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Topological structure of the space
of lower semi-continuous functions

KATSURO SAKAI, SHIGENORI UEHARA

Abstract. Let L(X) be the space of all lower semi-continuous extended real-valued func-
tions on a Hausdorff space X, where, by identifying each f with the epi-graph epi(f),
I.(X) is regarded the subspace of the space Cldj (X x R) of all closed sets in X x R with
the Fell topology. Let

LSC(X) ={f e L(X) | f(X)NR#0, f(X) C (—o0,00]} and
LSCg(X) = {f € L(X) | f(X) is a bounded subset of R}.

We show that L(X) is homeomorphic to the Hilbert cube @ = [—1,1]N if and only
if X is second countable, locally compact and infinite. In this case, it is proved that
(L(X),LSC(X),LSCg(X)) is homeomorphic to (Cone@,Q x (0,1),%X x (0,1)) (resp.
(Q,s,Y)) if X is compact (resp. X is non-compact), where Cone Q = (Q xI)/(Q x{1}) is
the cone over @, s = (—1,1)N is the pseudo-interior, £ = {(z;)ien € Q | sup,; ey |7i| < 1}
is the radial-interior.

Keywords: space of lower semi-continuous functions, epi-graph, Fell topology, Hilbert
cube, pseudo-interior, radial-interior

Classification: 57TN20, 54C35

1. Introduction
The set of all closed sets in a (topological) space X is denoted by Cld*(X) and
let Cld(X) = Cld*(X) \ {0}. For each U C X, we denote
U ={AeCld*(X)| ANU # 0} and
Ut ={AcCld*(X)|AcCU}.
The Fell topology on Cld*(X) is the topology generated by
{U7|UcC X isopen}U{(X\K)"|K C X is compact}.

By Cldj(X) (or Cldp(X)), we denote the space Cld*(X) (or Cld(X)) with the
Fell topology.! In the paper [9], it is proved that Cld%(X) (resp. Cldp(X)) is

!Note that the hyperspace Cldy (X) with the Vietoris topology is metrizable if and only if
X is compact metrizable. On the other hand, Cld}(X) (or Cldp(X)) is metrizable if and only
if X is locally compact and separable metrizable [2, Theorem 5.1.5].
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homeomorphic to (=) the Hilbert cube Q = [—1,1]N (resp. Q \ {0}) if and only if
X is a locally compact, locally connected, separable metrizable space which has
no compact components.

By [—00, 0], we denote the extended real line. For an extended real-valued

function f: X — [—o00, 0], let

3

epi(f) = {(z, 1) e X xR |t = f(a)},

which is called the epi-graph of f. Note that
e f is lower semi-continuous if and only if epi(f) is closed in X x R,

whence f can be regarded as a lower semi-continuous real-valued function defined
on the set f~1(R) C X.

Let L(X) be the space of all lower semi-continuous extended real-valued func-
tions on X, where, by identifying each f with epi(f), L(X) is considered the
subspace of the space Cld%(X x R). In this paper, we show the following:

Theorem 1.1. For a Hausdorff space X, L(X) ~ @ if and only if X is locally
compact, second countable and infinite.

In this paper, we also study the following subspaces:

LSC(X) = {f e L(X) [ F(X)NR # 0, f(X) C (—00,00]};
LSCgR(X) ={f € L(X) | f(X) is a bounded subset of R}.

Observe that L(X) D LSC(X) D LSCg(X). Each f € LSC(X) is called a proper
lower semi-continuous extended real-valued function. Each f € LSCg(X) is a
bounded lower semi-continuous real-valued function defined on the whole space X.

Let I =0, 1] be the closed unit interval. By Cone X, we denote the cone over
X which is the quotient space obtained from X x I by shrinking X x {1} to a
point * (called the vertez), that is,

Cone X = (X xI)/(X x {1}).

Throughout this paper, we use the homeomorphism 6 : [—00, 0] — I defined as
follows:

O(—o0) =0, 6(c0) =1 and 0(t) = % (1-:|t| —l—l).

