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Topologi
al stru
ture of the spa
eof lower semi-
ontinuous fun
tionsKatsuro Sakai, Shigenori UeharaAbstra
t. Let L(X) be the spa
e of all lower semi-
ontinuous extended real-valued fun
-tions on a Hausdor� spa
e X, where, by identifying ea
h f with the epi-graph epi(f),L(X) is regarded the subspa
e of the spa
e Cld∗

F
(X ×R) of all 
losed sets in X ×R withthe Fell topology. LetLSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞℄} andLSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.We show that L(X) is homeomorphi
 to the Hilbert 
ube Q = [−1, 1℄N if and onlyif X is se
ond 
ountable, lo
ally 
ompa
t and in�nite. In this 
ase, it is proved that(L(X),LSC(X),LSCB(X)) is homeomorphi
 to (ConeQ, Q × (0, 1),� × (0, 1)) (resp.(Q, s,�)) if X is 
ompa
t (resp. X is non-
ompa
t), where ConeQ = (Q×I)/(Q×{1}) isthe 
one over Q, s = (−1, 1)N is the pseudo-interior, � = {(xi)i∈N ∈ Q | supi∈N |xi| < 1}is the radial-interior.Keywords: spa
e of lower semi-
ontinuous fun
tions, epi-graph, Fell topology, Hilbert
ube, pseudo-interior, radial-interiorClassi�
ation: 57N20, 54C351. Introdu
tionThe set of all 
losed sets in a (topologi
al) spa
e X is denoted by Cld∗(X) andlet Cld(X) = Cld∗(X) \ {∅}. For ea
h U ⊂ X , we denote

U− = {A ∈ Cld∗(X) | A ∩ U 6= ∅} and
U+ = {A ∈ Cld∗(X) | A ⊂ U}.The Fell topology on Cld∗(X) is the topology generated by

{U− | U ⊂ X is open} ∪ {(X \ K)+ | K ⊂ X is 
ompa
t}.By Cld∗F (X) (or CldF (X)), we denote the spa
e Cld∗(X) (or Cld(X)) with theFell topology.1 In the paper [9℄, it is proved that Cld∗F (X) (resp. CldF (X)) is1Note that the hyperspa
e CldV (X) with the Vietoris topology is metrizable if and only if
X is 
ompa
t metrizable. On the other hand, Cld∗

F
(X) (or CldF (X)) is metrizable if and onlyif X is lo
ally 
ompa
t and separable metrizable [2, Theorem 5.1.5℄.
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 to (≈) the Hilbert 
ube Q = [−1, 1℄N (resp. Q \ {0}) if and only if
X is a lo
ally 
ompa
t, lo
ally 
onne
ted, separable metrizable spa
e whi
h hasno 
ompa
t 
omponents.By [−∞,∞℄, we denote the extended real line. For an extended real-valuedfun
tion f : X → [−∞,∞℄, letepi(f) = {(x, t) ∈ X × R | t ≥ f(x)},whi
h is 
alled the epi-graph of f . Note that

• f is lower semi-
ontinuous if and only if epi(f) is 
losed in X × R,when
e f 
an be regarded as a lower semi-
ontinuous real-valued fun
tion de�nedon the set f−1(R) ⊂ X .Let L(X) be the spa
e of all lower semi-
ontinuous extended real-valued fun
-tions on X , where, by identifying ea
h f with epi(f), L(X) is 
onsidered thesubspa
e of the spa
e Cld∗F (X × R). In this paper, we show the following:Theorem 1.1. For a Hausdor� spa
e X , L(X) ≈ Q if and only if X is lo
ally
ompa
t, se
ond 
ountable and in�nite.In this paper, we also study the following subspa
es:LSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞℄};LSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.Observe that L(X) ⊃ LSC(X) ⊃ LSCB(X). Ea
h f ∈ LSC(X) is 
alled a properlower semi-
ontinuous extended real-valued fun
tion. Ea
h f ∈ LSCB(X) is abounded lower semi-
ontinuous real-valued fun
tion de�ned on the whole spa
e X .Let I = [0, 1℄ be the 
losed unit interval. By ConeX , we denote the 
one over
X whi
h is the quotient spa
e obtained from X × I by shrinking X × {1} to apoint ∗ (
alled the vertex ), that is,ConeX = (X × I)/(X × {1}).Throughout this paper, we use the homeomorphism θ : [−∞,∞℄ → I de�ned asfollows:

θ(−∞) = 0, θ(∞) = 1 and θ(t) = 12 (

t1 + |t|
+ 1) .Let �n be the standard n-simplex and rint�n the radial interior of �n, i.e.,�n = {(t1, . . . , tn+1) ∈ In+1 |

