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Estimation of intersection intensity

in a Poisson process of segments

Tomáš Mrkvička

Abstract. The minimum variance unbiased estimator of the intensity of intersections
is found for stationary Poisson process of segments with parameterized distribution of
primary grain with known and unknown parameters. The minimum variance unbiased
estimators are compared with commonly used estimators.

Keywords: complete statistic, Poisson process, segment process, sufficient statistic, in-
tensity of intersections

Classification: Primary 60D05, Secondary 62B05

1. Introduction

There are several ways in statistics how to find an appropriate estimator for
a characteristic. One of such concepts is to find a minimum variance unbiased
estimator with the help of the complete and sufficient statistic [2]. This work uses
this concept in spatial statistics, especially for a Poisson process of segments. We
will suppose that the model is parameterized since otherwise, the complete and
sufficient statistic would be whole observation and no reduction, by the complete
and sufficient statistic, would be achieved. The Poisson process of segments Φ is
determined by its intensity α ∈ R

+ and by a parametric distribution of primary
grain Λ0(θ), where θ ∈ Θ ⊂ R

k is a k-dimensional parameter of the primary grain
distribution (the distribution of the typical segment). For detailed introduction
of the Poisson segment process we refer to [1], [5] or [3]. Denote a realization of
Φ by φ.

There are two cases which can be distinguished. First when θ is known
and second when θ is unknown. The complete and sufficient statistic for α is
the number of segments (generally compact sets when the Poisson process of com-
pact sets is considered) visible in the observation window W in the first case [3].

This work was partly supported by the Grant Agency of the Czech Republic, Project
No. 201/03/D062.
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In the second case, it is not possible to find a complete and sufficient statistic for
α and θ when all segments are considered. But when we consider only segments
which have a reference point (the point which is uniquely determined for every
segment, for example the lexicographic minimum point) inside the observation
windowW then the model could be considered as a marked Poisson process, where
points of the process are the reference points and marks are corresponding lengths
and orientations of the segments. When we know the lengths of all segments
which are considered then the complete and sufficient statistic for α and θ is the
vector consisting of the number of reference points and the complete and sufficient
statistic for θ [4]. The last statistic is dependent on the family of distributions to
which the primary grain distribution belongs.
The intensity of intersection is of interest for example in forestry where the

intersection intensity of the fallen trees specifies the danger of the treatment with
the fallen trees. The intensity of intersections can be estimated completely non-
parametrically or we can use the formula derived in Section 2 which expresses the
intensity of intersections by the model parameters. In Section 2, we introduce
an estimator which plugs the estimators of the model parameters in the formula.
This estimator uses the Poisson assumption, independence between lengths and
direction and isotropy of the directions.
The minimum variance unbiased estimator is found in Section 3 for the case of

known parameter θ and it is found in Section 4 for the case of unknown parame-
ter θ.
The disadvantage of the minimum variance unbiased estimator is that we need

to know all the segment lengths, the uncensored segments but censored too. This
can happen for example in forestry where we can measure the length of the fallen
tree even if it falls outside the border of our observation window. But more often
we do not observe complete segments. In Section 5 the question how to deal with
unknown segment lengths is discussed. We propose an estimator which is based
on the minimum variance unbiased estimator but the complete and sufficient
statistics on which this estimator is based are estimated from the observed data
only. This estimator is compared with the estimators introduced in Section 2.