Let A™ be the standard n-simplex and rint A™ the radial interior of A", i.e.,

A" = {(t1, .. tygr) €TV [ S0H T = 1)
rint A" = {(t1,...,tpq1) €A™ [t; >0fori=1,...,n+1}.
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In case X is finite, we can easily see that L(X) ~ A" ~ Cone A"~ ! where
n = card X. Indeed, write X = {z1,...,2,} and define p : L(X) — Cone A”~!
as follows:

% (the vertex of Cone A”~1) it f=0,2
(1 at) ceey 1= 9(f(xn))7 f(min f(X))) otherwise,
o(f)

where o(f) = >0 (1 — 9( (x;))). Then, p is a homeomorphism such that
p(LSC(X)) = A" 1 x (0,1) and p(LSCp(X)) = rint A" x (0,1).
Thus, we have the following:
Fact. For a finite Ty-space X with card X = n,
(L(X), LSC(X), LSCg(X))
~ (Cone A" 1 A"=1 % (0,1), rint A" x (0,1)).

In this paper, we generalize this fact into the case X is infinite. Let

= (-1, )N and ¥ = {(z;)ien € Q | supjey |24 < 1},

which are called the pseudo-interior and the radial interior of (), respectively.
We prove the following two generalizations:
Theorem 1.2. For a Hausdorff space X, the following are equivalent:

(a) X is second countable, compact and infinite;

(b) (L(X), LSC(X)) ~ (Cone @, @ x (0,1));

(C) (L(X)7 LSC(X)7 LSCB(X)) ~ (COHQQ, Q X (07 1)7 ¥ x (07 1))
In the above, the vertex x € Cone () corresponds to the function () € L(X).
Theorem 1.3. For a Hausdorff space X, the following are equivalent:

(a) X is second countable, locally compact and non-compact;
(b) (L(X), LSC(X)) = (Q, s);
(c) (L(X), LSC(X), LSCR(X)) = (@, s, ).

Remark. It should be remarked that
(Q.5.5) ~ (ConeQ, s x (0,1), £ x (0, 1)).

One should also keep in mind that the complement L(X)\LSC(X) in Theorem 1.3
is connected, but the one in Theorem 1.2 has two components {@} and {f € L(X) |

—oo € f(X)}.

2Here, f = () means that f is the constant function z — oco.
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2. Metrizability and closedness
The following follows from the result of Fell [5] (cf. [2, Theorem 5.1.3]):

Proposition 2.1. For every Hausdorff space X, Cld;(X x R) is compact. If X
is locally compact then Cld7.(X x R) is a compact Hausdorff space. O

Let Cldp(X) = Cldj(X)\{0}. Then, the hyperspace Cldp(X) can be regarded
as a subspace of LSCi(X) by the embedding i : Cldp(X) — LSCg(X) defined
by
0 if z€ A,

i(A)@) = { 1 it z¢ A

Moreover, by identifying © € X with {z} € Cldp(X), we can also regard X
as a subspace of Cldp(X). Since Cld;(X x R) (resp. Cldp(X)) is metrizable
if and only if X x R (resp. X) is locally compact and second countable by [2,
Theorem 5.1.5], we have the following:

Proposition 2.2. For a Hausdorff space X, the following are equivalent:
(a) X is locally compact and second countable;
Cld% (X x R) is metrizable;
L(X ) is metrizable;
LSC(X) is metrizable;
LSCg(X) is metrizable;
Cldp(X) is metrizable. O

(b)
(c)
(d)
()
(f)

Proposition 2.3. A Hausdorff space X is locally compact if and only if the space
L(X) is closed in Cld7(X x R).

ProOF: To see the “only if” part, assume that X is locally compact. For each
A € Cldi(X x R) \ L(X), we have € X and r; <2 € R such that (z,r) € A
and (z,7m2) ¢ A. Choose an open neighborhood V of z in X and 6 > 0 so that
clV is compact and

clV x (rg — 01,72 +6) C (X xR) \ A.
Let K =clV x[rg =4, r9+ 0] and U =V x (—o0, r9 — ). Then,
AcU N((X xR)\ K)" C Cld%(X x R) \ L(X).
Hence, Cld; (X x R) \ L(X) is open in Cld%(X x R), that is, L(X) is closed.
Now, to see the “if” part, assume that X is not locally compact, whence we

have zg € X which has no compact neighborhoods in X. Let

A= (X x[1,00)) U{(z0,0)} € Cld%(X x R) \ L(X)
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For each neighborhood W of A in Cld% (X xR), we can choose open sets Uy, ..., Up
C X xR and a compact set K C X x R so that (zg,0) € Uy and

AeUrn---nU; N((X xR)\K)t cW.