∑n+1
i=1 ti = 1};rint�n = {(t1, . . . , tn+1) ∈ �n | ti > 0 for i = 1, . . . , n+ 1}.
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e of l.s.
. fun
tions 115In 
ase X is �nite, we 
an easily see that L(X) ≈ �n ≈ Cone�n−1, where
n = 
ardX . Indeed, write X = {x1, . . . , xn} and de�ne p : L(X) → Cone�n−1as follows:

p(f) = 









∗ (the vertex of Cone�n−1) if f = ∅, 2
(1− θ(f(x1))

σ(f) , . . . ,
1− θ(f(xn))

σ(f) , θ(min f(X))) otherwise,where σ(f) = ∑n
i=1(1− θ(f(xi))). Then, p is a homeomorphism su
h that

p(LSC(X)) = �n−1 × (0, 1) and p(LSCB(X)) = rint�n−1 × (0, 1).Thus, we have the following:Fa
t. For a �nite T1-spa
e X with 
ardX = n,(L(X), LSC(X), LSCB(X))
≈ (Cone�n−1, �n−1 × (0, 1), rint�n−1 × (0, 1)).In this paper, we generalize this fa
t into the 
ase X is in�nite. Let

s = (−1, 1)N and � = {(xi)i∈N ∈ Q | supi∈N |xi| < 1},whi
h are 
alled the pseudo-interior and the radial interior of Q, respe
tively.We prove the following two generalizations:Theorem 1.2. For a Hausdor� spa
e X , the following are equivalent:(a) X is se
ond 
ountable, 
ompa
t and in�nite;(b) (L(X), LSC(X)) ≈ (ConeQ, Q × (0, 1));(
) (L(X), LSC(X), LSCB(X)) ≈ (ConeQ, Q × (0, 1), �× (0, 1)).In the above, the vertex ∗ ∈ ConeQ 
orresponds to the fun
tion ∅ ∈ L(X).Theorem 1.3. For a Hausdor� spa
e X , the following are equivalent:(a) X is se
ond 
ountable, lo
ally 
ompa
t and non-
ompa
t;(b) (L(X), LSC(X)) ≈ (Q, s);(
) (L(X), LSC(X), LSCB(X)) ≈ (Q, s,�).Remark. It should be remarked that(Q, s,�) ≈ (ConeQ, s × (0, 1), �× (0, 1)).One should also keep in mind that the 
omplement L(X)\LSC(X) in Theorem 1.3is 
onne
ted, but the one in Theorem 1.2 has two 
omponents {∅} and {f ∈ L(X) |
−∞ ∈ f(X)}.2Here, f = ∅ means that f is the 
onstant fun
tion x 7→ ∞.



116 K.Sakai, S.Uehara2. Metrizability and 
losednessThe following follows from the result of Fell [5℄ (
f. [2, Theorem 5.1.3℄):Proposition 2.1. For every Hausdor� spa
e X , Cld∗F (X ×R) is 
ompa
t. If Xis lo
ally 
ompa
t then Cld∗F (X × R) is a 
ompa
t Hausdor� spa
e. �Let CldF (X) = Cld∗F (X)\{∅}. Then, the hyperspa
e CldF (X) 
an be regardedas a subspa
e of LSCB(X) by the embedding i : CldF (X) → LSCB(X) de�nedby
i(A)(x) = { 0 if x ∈ A,1 if x /∈ A.Moreover, by identifying x ∈ X with {x} ∈ CldF (X), we 
an also regard Xas a subspa
e of CldF (X). Sin
e Cld∗F (X × R) (resp. CldF (X)) is metrizableif and only if X × R (resp. X) is lo
ally 
ompa
t and se
ond 
ountable by [2,Theorem 5.1.5℄, we have the following:Proposition 2.2. For a Hausdor� spa
e X , the following are equivalent:(a) X is lo
ally 
ompa
t and se
ond 
ountable;(b) Cld∗F (X × R) is metrizable;(
) L(X) is metrizable;(d) LSC(X) is metrizable;(e) LSCB(X) is metrizable;(f) CldF (X) is metrizable. �Proposition 2.3. A Hausdor� spa
e X is lo
ally 
ompa
t if and only if the spa
eL(X) is 
losed in Cld∗F (X × R).Proof: To see the \only if" part, assume that X is lo
ally 
ompa
t. For ea
h

