < ω,
and any t ∈ T ∩ Rµ

r with ran(t) ⊆ γ, ρ(µ ∩ k(t)) < γ, ψr(t) < γ and {α < γ :
t∪{(r, α)} ∈ T } is cofinal in γ. Since C is a closed unbounded subset of µ+, there
is γ ∈ H such that ran(γ) ⊆ C. Pick y : ω → µ+ so that {y ↾ m : m < ω} ⊆ T
and y(0) < γ(0) < y(1) < γ(1) < . . . . Set an = k(y ↾ (n + 1)) for n < ω, and
a =

⋃

n<ω an. Then for each m < ω,

γ(m) < y(m+ 1) ≤ ρ(µ ∩ am+1) < γ(m+ 1)

since xy(m+1) ⊆ am+1 and ran(y ↾ (m+ 2)) ⊆ γ(m+ 1). Hence

ρ(µ ∩ a) = sup{ρ(µ ∩ am+1) : m < ω} = γ.
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For 0 < r < ω,

ρy(r)(µ ∩ a) = sup{ρy(r)(µ ∩ aq) : r < q < ω} ≤ γ(r − 1)

since ρy(r)(µ ∩ aq) = ϕr(y ↾ q) ≤ ψr(y ↾ r) < γ(r − 1) whenever r < q < ω.

It follows that y(r) = the least α < µ+ such that α > γ(r − 1) and xα ⊆ a,

since δ ≤ ρy(r)(a ∩ µ) for any δ < y(r) such that xδ ⊆ a. Define f j
n for j ≤

n < ω by f
j
n = χ(aj , an) if j < n, and fn

n = χ(X ∩ an, an). Then y(n + 1) ∈

Z(f0n, f
1
n, . . . , f

n
n ) for all n < ω. Finally, sa =

⋃

n<ω{(e(an))(η) : η ∈ o.t. (an)
and fn

n (η) = 1} =
⋃

n<ω(X ∩ an) = X ∩ a. �

In the case when κ is the successor of a cardinal of cofinality ω, the assumption
of Proposition 6 can be weakened.

Let ν > 0 be a cardinal. For A ⊆ Pκ(λ), the game G
ν
κ,λ(A) is defined similarly

to Gκ,λ(A), where now the choices are made from Pν(λ).

Lemma 7 (Matet [7]). Suppose κ is the successor of a cardinal ν of cofinality ω.
Then for any A ⊆ Pκ(λ), A ∈ NG∗

κ,λ if and only if II has a winning strategy in

the game Gν
κ,λ(A).

It is now straightforward to modify the proof of Proposition 6 so as to get the
following.

Proposition 8. Suppose that κ is the successor of a cardinal ν of cofinality ω,
and 2<ν ≤ µ+ for some cardinal µ such that ω < cf(µ) < κ < µ ≤ λ. Then
there is a sequence < sa : a ∈ Pκ(λ) > with sa ⊆ a such that for any X ⊆ λ,

{a : sa = X ∩ a} ∈ NG+
κ,λ
.
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