Since pryx(K) is compact, prx(K) is not a neighborhood of zy in X, hence
pry (U1) ¢ pry (K). Thus, we have x1 € pry(Uy) \ prx (K). We define g € L(X)

by
0 if z=ux,
g9(z) = .
1 if x# 2.

By identifying g with the epi-graph, we can write as follows:
9= (X x[1,00)) U ({1} x [0, ).
Then, it is easy to see that
geU; N---NU; N((X xR)\ K)T c W.
Hence, W NL(X) # 0. This means that A € clL(X), that is, L(X) is not closed
in Cld%(X x R). O

As corollaries of propositions above, we have the following:

Corollary 2.4. A Hausdorff space X is locally compact if and only if the space
L(X) is a compact Hausdorff space. O

Corollary 2.5. A Hausdorff space X is locally compact and second countable if
and only if the space L(X) is a compact metrizable space. O

We now consider the subspace:

L_oo(X) ={f € L(X) | —o0 € f(X)}
= L(X) \ (LSC(X) U {0}) € L(X).

Lemma 2.6. For a locally compact Hausdorff space X, L_oo(X) is compact if
and only if X is compact.

PROOF: Assume that X is compact. For each f € L(X)\L_x(X), we have b € R
such that f(X) C (b,o0]. Then, f has the following open neighborhood in L(X):

(X xR)\ (X x {b}))" NL(X) € L(X) \ Looo(X).

Thus, L_so(X) is closed in L(X), hence it is compact by Corollary 2.4.
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On the other hand, if X is not compact then it contains an infinite and discrete
set {x; | i € N}, where x; # xz; if i # j. For each i € N, we define f; € L_o(X)
by

—oo if x=ux;,

fita) = {

that is, f; = epi(f;) = {x;} x R. For each neighborhood W of §) in L(X), we
have a compact set K C X such that (X x R)\ K)* C W. Since {x; | i € N}
is discrete in X and pry (K) is compact, we have n € N such that if ¢ > n then
z; ¢ pry(K), hence f; € (X x R)\ K)* C W. Thus, the sequence (f;);en
converges to the function (). Therefore, L_(X) is not compact. O

00 if ©#x;,

Proposition 2.7. Let X be a locally compact Hausdorff space.

(1) If X is o-compact then LSC(X) is absolutely G.
(2) If X is compact then LSC(X) is open in L(X), hence it is locally compact.
(3) If X is non-compact then LSC(X) is nowhere locally compact.

ProoF: (1) Since L(X) is a compact Hausdorff space, it suffices to see that
LSC(X) is G in L(X). Let X = (J,,cry Xn, where each X, is compact. For each
n €N, let

Wy = {f € L(X) | —o0 & f(Xa)}.

Then, LSC(X) = N,,eny Wn \ {0}. For each f € W, since X, is compact, we
have r € R such that f(X;) C (r, 0], which implies

fe((X xR\ (Xp x {r}))T NL(X) C W,.

This means that W, is open in L(X).

(2) For each f € LSC(X), since X is compact, we have r € R such that
F(X) C (r,00]. Then,

fe((X xR)\ (X x {r)TnL(X)\ {0} c LSC(X).

Hence, LSC(X) is open in L(X).
(3) For each f € LSC(X) and each neighborhood of W in LSC(X), we have
open sets Uy, ..., U, C X x R and a compact set K C X x R such that

feU n-—-NnU,; N((X xR)\ K)TNLSC(X) Cc W.

Since X is non-compact, we have xg € X \ prx(K). For each ¢ € N, we define
fi € W as follows:
flaxg) —i if =g,

filz) = { f@) i e f .
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Then, (f;);en converges t0 foo € L_oo(X) defined as follows:

—o0 if z = xg,
flx) if x# .

Since L(X) is Hausdorff, {f; | ¢ € N} is discrete in LSC(X) N clW. Therefore,
LSC(X) NclW is not compact. O

frolo) = {

3. Homotopy dense subsets and AR property

A subset Y of a space X is said to be homotopy dense in X if there exists a
homotopy h : X x I — X such that hg = idx and ht(X) C Y for every t > 0,
where h : X — X is defined by h¢(z) = h(z,t). Let n,{ : L(X) x I — L(X) be
the homotopies defined as follows:

B f(x) if t=0,

ne(f)(z) = { min{ f(z),1/t} if t>0;
B f(x) if t=0,

Ct(f)(x) = { max{f(z),—1/t} if ¢t > 0.