A ∈ Cld∗F (X × R) \ L(X), we have x ∈ X and r1 < r2 ∈ R su
h that (x, r1) ∈ Aand (x, r2) /∈ A. Choose an open neighborhood V of x in X and δ > 0 so that
lV is 
ompa
t and 
lV × (r2 − δ1, r2 + δ) ⊂ (X × R) \ A.Let K = 
lV × [r2 − δ, r2 + δ℄ and U = V × (−∞, r2 − δ). Then,
A ∈ U− ∩ ((X × R) \ K)+ ⊂ Cld∗F (X × R) \ L(X).Hen
e, Cld∗F (X × R) \ L(X) is open in Cld∗F (X × R), that is, L(X) is 
losed.Now, to see the \if" part, assume that X is not lo
ally 
ompa
t, when
e wehave x0 ∈ X whi
h has no 
ompa
t neighborhoods in X . Let

A = (X × [1,∞)) ∪ {(x0, 0)} ∈ Cld∗F (X × R) \ L(X).
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ture of the spa
e of l.s.
. fun
tions 117For ea
h neighborhoodW ofA in Cld∗F (X×R), we 
an 
hoose open sets U1, . . . , Un

⊂ X × R and a 
ompa
t set K ⊂ X × R so that (x0, 0) ∈ U1 and
A ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.Sin
e prX(K) is 
ompa
t, prX(K) is not a neighborhood of x0 in X , hen
eprX(U1) 6⊂ prX (K). Thus, we have x1 ∈ prX(U1) \prX(K). We de�ne g ∈ L(X)by
g(x) = { 0 if x = x1,1 if x 6= x1.By identifying g with the epi-graph, we 
an write as follows:

g = (X × [1,∞)) ∪ ({x1} × [0,∞)).Then, it is easy to see that
g ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.Hen
e, W ∩ L(X) 6= ∅. This means that A ∈ 
l L(X), that is, L(X) is not 
losedin Cld∗F (X × R). �As 
orollaries of propositions above, we have the following:Corollary 2.4. A Hausdor� spa
e X is lo
ally 
ompa
t if and only if the spa
eL(X) is a 
ompa
t Hausdor� spa
e. �Corollary 2.5. A Hausdor� spa
e X is lo
ally 
ompa
t and se
ond 
ountable ifand only if the spa
e L(X) is a 
ompa
t metrizable spa
e. �We now 
onsider the subspa
e:L−∞(X) = {f ∈ L(X) | −∞ ∈ f(X)}= L(X) \ (LSC(X) ∪ {∅}) ⊂ L(X).Lemma 2.6. For a lo
ally 
ompa
t Hausdor� spa
e X , L−∞(X) is 
ompa
t ifand only if X is 
ompa
t.Proof: Assume that X is 
ompa
t. For ea
h f ∈ L(X)\L−∞(X), we have b ∈ Rsu
h that f(X) ⊂ (b,∞℄. Then, f has the following open neighborhood in L(X):((X × R) \ (X × {b}))+ ∩ L(X) ⊂ L(X) \ L−∞(X).Thus, L−∞(X) is 
losed in L(X), hen
e it is 
ompa
t by Corollary 2.4.



118 K.Sakai, S.UeharaOn the other hand, if X is not 
ompa
t then it 
ontains an in�nite and dis
reteset {xi | i ∈ N}, where xi 6= xj if i 6= j. For ea
h i ∈ N, we de�ne fi ∈ L−∞(X)by
fi(x) = {

−∞ if x = xi,

∞ if x 6= xi,that is, fi = epi(fi) = {xi} × R. For ea
h neighborhood W of ∅ in L(X), wehave a 
ompa
t set K ⊂ X su
h that ((X × R) \ K)+ ⊂ W . Sin
e {xi | i ∈ N}is dis
rete in X and prX(K) is 
ompa
t, we have n ∈ N su
h that if i ≥ n then
xi /∈ prX(K), hen
e fi ∈ ((X × R) \ K)+ ⊂ W . Thus, the sequen
e (fi)i∈N
onverges to the fun
tion ∅. Therefore, L−∞(X) is not 
ompa
t. �Proposition 2.7. Let X be a lo
ally 
ompa
t Hausdor� spa
e.(1) If X is σ-
ompa
t then LSC(X) is absolutely Gδ.(2) If X is 
ompa
t then LSC(X) is open in L(X), hen
e it is lo
ally 
ompa
t.(3) If X is non-
ompa
t then LSC(X) is nowhere lo
ally 
ompa
t.Proof: (1) Sin
e L(X) is a 
ompa
t Hausdor� spa
e, it suÆ
es to see thatLSC(X) is Gδ in L(X). Let X = ⋃

n∈N
Xn, where ea
h Xn is 
ompa
t. For ea
h

n ∈ N, let
Wn = {f ∈ L(X) | −∞ /∈ f(Xn)}.Then, LSC(X) = ⋂

n∈N
Wn \ {∅}. For ea
h f ∈ Wn, sin
e Xn is 
ompa
t, wehave r ∈ R su
h that f(Xn) ⊂ (r,∞℄, whi
h implies