2. Intensity of intersections

Let S denote the set of all segments in R
d. For S ∈ S, let c(S) ∈ S denote

the lexicographic minimum point, the ‘reference point’ of S. Each segment is
completely determined by its reference point c(S), length 0 ≤ r <∞ and direction
β ∈ Ud (Ud is the space of all linear one-dimensional subspaces in R

d).
A stationary Poisson process of segments is a stationary Poisson process Φ

on S. The primary grain distribution Λ0 is a probability measure on S0 = {S ∈
S : c(S) = 0}. S0 is isomorphic to the space Ud × R

+. Let D and ρ denote
the distribution of length and direction, respectively, of a typical segment (i.e.
segment with distribution Λ0). The segment S0 ∈ S0 is determined by its length
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r and by the direction β. We will denote such segment S0(r, β). The length
and direction of a typical segment need not be independent random variables.
We observe the realization of the Poisson process through a bounded observation
windowW . Denote the Lebesgue measure on R

d by λd and for shorter expressions
denote the volume of W by |W |.
The intensity N of intersections in the plane is defined by the formula

N = E

∑

S 6=S′,S,S′∈Φ

I(S ∩ S′ ∩ [0, 1]2 6= ∅)

2
.

Theorem 1. Let Φ be a Poisson segment process in the plane with the directional
distribution ρ independent of the length distribution D. Then

(1) N =
α2

2
(Er)2

∫ ∫
sin(|β − β′|)ρ(dβ)ρ(dβ′),

where Er denotes the mean length of the typical segment. If Φ is isotropic then

(2) N =
α2

π
(Er)2.

Proof: The point process of intersections can be defined by the following formula

Ξ(B) =

∫ ∫

S 6=S′

I(S ∩ S′ ∩B 6= ∅)

2
Φ(dS)Φ(dS′),

where B is an arbitrary Borel set. Since Φ is a Poisson process, the expectation
of Ξ(B) can be expressed by

EΞ(B) =

∫ ∫
I(S ∩ S′ ∩B 6= ∅)

2
Λ(dS)Λ(dS′).

The measure fS′(B) =
∫
S

I(S∩S′∩B 6=∅)
2 Λ(dS) has the property

fS′(B) = fS′+x(B + x) for x ∈ R
2, thus we can write

EΞ(B) = α

∫ ∫
fS′

0+z′(B)λ
2(dz′)Λ0(dS

′
0) = α

∫ ∫
fS′

0
(B − z′)λ2(dz′)Λ0(dS

′
0)

= α

∫ ∫ ∫
IB−z′(y)λ

2(dz′)fS′

0
(dy)Λ0(dS

′
0) = αλ

2(B)

∫
fS′

0
(R2)Λ0(dS

′
0).
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Since Ξ is stationary, the intensity of intersections can be expressed by

N = α

∫ ∫
I(S ∩ S′

0 6= ∅)

2
Λ(dS)Λ0(dS

′
0)

= α2
∫ ∫ ∫

I((S0+z) ∩ S
′
0 6= ∅)

2
λ2(dz)Λ0(dS0)Λ0(dS

′
0)

= α2
∫ ∫ ∫ ∫ ∫

I((S0(r, β)+z)∩S
′
0(r

′, β′) 6= ∅)

2
λ2(dz)ρ(dβ)ρ(dβ′)D(dr)D(dr′)

=
α2

2

∫ ∫ ∫ ∫
rr′ sin(|β − β′|)ρ(dβ)ρ(dβ′)D(dr)D(dr′)

=
α2

2
(Er)2

∫ ∫
sin(|β − β′|)ρ(dβ)ρ(dβ′).

Above we used the fact that the integral
∫
I((S0(r, β) + z) ∩ S′

0(r
′, β′) 6=

∅)λ2(dz) = rr′ sin(|β − β′|).

If the process Φ is isotropic then the integral
∫ ∫
sin(|β− β′|)ρ(dβ)ρ(dβ′) = 2π .

�

It is possible to estimate N by a non-parametric estimator

N̂c(φ) =
∑

S 6=S′,S,S′∈φ

I(S ∩ S′ ∩W 6= ∅)

2|W |
.