By identifying n:(f) and (¢(f) with the epi-graphs, we can write

ne(f) = fUX x[1/t,00) and ((f) = fNX x [-1/t,00).

We shall verify the continuity of n and (.

Continuity of n : Let V C X x R be open. For each (f,t) € n~"(V7),
fNV #£0or X x[1/t,00) NV # B (the latter does not occur if ¢ = 0). When
fNV 0, V- NL(X) is a neighborhood of f in L(X) and ns(g) € V~ for every
g€V NL(X) and s € I. When X x [1/t,00) NV # 0 (t > 0), it follows that
X X [a,00)NV # ) for some a > 1/t. Then, t € (1/a,1] and X x [1/s,00)NV £ ()
for every s € (1/a,1], which implies that ns(g) € V™ for every g € L(X) and
s € (1/a,1]. Hence, n~1(V™) is open in L(X) x L

Now, let K C X x R be compact. For each (f,t) € n71(((X x R) \ K)71),
fNK =0and X x [1/t,00) N K = 0, whence ((X x R) \ K)T NL(X) is a
neighborhood of f in L(X) and X X [a,00) N K = @ for some 0 < a < 1/t.
Then, t € [0,1/a) and X X [1/s,00)N K = if 0 < s < 1/a. Tt follows that
ns(g) € (X x R) \ K)T for every g € (X x R) \ K)" NL(X) and s € [0,1/a).
Thus, n71(((X x R)\ K)7T) is open in L(X) x L O

Continuity of ¢ : Let V C X x R be open. For each (f,t) € ("1(V ™), we have
(x,r) € V such that r > max{f(x),—1/t} (r > f(x) if t = 0). Since V is open in
X xR, (z,79) € V for some rg > r. Let r <7y <rgand W=V NX x (ry,o0).
Then, W~ N L(X) is a neighborhood of f in L(X). Since —1/t < ry, we have
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a > tsothat —1/s <11 if 0 < s < a. Then, ¢t € [0,a). Let g € W~ and s € [0, a).
Then, we have (2/,r') € W with r' > g(2/). Since r’ > rq > —1/s, it follows that
' > max{g(z'), —1/s}, which means (s(g) € W~ C V~. Therefore, (V™) is
open in L(X) x L.

Let K C X x R be compact and (f,t) € ¢~'(((X xR)\ K)7T), that is, fNX x
[-1/t,00) N K = (. Observe that

fNX x{c} =f1((~o0,c]) x {¢} foreach ceR.
By this fact, it is easy to see that
c<d= fNX xe,00) C fH(=00,d]) x [e,d] U (fNX x [d,0)).

Then, it follows that f N X X [a,00) N K = @ for some a < —1/t because K is
compact. Let

W= ((X xR)\ (X x [a,00) N K))" NL(X).

Then, W is a neighborhood of f in L(X) and ¢ € (1/]a|,1]. For each g € W and
s € (1/|al, 1], gnX x[~1/s,00)NK = ), which means that ((g,s) € ((X xR)\K)™.
Hence, (71 (((X x R) \ K)7) is open in X x R. O

We define the homotopy & : L(X) x I — L(X) by & = m = G for every
t € I, that is,

&(f) = (FNX x[=1/t,00)) UX x [1/t,00) C X X R.

Since &(L(X)) € LSCg(X) for ¢t > 0, we have the following;:
Proposition 3.1. The subspace LSCg(X) is homotopy dense in L(X). O

It can be shown that the complement LSC(X) \ LSCg(X) is homotopy dense
in LSC(X). At the same time, we shall prove that some other subspaces of L(X)
are homotopy dense in L(X) and they are AR’s.? To this end, we use the result
on Lawson semilattices.

A topological semilattice is a topological space S equipped with a continuous
operator V : S x S — S which is idempotent, commutative and associative (i.e.,
zVe=z,zVy=yVe, (tVy)Vz=aV(yVz)). A topological semilattice S is
called a Lawson semilattice if S admits an open basis consisting of subsemilattices
([7]). A subspace Y of X is called relatively LC" in X if every neighborhood U
of each z € X contains a neighborhood V of x in X such that any two points
y,z € VNY can be connected by a path in V NY. The following is proved in [6,
Theorem 5.1].

3AR = absolute retract; ANR = absolute neighborhood retract.
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Proposition 3.2. Let X be a metrizable Lawson semilattice and Y C X a
subsemilattice. If Y is relatively LCY in X (and Y is connected), then X is an
ANR (an AR) and Y is homotopy dense in X, hence Y is also an ANR (an AR).