f ∈ ((X × R) \ (Xn × {r}))+ ∩ L(X) ⊂ Wn.This means that Wn is open in L(X).(2) For ea
h f ∈ LSC(X), sin
e X is 
ompa
t, we have r ∈ R su
h that
f(X) ⊂ (r,∞℄. Then,

f ∈ ((X × R) \ (X × {r}))+ ∩ L(X) \ {∅} ⊂ LSC(X).Hen
e, LSC(X) is open in L(X).(3) For ea
h f ∈ LSC(X) and ea
h neighborhood of W in LSC(X), we haveopen sets U1, . . . , Un ⊂ X × R and a 
ompa
t set K ⊂ X × R su
h that
f ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ∩ LSC(X) ⊂ W.Sin
e X is non-
ompa
t, we have x0 ∈ X \ prX(K). For ea
h i ∈ N, we de�ne
fi ∈ W as follows:

fi(x) = {

f(x0)− i if x = x0,
f(x) if x 6= x0.
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al stru
ture of the spa
e of l.s.
. fun
tions 119Then, (fi)i∈N 
onverges to f∞ ∈ L−∞(X) de�ned as follows:
f∞(x) = {

−∞ if x = x0,
f(x) if x 6= x0.Sin
e L(X) is Hausdor�, {fi | i ∈ N} is dis
rete in LSC(X) ∩ 
lW . Therefore,LSC(X) ∩ 
lW is not 
ompa
t. �3. Homotopy dense subsets and AR propertyA subset Y of a spa
e X is said to be homotopy dense in X if there exists ahomotopy h : X × I → X su
h that h0 = idX and ht(X) ⊂ Y for every t > 0,where ht : X → X is de�ned by ht(x) = h(x, t). Let η, ζ : L(X) × I → L(X) bethe homotopies de�ned as follows:

ηt(f)(x) = {

f(x) if t = 0,min{f(x), 1/t} if t > 0;
ζt(f)(x) = {

f(x) if t = 0,max{f(x),−1/t} if t > 0.By identifying ηt(f) and ζt(f) with the epi-graphs, we 
an write
ηt(f) = f ∪ X × [1/t,∞) and ζt(f) = f ∩ X × [−1/t,∞).We shall verify the 
ontinuity of η and ζ.Continuity of η : Let V ⊂ X × R be open. For ea
h (f, t) ∈ η−1(V −),

f ∩ V 6= ∅ or X × [1/t,∞) ∩ V 6= ∅ (the latter does not o

ur if t = 0). When
f ∩ V 6= ∅, V − ∩ L(X) is a neighborhood of f in L(X) and ηs(g) ∈ V − for every
g ∈ V − ∩ L(X) and s ∈ I. When X × [1/t,∞) ∩ V 6= ∅ (t > 0), it follows that
X × [a,∞)∩V 6= ∅ for some a > 1/t. Then, t ∈ (1/a, 1℄ and X × [1/s,∞)∩V 6= ∅for every s ∈ (1/a, 1℄, whi
h implies that ηs(g) ∈ V − for every g ∈ L(X) and
s ∈ (1/a, 1℄. Hen
e, η−1(V −) is open in L(X)× I.Now, let K ⊂ X × R be 
ompa
t. For ea
h (f, t) ∈ η−1(((X × R) \ K)+),
f ∩ K = ∅ and X × [1/t,∞) ∩ K = ∅, when
e ((X × R) \ K)+ ∩ L(X) is aneighborhood of f in L(X) and X × [a,∞) ∩ K = ∅ for some 0 < a < 1/t.Then, t ∈ [0, 1/a) and X × [1/s,∞) ∩ K = ∅ if 0 < s < 1/a. It follows that
ηs(g) ∈ ((X × R) \ K)+ for every g ∈ ((X × R) \ K)+ ∩ L(X) and s ∈ [0, 1/a).Thus, η−1(((X × R) \ K)+) is open in L(X)× I. �Continuity of ζ : Let V ⊂ X ×R be open. For ea
h (f, t) ∈ ζ−1(V −), we have(x, r) ∈ V su
h that r ≥ max{f(x),−1/t} (r ≥ f(x) if t = 0). Sin
e V is open in
X × R, (x, r0) ∈ V for some r0 > r. Let r < r1 < r0 and W = V ∩ X × (r1,∞).Then, W− ∩ L(X) is a neighborhood of f in L(X). Sin
e −1/t < r1, we have
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a > t so that −1/s < r1 if 0 < s < a. Then, t ∈ [0, a). Let g ∈ W− and s ∈ [0, a).Then, we have (x′, r′) ∈ W with r′ ≥ g(x′). Sin
e r′ > r1 > −1/s, it follows that
r′ ≥ max{g(x′),−1/s}, whi
h means ζs(g) ∈ W− ⊂ V −. Therefore, ζ−1(V −) isopen in L(X)× I.Let K ⊂ X ×R be 
ompa
t and (f, t) ∈ ζ−1(((X ×R) \K)+), that is, f ∩X ×[−1/t,∞) ∩ K = ∅. Observe that