The second possibility is to use the parametric approach. We can estimate the
parameters and plug the estimates in Formula 1.
Suppose for the simplicity that Φ is isotropic and ρ and D are independent

throughout the rest of this note. Then we can use Formula 2 and construct the
estimator

N̂l(φ) =



 1

|W |

∑

S∈φ

L(S ∩W )




2

/π,

where L(S ∩W ) is the segment length visible in the observation window. This
estimator uses only the information that the segment process is Poisson. This
estimator is biased and asymptotically unbiased as |W | → ∞.
The third possibility is to construct a minimum variance unbiased estimator

which uses the information that the segment process is a Poisson process and the
knowledge of a family of length distribution. The minimum variance unbiased
estimator is found in Section 3 for the case of known parameters of the length
distribution and it is found in Section 4 for the case of unknown parameters of
the length distribution.
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3. Known distribution of primary grain

We will consider the stationary Poisson segment process Φ in R
d with known

primary grain distribution Λ0 in this section. The problem of estimation of a real
function Nα of the intensity parameter α is considered. The data are observed
through a bounded measurable observation window W ⊆ R

d. Let W be a mea-
surable subset of S. Let EW be the set of all estimators which depend only on
segments from W (i.e., e(φ) = e(φ |W)).

Denote C =
∫
Ud×R+

λd(W (r, β)) Λ0(d(r, β)), whereW (r, β) = {z : z+S(r, β) ∈

W} is the set of all reference points of shifts of the segment S(r, β) which belong
to W , S(r, β) ∈ S0 denotes the segment of length r which starts from the origin
under the direction β.
The following lemma is of value for computing the second moment of Φ(W),

the proof can be found in [3].

Lemma 1. Let Ψ denote a stationary Poisson point process on a Polish space X .
Let F,G denote the functions F (ψ) =

∫
f(x) ψ(dx), G(ψ) =

∫
g(x) ψ(dx), re-

spectively, where f, g are nonnegative measurable functions on X . Then

cov[F (Ψ), G(Ψ)] =

∫
f(x)g(x)Λ(dx).

Theorem 2. Let Φ be an isotropic Poisson segment process in the plane with ρ
and D independent. Then the estimator

N̂ =
Φ(W)2 − Φ(W)

C2π
(Er)2

is the minimum variance unbiased estimator of the intensity N of the segments
intersections among all estimators from EW .

Proof: First compute the expectation of Φ(W)

EΦ(W) =

∫

S
IW (S) Λ(dS) = α

∫

S0

∫

R2
IW (x+ S0)dxΛ0(dS0)

= α

∫

Ud×R+
λd(W (r, β)) Λ0(d(r, β)) = αC.

To compute the expectation of Φ(W)2 we set F (φ) =
∫
IW (S) φ(dS) = φ(W).

Using Lemma 1 we have

Var(F (Φ)) =

∫

S
(IW (S))

2 Λ(dS) = αC.
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Thus
EΦ(W)2 = Var(F (Φ)) + (EΦ(W))2 = αC + α2C2.

Now it is easy to show that N̂ is an unbiased estimator of N . Then Rao-
Blackwell theorem with the fact that Φ(W) is the complete and sufficient statistic
finishes the proof. �

Lemma 1 can be easily extended for higher orders. The extensions for the third

and fourth order help us to compute the variance of N̂

Var(N̂) =
4α3C + 2α2

C2π2
(Er)4.

There are two important examples of W .

1. W1 = {S ∈ S : c(S) ∈W}, the set of all segments which have the reference
point within the window W (in this case the constant C = |W |).

2. W2 = {S ∈ S : S ∩ W 6= ∅}, the set of all segments which hit the
observation window W .

The estimator N̂2 (i.e. the estimator N̂ in the case of W2) is the minimum
variance unbiased estimator of all possible estimators. Under the assumption of
Theorem 2 and for W being a square window with the side length a we can write

C =

∫
λ2(W ⊕ Š0)Λ0(dS0) = a

2 +
4a

π
Er.