O

To apply Proposition 3.2 above, we show the following:

Proposition 3.3. For a Hausdorff space X, the space Cldj(X) is a Lawson
semilattice with the union operator U. The spaces L(X), LSC(X), LSCg(X) and
L_oo(X) are subsemilattices of Cldj(X).

PRrOOF: For each open set U C X and each compact set K C X, U~ and (X\K)™
are subsemilattices of Cld}(X). Hence, Cld}(X) has an open basis consisting of
subsemilattices. The continuity of U is easily observed. The second statement is
evident. (]

We consider the following subspace:

F(X)={f € LSC(X) | f(z) = oo except for finitely many = € X}
= {f € LSC(X) | fH(R) is finite}.

As is easily observed, F'(X) is a dense subsemilattice of LSC(X). Moreover, it
should be noted that F(X)NLSCg(X) = 0 if X is infinite.

Lemma 3.4. For every second countable locally compact Hausdorff space X,
F(X) is homotopy dense in LSC(X).

PROOF: By Proposition 3.2, it suffices to show that F(X) is relatively LCY in
LSC(X). To this end, let f € LSC(X) and W an open neighborhood of f in
LSC(X). Since LSC(X) is a Lawson semilattice, we may assume that W is a
subsemilattice of LSC(X). For each fi, fo € W N F(X), we can define a path
h:1— F(X) as follows:

h(t)(:c):{ fi(z) if fi(z) < fa(2),

071 (1 = )0(f1(x)) + t0(fa(2))) if fa(z) < fi(x),

where 6 : [—00, 00] — I is the homeomorphism defined in §1. It is easy to see that

h is a path in W N F(X) connecting h(0) = f1 and h(1) = f1 U fo. Similarly,

f2 can be connected to fi U fo by a path in W N F(X). Then, f; and fo are

connected by a path in W N F(X). Therefore, F(X) is relatively LC? in LSC(X).
O

Since F(X) C LSC(X) \ LSCg(X), the following follows from Lemma 3.4:
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Proposition 3.5. For every infinite second countable locally compact Hausdorff
space X, LSC(X) \ LSCg(X) is homotopy dense in LSC(X). O

A closed subset A C Y is called a Z-set in Y if for each open cover U, there
exists a map? f:Y — Y\ A which is U-close to the identity.> A countable union
of Z-sets is called a Zs-set. One should note that a closed set (resp. an Fy-set)
A CY is a Z-set (resp. a Zy-set) if the complement Y \ A is homotopy dense
inY.

Lemma 3.6. Let X be a second countable locally compact Hausdorff space.

(1) The space L_oo(X) is an AR.
(2) If X is compact then L_(X) is a compact Z-set in L(X).
(3) If X is non-compact then L_(X) is homotopy dense in L(X).

Proor: (1) Take f1, fo € L_oo(X). All the same as in the proof of Lemma 3.4,
we can obtain a path h : I — L_o(X) from f; to fo, hence L_o(X) is path-
connected. Recall that L_(X) is a Lawson semilattice. If both fi and fo are in
some open subsemilattice W of L_so(X), then h is a path in . Hence, L_so(X)
is LCY. Thus, L_s(X) is an AR by Proposition 3.2.

(2) By Lemma 2.6, L_(X) is compact. Since L_oo(X) NLSCR(X) = () and
LSCg(X) is homotopy dense in L(X) by Proposition 3.1, it follows that L_s(X)
is a Z-set in L(X).

(3) When X is non-compact, it is easy to see that L_o(X) is dense in L(X).

Similarly to Lemma 3.4, we can prove that L_(X) is homotopy dense in L(X).
O

Proposition 3.7. Let X be a second countable locally compact Hausdorff space.
Then, L(X), LSC(X), LSCg(X) and LSC(X) \ LSCg(X) are AR’s.

Proor: We can define a map \ : LSCg(X)? x I — LSCg(X) as follows:
A(f,9.t)(z) = (1 —1)f(z) + tg(z) for each (f,g,t) € LSCp(X)* x L.