f ∩ X × {c} = f−1((−∞, c℄)× {c} for ea
h c ∈ R.By this fa
t, it is easy to see that
c < d ⇒ f ∩ X × [c,∞) ⊂ f−1((−∞, d℄)× [c, d℄ ∪ (f ∩ X × [d,∞)).Then, it follows that f ∩ X × [a,∞) ∩ K = ∅ for some a < −1/t be
ause K is
ompa
t. Let

W = ((X × R) \ (X × [a,∞) ∩ K))+ ∩ L(X).Then, W is a neighborhood of f in L(X) and t ∈ (1/|a|, 1℄. For ea
h g ∈ W and
s ∈ (1/|a|, 1℄, g∩X×[−1/s,∞)∩K = ∅, whi
h means that ζ(g, s) ∈ ((X×R)\K)+.Hen
e, ζ−1(((X × R) \ K)+) is open in X × R. �We de�ne the homotopy ξ : L(X) × I → L(X) by ξt = ηtζt = ζtηt for every
t ∈ I, that is,

ξt(f) = (f ∩ X × [−1/t,∞)) ∪ X × [1/t,∞) ⊂ X × R.Sin
e ξt(L(X)) ⊂ LSCB(X) for t > 0, we have the following:Proposition 3.1. The subspa
e LSCB(X) is homotopy dense in L(X). �It 
an be shown that the 
omplement LSC(X) \ LSCB(X) is homotopy densein LSC(X). At the same time, we shall prove that some other subspa
es of L(X)are homotopy dense in L(X) and they are AR's.3 To this end, we use the resulton Lawson semilatti
es.A topologi
al semilatti
e is a topologi
al spa
e S equipped with a 
ontinuousoperator ∨ : S × S → S whi
h is idempotent, 
ommutative and asso
iative (i.e.,
x∨ x = x, x∨ y = y ∨ x, (x∨ y) ∨ z = x∨ (y ∨ z)). A topologi
al semilatti
e S is
alled a Lawson semilatti
e if S admits an open basis 
onsisting of subsemilatti
es([7℄). A subspa
e Y of X is 
alled relatively LC0 in X if every neighborhood Uof ea
h x ∈ X 
ontains a neighborhood V of x in X su
h that any two points
y, z ∈ V ∩ Y 
an be 
onne
ted by a path in V ∩ Y . The following is proved in [6,Theorem 5.1℄.3AR = absolute retra
t; ANR = absolute neighborhood retra
t.
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ture of the spa
e of l.s.
. fun
tions 121Proposition 3.2. Let X be a metrizable Lawson semilatti
e and Y ⊂ X asubsemilatti
e. If Y is relatively LC0 in X (and Y is 
onne
ted), then X is anANR (an AR) and Y is homotopy dense in X , hen
e Y is also an ANR (an AR).
�To apply Proposition 3.2 above, we show the following:Proposition 3.3. For a Hausdor� spa
e X , the spa
e Cld∗F (X) is a Lawsonsemilatti
e with the union operator ∪. The spa
es L(X), LSC(X), LSCB(X) andL−∞(X) are subsemilatti
es of Cld∗F (X).Proof: For ea
h open set U ⊂ X and ea
h 
ompa
t set K ⊂ X , U− and (X\K)+are subsemilatti
es of Cld∗F (X). Hen
e, Cld∗F (X) has an open basis 
onsisting ofsubsemilatti
es. The 
ontinuity of ∪ is easily observed. The se
ond statement isevident. �We 
onsider the following subspa
e:

F (X) = {f ∈ LSC(X) | f(x) = ∞ ex
ept for �nitely many x ∈ X}= {f ∈ LSC(X) | f−1(R) is �nite}.As is easily observed, F (X) is a dense subsemilatti
e of LSC(X). Moreover, itshould be noted that F (X) ∩ LSCB(X) = ∅ if X is in�nite.Lemma 3.4. For every se
ond 
ountable lo
ally 
ompa
t Hausdor� spa
e X ,
F (X) is homotopy dense in LSC(X).Proof: By Proposition 3.2, it suÆ
es to show that F (X) is relatively LC0 inLSC(X). To this end, let f ∈ LSC(X) and W an open neighborhood of f inLSC(X). Sin
e LSC(X) is a Lawson semilatti
e, we may assume that W is asubsemilatti
e of LSC(X). For ea
h f1, f2 ∈ W ∩ F (X), we 
an de�ne a path
h : I→ F (X) as follows:

h(t)(x) = {

f1(x) if f1(x) ≤ f2(x),
θ−1((1− t)θ(f1(x)) + tθ(f2(x))) if f2(x) < f1(x),where θ : [−∞,∞℄ → I is the homeomorphism de�ned in §1. It is easy to see that

h is a path in W ∩ F (X) 
onne
ting h(0) = f1 and h(1) = f1 ∪ f2. Similarly,
f2 
an be 
onne
ted to f1 ∪ f2 by a path in W ∩ F (X). Then, f1 and f2 are
onne
ted by a path in W ∩F (X). Therefore, F (X) is relatively LC0 in LSC(X).

�Sin
e F (X) ⊂ LSC(X) \ LSCB(X), the following follows from Lemma 3.4:



122 K.Sakai, S.UeharaProposition 3.5. For every in�nite se
ond 
ountable lo
ally 
ompa
t Hausdor�spa
e X , LSC(X) \ LSCB(X) is homotopy dense in LSC(X). �A 
losed subset A ⊂ Y is 
alled a Z-set in Y if for ea
h open 
over U , thereexists a map4 f : Y → Y \A whi
h is U-
lose to the identity.5 A 
ountable unionof Z-sets is 
alled a Zσ-set . One should note that a 
losed set (resp. an Fσ-set)
A ⊂ Y is a Z-set (resp. a Zσ-set) if the 
omplement Y \ A is homotopy densein Y .Lemma 3.6. Let X be a se
ond 
ountable lo
ally 
ompa
t Hausdor� spa
e.(1) The spa
e L−∞(X) is an AR.(2) If X is 
ompa
t then L−∞(X) is a 
ompa
t Z-set in L(X).(3) If X is non-
ompa
t then L−∞(X) is homotopy dense in L(X).Proof: (1) Take f1, f2 ∈ L−∞(X). All the same as in the proof of Lemma 3.4,we 
an obtain a path h : I → L−∞(X) from f1 to f2, hen
e L−∞(X) is path-
onne
ted. Re
all that L−∞(X) is a Lawson semilatti
e. If both f1 and f2 are insome open subsemilatti
e W of L−∞(X), then h is a path in W . Hen
e, L−∞(X)is LC0. Thus, L−∞(X) is an AR by Proposition 3.2.(2) By Lemma 2.6, L−∞(X) is 
ompa
t. Sin
e L−∞(X) ∩ LSCB(X) = ∅ andLSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows that L−∞(X)is a Z-set in L(X).(3) When X is non-
ompa
t, it is easy to see that L−∞(X) is dense in L(X).Similarly to Lemma 3.4, we 
an prove that L−∞(X) is homotopy dense in L(X).

�Proposition 3.7. Let X be a se
ond 
ountable lo
ally 
ompa
t Hausdor� spa
e.Then, L(X), LSC(X), LSCB(X) and LSC(X) \ LSCB(X) are AR's.Proof: We 
an de�ne a map λ : LSCB(X)2 × I→ LSCB(X) as follows:
λ(f, g, t)(x) = (1− t)f(x) + tg(x) for ea
h (f, g, t) ∈ LSCB(X)2 × I.Then, λ(f, g, 0) = f , λ(f, g, 1) = g and λ(f, f, t) = f , namely LSCB(X) is equi-
onne
ted, so LSCB(X) is path-
onne
ted and lo
ally path-
onne
ted. Note thatLSCB(X) is a Lawson semilatti
e as a subsemilatti
e of the Lawson semilatti
eCld∗F (X×R) (Proposition 3.3). Therefore, LSCB(X) is an AR by Proposition 3.2.Sin
e LSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows thatL(X) and LSC(X) are AR's. Moreover, sin
e LSC(X) \ LSCB(X) is homotopydense in L(X) by Proposition 3.5, LSC(X) \ LSCB(X) is also an AR. �4Here, a map is a 
ontinuous fun
tion5Two maps f, g : X → Y are U-
lose if ea
h {f(x), g(x)} is 
ontained in some U ∈ U .
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ture of the spa
e of l.s.
. fun
tions 1234. Proof of TheoremsThe following property is 
alled the disjoint 
ells property .
• For ea
h n ∈ N, and ea
h open 
over U of X , every maps f, g : In → Xare U-
lose to maps f ′, g′ : In → X su
h that f ′(In) ∩ g′(In) = ∅.To prove Theorem 1.1, we apply the following Toru�n
zyk's 
hara
terization of theHilbert 
ube [10℄ ([8, Corollary 7.8.4℄).Theorem 4.1. In order that X ≈ Q, it is ne
essary and suÆ
ient that X is a
ompa
t AR with the disjoint 
ells property. �Using this 
hara
terization of Q, we shall show Theorem 1.1.Proof of Theorem 1.1: The \ne
essity" follows from Corollary 2.5 and Fa
t.We prove the \suÆ
ien
y". By Corollary 2.4 and Proposition 3.7, L(X) is a
ompa
t AR. Sin
e both LSCB(X) and L(X) \ LSCB(X) are homotopy dense inL(X) by Propositions 3.1 and 3.5, L(X) has the disjoint 
ells property. Thus, wehave L(X) ≈ Q by Theorem 4.1. �In [1℄, introdu
ing the notion of 
ap-sets 
hara
terizing subsets M ⊂ Q su
hthat (Q, M) ≈ (Q,�), R. Anderson proved that (Q,�) ≈ (Q, Q \ s) (
f. [3℄). Thefollowing is a 
ombination of Lemmas 4.2 and 4.4 in [3℄.Lemma 4.2. Suppose that (Q, M) ≈ (Q,�). If L is a Zσ-set in Q and K is a