When it is not possible to compute C, we can use N̂ in the case of W1 for two
different reference points. First we use Φ1(W ) the number of the lexicographic
minimum points in W and second we use Φ2(W ) the number of the lexicographic
maximum points in W . The resulting estimator will be the average of these

two and it will be denoted by Ñ =
Φ21(W )−Φ1(W )+Φ

2
2(W )−Φ2(W )

2|W |2π
(Er)2. This

estimator does not use only segments which have both end points outside W .
Using Lemma 1, it is possible to compute

cov(Φ1(W ),Φ2(W )) = Λ({S ∈ Φ : S ⊆W}) = α

∫
λ2(W ⊖ Š0)Λ0(dS0) = αD.

Now the variance of Ñ can be computed by the extensions of third and fourth
order of Lemma 1

Var(Ñ) =
2α3(|W |3 + |W |2D) + α2(|W |2 +D2)

|W |4π2
(Er)4.

Under the assumption of Theorem 2 and for W being a square window with the
side length a we can write

D =

∫
λ2(W ⊖ Š0)Λ0(dS0) = a

2 −
4a

π
Er +

Er2

π
, when r ≤ a a.s.
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and we can compute the ratio of the variances of the estimators N̂2 and Ñ . The
ratio is shown in Figure 1 for the uniform length distribution U(0,0.1).
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Figure 1: The ratio Var(N̂2)/Var(Ñ) for the uniform length distri-
bution with the dependence on the intensity α and the side length a
of the square window W (a goes from 0.15 to 5).

Since we were not able to compute a formula for Var(N̂c), we compared the

estimators N̂c and Ñ by simulations. We simulated the realizations of the Poisson
stationary segment process with intensity α and with exponential length distribu-
tions with expected length Er in the observation windowW which is a square with
side length a. We chose 17 different parameters of the model (α, a) and for each
parameter we did 1000 simulations. We fixed Er = 0.05 in all cases to prevent

same realizations with different scaling only. The resulted ratios Var(Ñ)/Var(N̂c)
are given in Table 1.

α\
a 0.05 0.1 0.25 0.5 1 2
20 0.105 0.054 0.059 0.057
50 0.124 0.138 0.129 0.120
100 0.209 0.209 0.189
200 0.334 0.277 0.262 0.274
500 0.615 0.497

Table 1: The ratio Var(Ñ)/Var(N̂c) for the exponential length dis-
tribution with the dependence on the intensity α and window side
length a.

The simulation shows that the ratio Var(Ñ)/Var(N̂c) depends mostly on the
intensity α when the expectation of lengths is fixed. The similar results were
achieved for uniform length distribution.
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Under the assumption of Theorem 2 and for W being a square window with

the side length a we can compute the expectation of N̂l. Using the formula for
variance of 1

|W |

∑
S∈φ L(S ∩W ) computed in [3] we have that

EN̂l

N
= 1 +

a2Er2 − 43aEr
3 + 16Er

4

a4α(Er)2
.

The bias for exponential length distribution is presented in Figure 2.
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Figure 2: The ratio EN̂l/N for the exponential length distribution
with the dependence on the intensity α and the side length a of the
square window W .

The simulations also show that the ratio Var(Ñ )/Var(N̂l) depends mainly on
the mean number of segments α|W | in the observation window when the expecta-

tion of lengths is fixed. The graph of the ratio Var(Ñ)/Var(N̂l) has approximately
the same shape for different distributions but the limit of the ratio as the mean
number of segments goes to the infinity is different and it is equal to

lim
α|W |→∞

Var(Ñ)

Var(N̂l)
=
(Er)2

Er2
.

Here W is a convex set. The same ratio is reached by the ratio of the vari-
ance of the minimum variance unbiased estimator of length density LA and the
variance of the estimator of LA which sums all lengths visible in W [3]. For
example: exponential distribution gives ratio 1/2, uniform distribution with pa-
rameters (A,B) gives ratio from the interval (0, 1] or lognormal distribution with
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parameters (µ, σ) gives ratio equal to 1/ exp(σ2). The graph of the dependence
for exponential length distribution fitted from the simulations is presented in Fi-
gure 3.