Then, A(f,g,0) = f, M(f,g9,1) = g and A(f, f,t) = f, namely LSCg(X) is equi-
connected, so LSCg(X) is path-connected and locally path-connected. Note that
LSCg(X) is a Lawson semilattice as a subsemilattice of the Lawson semilattice
Cld% (X xR) (Proposition 3.3). Therefore, LSCg(X) is an AR by Proposition 3.2.
Since LSCg(X) is homotopy dense in L(X) by Proposition 3.1, it follows that
L(X) and LSC(X) are AR’s. Moreover, since LSC(X) \ LSCg(X) is homotopy
dense in L(X) by Proposition 3.5, LSC(X) \ LSCg(X) is also an AR. O

4Here, a map is a continuous function
5Two maps f,g: X — Y are U-close if each {f(x), g(x)} is contained in some U € U.
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4. Proof of Theorems

The following property is called the disjoint cells property.
e For each n € N, and each open cover U of X, every maps f,g: I" — X
are U-close to maps f/, ¢’ : I — X such that f/(I") Ng¢'(I") = 0.

To prove Theorem 1.1, we apply the following Toruriczyk’s characterization of the
Hilbert cube [10] ([8, Corollary 7.8.4]).

Theorem 4.1. In order that X ~ @, it is necessary and sufficient that X is a
compact AR with the disjoint cells property. |

Using this characterization of @), we shall show Theorem 1.1.

Proor oF THEOREM 1.1: The “necessity” follows from Corollary 2.5 and Fact.
We prove the “sufficiency”. By Corollary 2.4 and Proposition 3.7, L(X) is a
compact AR. Since both LSCg(X) and L(X) \ LSCg(X) are homotopy dense in
L(X) by Propositions 3.1 and 3.5, L(X) has the disjoint cells property. Thus, we
have L(X) ~ @ by Theorem 4.1. O

In [1], introducing the notion of cap-sets characterizing subsets M C @ such
that (Q, M) = (@, X), R. Anderson proved that (Q, %) ~ (Q, Q\ s) (cf. [3]). The
following is a combination of Lemmas 4.2 and 4.4 in [3].

Lemma 4.2. Suppose that (Q, M) =~ (Q,X). If L is a Zy-set in Q and K is a
Z-set in @ then (Q, (M UL)\ K) = (Q,X). O

The following is the combination of Lemmas 4.3 and 4.4 in [3].

Lemma 4.3. Suppose that (Q,M) =~ (Q,N) =~ (Q,X) and K is a Z-set in Q
with KNM = KNN. Then, for each € > 0, there is a homeomorphism h : Q — @
such that h(M) = N, h|K = id and h is e-close to id. Moreover if M UN C s
then h also satisfies h(Q \ s) = Q \ s, that is, h(s) = s. O

A tower (M;);en of closed sets in X has the deformation property in X if there
is a homotopy h : X x I — X such that hg = id and, for each ¢t > 0, h(X x [¢,1])
is contained in some M;. We apply the following Curtis’ result ([4, Corollary 4.9]:

Lemma 4.4. Let M = |J;cn M; C Q, where My C My C - - satisty the following
conditions:

(1) M; =~ Q for each i € N;

(2) each M; is a Z-set in M;;

(3) (M;);en has the deformation property in Q.
Then, (Q, M) ~ (Q,X). 0

Before proving Theorems 1.2 and 1.3, we show the following;:
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Theorem 4.5. For a Hausdorff space X, (L(X), LSCg(X)) = (Q, X) if and only
if X is locally compact, second countable and infinite.

Proor: The “only if” part follows from Theorem 1.1. To see the “if” part,
assume that X is locally compact and second countable. For each n € N, let

By ={f € L(X) | f(X) C [~n,n]} and
F, ={f € By | f(z) =n except for finitely many = € X}.

Then, as is easily observed, (B, Fp,) = (L(X), F(X)), hence we have B, = @ by
Theorem 1.1 and F}, is homotopy dense in By, by Lemma 3.4. Since B,NF,11 = 0
and Fj41 is homotopy dense in Bj1, it follows that B, is a Z-set in Bj,41.
Let £ : L(X) x I — L(X) be the homotopy defined in §3. For each ¢ > 0,
choose n € N so that n > 1/¢. Then, {(L(X) x [t,1]) C Bp. Thus, (Bp)nen
has the deformation property in L(X). Since LSCg(X) = U, cry Bn, we have
(L(X), LSC(X)) =~ (Q,X) by Lemma 4.4. O

To prove Theorem 1.2, we use the following;:

Lemma 4.6. For every second countable compact infinite Hausdorff space X,
Lo (X) = Q.