Z-set in Q then (Q, (M ∪ L) \ K) ≈ (Q,�). �The following is the 
ombination of Lemmas 4.3 and 4.4 in [3℄.Lemma 4.3. Suppose that (Q, M) ≈ (Q, N) ≈ (Q,�) and K is a Z-set in Qwith K∩M = K∩N . Then, for ea
h ε > 0, there is a homeomorphism h : Q → Qsu
h that h(M) = N , h|K = id and h is ε-
lose to id. Moreover if M ∪ N ⊂ sthen h also satis�es h(Q \ s) = Q \ s, that is, h(s) = s. �A tower (Mi)i∈N of 
losed sets in X has the deformation property in X if thereis a homotopy h : X × I → X su
h that h0 = id and, for ea
h t > 0, h(X × [t, 1℄)is 
ontained in some Mi. We apply the following Curtis' result ([4, Corollary 4.9℄:Lemma 4.4. Let M = ⋃

i∈N
Mi ⊂ Q, where M1 ⊂ M2 ⊂ · · · satisfy the following
onditions:(1) Mi ≈ Q for ea
h i ∈ N;(2) ea
h Mi is a Z-set in Mi+1;(3) (Mi)i∈N has the deformation property in Q.Then, (Q, M) ≈ (Q,�). �Before proving Theorems 1.2 and 1.3, we show the following:



124 K.Sakai, S.UeharaTheorem 4.5. For a Hausdor� spa
e X , (L(X), LSCB(X)) ≈ (Q,�) if and onlyif X is lo
ally 
ompa
t, se
ond 
ountable and in�nite.Proof: The \only if" part follows from Theorem 1.1. To see the \if" part,assume that X is lo
ally 
ompa
t and se
ond 
ountable. For ea
h n ∈ N, let
Bn = {f ∈ L(X) | f(X) ⊂ [−n, n℄} and

Fn = {f ∈ Bn | f(x) = n ex
ept for �nitely many x ∈ X}.Then, as is easily observed, (Bn, Fn) ≈ (L(X), F (X)), hen
e we have Bn ≈ Q byTheorem 1.1 and Fn is homotopy dense in Bn by Lemma 3.4. Sin
e Bn∩Fn+1 = ∅and Fn+1 is homotopy dense in Bn+1, it follows that Bn is a Z-set in Bn+1.Let ξ : L(X) × I → L(X) be the homotopy de�ned in §3. For ea
h t > 0,
hoose n ∈ N so that n ≥ 1/t. Then, ξ(L(X) × [t, 1℄) ⊂ Bn. Thus, (Bn)n∈Nhas the deformation property in L(X). Sin
e LSCB(X) = ⋃

n∈N
Bn, we have(L(X), LSCB(X)) ≈ (Q,�) by Lemma 4.4. �To prove Theorem 1.2, we use the following:Lemma 4.6. For every se
ond 
ountable 
ompa
t in�nite Hausdor� spa
e X ,L−∞(X) ≈ Q.Proof: By Lemma 3.6, L−∞(X) is a 
ompa
t AR. Let η : L(X)× I→ L(X) bethe homotopy de�ned in §3. Observe that η(L−∞(X) × I) ⊂ L−∞(X). Sin
e Xis in�nite, it follows that