5 10 15 20 25 30
ΑÈWÈ

0.2

0.3

0.4

0.5

Var HN
�
L

����������������������

Var HN
`

lL

Figure 3: The ratio Var(Ñ)/Var(N̂l) for the exponential length distri-
bution with the dependence on the mean number of segments α|W | in
the observation window.

4. Unknown parameters of distribution of primary grain

We will consider the stationary Poisson segment process Φ in R
d with known

primary grain distribution Λ0(θ) with unknown parameter θ observed through a
bounded window W in this section. Generally some of the segments are censored
by the border of the window W . Assume that we know the censored segments
lengths in this section. Then we observe the marked Poisson point process where
points of the process are the reference points and marks are corresponding lengths

and orientations of the segments [4]. Then a statistic ST =
(Φ(W )
TΦ(W )

)
is a complete

and sufficient statistic for α, θ [4]. Here Φ(W ) is the number of the reference points
in the observation window and TΦ(W ) is the complete and sufficient statistic for θ.

This statistic is different for different primary grain distributions. Like in the
previous section if we find a function of ST which expectation is τ(α, θ) then such
estimator will be the minimum variance unbiased estimator of τ(α, θ) among all
estimators from EW1 .

Theorem 3. Let Φ be an isotropic Poisson segment process in the plane with ρ
and D independent. Then the estimator

N̂MV UE =
Φ(W )2 − Φ(W )

|W |2π
· e2,Φ(W )
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is the minimum variance unbiased estimator of the intensity of the segments

intersections N among all estimators from EW1 under the condition that we know
the censored segments lengths. Here e2,Φ(W ) is the minimum variance unbiased

estimator of (Eθr)
2.

Proof: It is easy to show that N̂MV UE is an unbiased estimator of N . Thus
Rao-Blackwell theorem finishes the proof. �

5. Unknown length of censored segments

We do not know very often all the segment lengths. Thus it is a question
how to take advantages of these estimators in practice. It was shown that when
we use minus sampling (we take into account only segments which are whole
observable) the minimum variance unbiased estimator could have lower variance

then the common estimator L̂A =
1

|W |

∑
S∈φ L(S ∩W ) in the case of estimating

the length density [4]. But this approach works only when the segment length
distribution is bounded, like in the case of the uniform length distribution. When
the distribution is not bounded then there may appear very long segments and
we lose too much information. Therefore we found a different approach which
works for both types of distributions and even more it gives better results than
the minus sampling approach for bounded distributions.
The minimum variance unbiased estimator is based on measuring of the com-

plete, sufficient statistic ST then the statistic is plugged in the formula of esti-
mator. Our approach takes the most efficient unbiased estimator of ST , which is
available from the data, and then it is plugged in the formula of minimum variance
unbiased estimator pretending that ST was measured from whole observation and
that no censoring of segments appeared.
The number of reference points Φ(W ) which is the first part of ST does not

change in this approach. We use first the lexicographic minimum of the segment
as the reference point and compute the estimator with these reference points,
then we use the lexicographic maximum of the segment as the reference point
and compute the estimator with these reference points. At the end these two
estimators are averaged. We will denote this kind of estimators by N .
The statistic TΦ(W ) which is the second part of ST is different for different fam-

ilies of distributions. Suppose now that the length distribution and distribution
of orientation are independent and the process is isotropic. Thus the unknown
parameter θ is reduced to the parameter of length distribution. We investigated

two families of length distributions. We compare the estimators N with N̂c and

N̂l by simulations in the following subsections. We simulate the realizations of
the Poisson stationary, isotropic segment process with intensity α in the obser-
vation window W which is a square with side length a. We chose 16 different
parameters of the model and for each parameter we did 1000 simulations. We
fixed Er = 0.05 in all cases to prevent same realizations with different scaling



Estimation of intersection intensity in a Poisson process of segments 103

only. The parameters of the length distribution were chosen to fit the condition
Er = 0.05.
The simulations show that the ratio Var(N )/Var(N̂l) (Figures 4, 5) and the

bias of N̂l depend mainly on the mean number of segments α|W | in the observation

window when the expectation of lengths is fixed. The bias of N̂l is very similar
for different length distribution. The bias for exponential length distribution is
presented in Figure 2.