PROOF: By Lemma 3.6, L_oo(X) is a compact AR. Let n: L(X) xI — L(X) be
the homotopy defined in §3. Observe that 7(L_so(X) x I) C L_oo(X). Since X
is infinite, it follows that

Nt (L—oo (X)) C Looo(X) \ F(X) for ¢ >0,

whence L_(X) \ F(X) is homotopy dense in L_s(X). Moreover, by the same
arguments as the proof of Lemma 3.4, it can be shown that F(X) N L_x(X) is
homotopy dense in L_(X). Hence, L_(X) has the disjoint cells property. By
Theorem 4.1, we have L_oo(X) =~ Q. g

Now, we shall prove Theorems 1.2 and 1.3.
PROOF OF THEOREM 1.2: The implication (c¢) = (b) is obvious. By Corollary 2.5,
Proposition 2.7(3) and Fact, we have the implication (b) = (a).

(a) = (c¢): By Theorem 4.5 above, we have

(L(X), LSC(X)) =~ (Q, %) ~ (Cone Q, X x (0,1)).

Since L_oo(X) is a Z-set in L(X) by Lemma 3.6(2) and L_(X) ~ Q@ by
Lemma 4.6, we can apply the Z-set unknotting theorem to obtain a homeomor-
phism ¢ : L(X) — Cone@ such that g({0}) = {*} and g(L_(X)) = Q x {0}.
Note that

(@ x {0} U{+}) N g(LSCp(X)) = 0.



Topological structure of the space of l.s.c. functions

By Lemma 4.3, we have a homeomorphism A : Cone @Q — Cone () such that
hg(LSCg(X)) =% x (0,1) and h|Q x {0} U {x} =id,
whence it follows that

hg(LSC(X)) = hg(L(X) \ (L—oo(X) U{0}))
= Cone @\ (Q x {0} U{+}) = Q x (0,1).

This completes the proof. O

PROOF OF THEOREM 1.3: The implication (c) = (b) is obvious. The implication
(b) = (a) follows from Corollary 2.5 and Proposition 2.7(2).

(a) = (c): We can write X = J,,cy Xn, where int X is infinite, each X, is
compact and X, ; int X,,41. For each n € N, let

M, ={feL(X)| f(X\int X,) ={—oc0}} and
Np ={f € My, | f(int X},) is a bounded subset of R}.

Then, as is easily observed, we have
(My,, Ny) = (L(int X,), LSCy(int X)),
whence M, =~ @ by Theorem 1.1 and N,, is homotopy dense in M, by Proposi-
tion 3.1. Since (X \ int X;,) Nint Xy, 11 # 0, we have M,, N N1 = 0, whence M),
is a Z-set in My 41 because Ny is homotopy dense in M, ;1. We can define a
homotopy A : L(X) x I — L(X) as follows: hy =1id,
hyn(f) = fU (X \int Xp) x R,
and, for 1/(n+1) <t < 1/n,
he(f) = hij(n41)(f) U (X \int Xp) X [ion(t), 00),

where ¢p, : (1/(n+1),1/n) — R is a continuous monotone function such that

lim  ¢p(t) = —co and lim @y (t) = co.
t—1/(n+1) t—1/n

For each ¢t > 0, choose n € N so that n > 1/t. Then, h(L(X) x [t,1]) C M.
Thus, (Mp)pen has the deformation property in L(X). Let M = J,,cy Mn. We
have (L(X), M) = (Q,X) by Lemma 4.4.
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On the other hand, LSC(X) is a homotopy dense Ggs-set in L(X) by Proposi-
tions 2.7(1) and 3.1. Then,

L_o(X)U{0} =L(X) \ LSC(X)
is a Zg-set in L(X). Since M C L_s(X), we apply Lemma 4.2 to have
(LX), Loo(X) U{0}) = (@, %) = (Q, Q\ 5),
hence (L(X), LSC(X)) = (Q, s). Then, it follows from Lemma 4.3 that
(L(X), LSC(X), LSCg (X)) = (@, s, %).
The proof is completed. O

Remark. In the proof above, we have (L(X), L_oo(X)) = (@Q,X) by the same
reason as L_oo(X) U {0}, that is,

Proposition 4.7. For every second countable locally compact non-compact
Hausdorff space X, (L(X), L_eo(X)) = (Q, %) = (Q, Q\ 3). O
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