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Another proof of Derriennic’s reverse maximal
inequality for the supremum of ergodic ratios

RyoTARO SATO

Abstract. Using the ratio ergodic theorem for a measure preserving transformation in a
o-finite measure space we give a straightforward proof of Derriennic’s reverse maximal
inequality for the supremum of ergodic ratios.
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1. Let (X,F,u) be a o-finite measure space and T be a measure preserving
transformation in (X, F, u). Given two measurable functions f and g on X such
that 0 < f, g <ooon X and 0 < [y gdu < oo, let

s su 7EZ o f(T"2)
(f.9)(x )—n>r[>] " o(T)

(Throughout this note we define a/oo = 0 and a/0 = oo for any a, with 0 <
a < c0.) In this note we use the ratio ergodic theorem to give a straightforward
proof of the following reverse maximal inequality due to Derriennic [1] (cf. also
Ornstein [5]). It is interesting to note that the author was inspired by reading
Ephremidze’s paper [3].

Theorem. Suppose that T is conservative and ergodic, and that fX fdp < oo.
If a> [y fdu/ [x gdu, then, letting E(a) = {z | 5(f,9)(x) > a}, we have

| tin<al gdp.
E(a) E(a)UT-1E(a)

PrOOF: We may assume that u(E(a)) > 0. For x € X, let K(z) = {n >0
Tz € E(a)} and L(x) = {0,1,...} \ K(z). Since T is conservatlve and ergodic,
K(x) is 1nﬁn1‘re for a.a. x € X. To see that L(z) is also infinite for a.a. z € X,
suppose there exists k > 0 such that i € K () for all ¢ > k. Then clearly we have

(1) lim sup =4=%——~ Z

Z Q.
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But this is a contradiction, since

(2) lim l k:f( ) fX fdM
l—woi? co(Tin) Iy odn

for a.a. x € X by the ratio ergodic theorem (cf. Theorem 3.3.4 in [4]).

Since K (x) and L(x) are infinite for a.a. z € X, we can write K(z) = U, ~; In
(disjoint union), where I, = [kn, Ip] (= {i] kn <i<lpPand 0 <k, <l, <lp+
2 < ky41 for each n > 1. Hence the set J(z) = {n >0 | T"z € E(a)UT 'E(a)}

has the form

J(x) { 0, W] UUZ g [kn — 1, 1] if k1 =0,
€T =
Ok — 1, 1] if k> 1.

n=1

Since T*F»~1z ¢ E(a) for n > 2, we have

S g1 [(T'2)
S g(Tix)

<a (n>2).

(3)

On the other hand, if h is a function in Lq(x) such that [y hdp=1and 0 < h <
oo on X, then, by the ratio ergodic theorem,

n _ T
(4) lim Z“”(XE(?BUT 1’”;(“#)( o / Fap
n—o0 im0 M(T"x) E(a)UT—1E(a)
and
n _ T
SR L LA S
n—o0 im0 M(T"x) E(a)UT—1E(a)

for a.a. x € X. Since Y52, h(T%z) = oo for a.a. x € X, combining (3), (4) and (5)
yields

() / fan<a | g
E(a)UT—1E(a) E(a)UT—1E(a)

and this completes the proof, since f > 0 on X. O

2. Here we consider the case ¢ = 1 on X. Then it follows that s(f,1) = f*,
where f*(z) = sup,>;n 12 U f(Tz). In this case we have the following
reverse maximal inequality.
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Proposition. If u(X) = oo, T is ergodic (but not necessarily conservative), and
f satisfies f{f>t} fdu < oo for all t > 0, then we have f{f*>a} fdp < 2ap({f* >
a}) < oo for all o > 0.

Proor: We first prove that u({f* > a}) < co. To do this, let fi = fx{r<a/2}

and fo = f — fi. Then we have f = fi + f2, [|fillo < @/2, and [ fodu < oo,
Since f* < fi + f5 and || f{||co < a/2, it follows that {f* > a} C {f5 > «/2},
and by Hopf’s maximal ergodic theorem (cf. Theorem 1.2.1 in [4])

W5 > a2 < @) [ <o

so that pu({f* > a}) < co. Putting F = f — a, we then have F™ = (f —a)" €
Li(p) and {F* > 0} = {f* > a}; furthermore [y Fdp = [ (f—a)T du— [ (f—
)~ dp = —oo because p(X) = co. Hence by Theorem 1.4 in Ephremidze [2] we
see that

/ (f — ) du <0,
{f*>a}uT=H{f*>a}

Since f >0 and p({f* > a}) < co, we then have

/ fdus/ fdu < 20p({f* > a}) < oo,
{f*>a} {f*>auT=1{f*>a}

completing the proof. O
Corollary. If u(X) = oo, and T is ergodic, then for any 3 > 0 we have

*\ B
/ fr (10g f—) dp < oo forall t >0
(>t} t

if and only if

f B+1
/ f (log ?> dyu < oo forall t>0.
{r>t}

PROOF: See the proof of Theorem 2 in [6]. O
(Of course, as is known, this holds when p(X) < oo, by the Theorem.)
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