The simulations also show that the ratio Var(N)/Var(N̂c) (Tables 2, 3) depends
mainly on the intensity α when the length distribution is fixed (similarly as in
Table 1).
All graphs are nonlinear regression fits of the simulated variances ratios.

5.1 Uniform (0,A) length distribution

First we compare the estimators for the uniform distribution which is bounded
and the complete and sufficient statistic is different than

∑
ri (the base of the

estimator N̂l).
The complete and sufficient statistic for A is T = maxi=1,...,Φ(W ) ri. This

statistic is clearly estimated by the longest visible part of the segment. The mini-

mum variance unbiased estimator of Eθr is eΦ(W ) =
Φ(W )+1
2Φ(W )

T and the minimum

variance unbiased estimator of (Eθr)
2 is e2,Φ(W ) =

Φ(W )+2
4Φ(W )

T 2.

α\a 0.25 0.5 1 2 3
20 0.072 0.063 0.055 0.053
50 0.130 0.141 0.12725 0.126 0.130
100 0.291 0.265 0.238
200 0.386 0.363 0.431
500 0.543

Table 2: The ratio Var(N)/Var(N̂c) with the dependence on the
intensity α and window side length a for uniform distribution and
unknown parameter A.

5.2 Exponential (µ) length distribution

Now we compare the estimators for the exponential distribution which is un-
bounded and the complete and sufficient statistic is

∑
ri (the base of the estimator

N̂l). By a minus sampling method no improvement would be achieved in this case.
The similar results were achieved for lognormal distribution too.

The complete and sufficient statistic for µ is T =
∑Φ(W )

i=1 ri. This statistic is
estimated by the sum of all segment lengths but when the segment is censored
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Figure 4: The ratio Var(N )/Var(N̂l) with the dependence on the mean
number of segments α|W | in the observation window for uniform dis-
tribution and unknown parameter A.

we add to the visible part of the segment the expectation of the censored length
with respect to the exponential distribution with parameter µ. The parameter µ

was first estimated by L̂A/Φ(W ).

eΦ(W ) =
T

Φ(W )
, e2,Φ(W ) =

T 2

Φ(W )2 +Φ(W )
.

α\
a 0.25 0.5 1 2 3
20 0.099 0.109 0.104 0.128
50 0.457 0.276 0.243 0.243 0.246
100 0.518 0.385 0.357
200 0.615 0.557 0.521
500 0.773

Table 3: The ratio Var(N)/Var(N̂c) with the dependence on the in-
tensity α and window side length a for exponential length distribution
with unknown parameter µ.

6. Conclusion

We can see from the simulations that it is much better to estimate N by
using Formulas derived in Section 2 than to use the complete non-parametric
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Figure 5: The ratio Var(N )/Var(N̂l) with the dependence on the mean
number of segments α|W | in the observation window for exponential
distribution with unknown parameter µ.

estimator N̂c when the Poisson assumption, independence between lengths and
direction and isotropy of the directions are satisfied. Furthermore when we know

the distribution of the primary grain, it is better to use the estimator Ñ because

it is unbiased and it has lower variance than the estimator N̂l. The estimators N̂l

and N are asymptotically equivalent in the case of exponential distribution.

The simulations show that the profit gained by using complete and sufficient
statistic is bigger than the loss caused by avoiding some information visible in the
observation window. It also shows that using information about the primary grain
distribution can bring a big improvement on the efficiency of the characteristics
estimators.
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