ηt(L−∞(X)) ⊂ L−∞(X) \ F (X) for t > 0,when
e L−∞(X) \ F (X) is homotopy dense in L−∞(X). Moreover, by the samearguments as the proof of Lemma 3.4, it 
an be shown that F (X) ∩ L−∞(X) ishomotopy dense in L−∞(X). Hen
e, L−∞(X) has the disjoint 
ells property. ByTheorem 4.1, we have L−∞(X) ≈ Q. �Now, we shall prove Theorems 1.2 and 1.3.Proof of Theorem 1.2: The impli
ation (
)⇒ (b) is obvious. By Corollary 2.5,Proposition 2.7(3) and Fa
t, we have the impli
ation (b) ⇒ (a).(a) ⇒ (
): By Theorem 4.5 above, we have(L(X), LSCB(X)) ≈ (Q,�) ≈ (ConeQ,�× (0, 1)).Sin
e L−∞(X) is a Z-set in L(X) by Lemma 3.6(2) and L−∞(X) ≈ Q byLemma 4.6, we 
an apply the Z-set unknotting theorem to obtain a homeomor-phism g : L(X) → ConeQ su
h that g({∅}) = {∗} and g(L−∞(X)) = Q × {0}.Note that (Q × {0} ∪ {∗}) ∩ g(LSCB(X)) = ∅.
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ture of the spa
e of l.s.
. fun
tions 125By Lemma 4.3, we have a homeomorphism h : ConeQ → ConeQ su
h that
hg(LSCB(X)) = �× (0, 1) and h|Q × {0} ∪ {∗} = id,when
e it follows that
hg(LSC(X)) = hg(L(X) \ (L−∞(X) ∪ {∅}))= ConeQ \ (Q × {0} ∪ {∗}) = Q × (0, 1).This 
ompletes the proof. �Proof of Theorem 1.3: The impli
ation (
) ⇒ (b) is obvious. The impli
ation(b) ⇒ (a) follows from Corollary 2.5 and Proposition 2.7(2).(a) ⇒ (
): We 
an write X = ⋃

n∈N
Xn, where intX1 is in�nite, ea
h Xn is
ompa
t and Xn $ intXn+1. For ea
h n ∈ N, let

Mn = {f ∈ L(X) | f(X \ intXn) = {−∞}} and
Nn = {f ∈ Mn | f(intXn) is a bounded subset of R}.Then, as is easily observed, we have(Mn, Nn) ≈ (L(intXn), LSCB(intXn)),when
e Mn ≈ Q by Theorem 1.1 and Nn is homotopy dense in Mn by Proposi-tion 3.1. Sin
e (X \ intXn)∩ intXn+1 6= ∅, we have Mn ∩Nn+1 = ∅, when
e Mnis a Z-set in Mn+1 be
ause Nn+1 is homotopy dense in Mn+1. We 
an de�ne ahomotopy h : L(X)× I→ L(X) as follows: h0 = id,

h1/n(f) = f ∪ (X \ intXn)× R,and, for 1/(n+ 1) < t < 1/n,
ht(f) = h1/(n+1)(f) ∪ (X \ intXn)× [ϕn(t),∞),where ϕn : (1/(n + 1), 1/n) → R is a 
ontinuous monotone fun
tion su
h thatlim
t→1/(n+1)ϕn(t) = −∞ and lim

t→1/n
ϕn(t) = ∞.For ea
h t > 0, 
hoose n ∈ N so that n ≥ 1/t. Then, h(L(X) × [t, 1℄) ⊂ Mn.Thus, (Mn)n∈N has the deformation property in L(X). Let M = ⋃

n∈N
Mn. Wehave (L(X), M) ≈ (Q,�) by Lemma 4.4.



126 K.Sakai, S.UeharaOn the other hand, LSC(X) is a homotopy dense Gδ-set in L(X) by Proposi-tions 2.7(1) and 3.1. Then,L−∞(X) ∪ {∅} = L(X) \ LSC(X)is a Zσ-set in L(X). Sin
e M ⊂ L−∞(X), we apply Lemma 4.2 to have(L(X), L−∞(X) ∪ {∅}) ≈ (Q,�) ≈ (Q, Q \ s),hen
e (L(X), LSC(X)) ≈ (Q, s). Then, it follows from Lemma 4.3 that(L(X), LSC(X), LSCB(X)) ≈ (Q, s,�).The proof is 
ompleted. �Remark. In the proof above, we have (L(X), L−∞(X)) ≈ (Q,�) by the samereason as L−∞(X) ∪ {∅}, that is,Proposition 4.7. For every se
ond 
ountable lo
ally 
ompa
t non-
ompa
tHausdor� spa
e X , (L(X), L−∞(X)) ≈ (Q,�) ≈ (Q, Q \ s). �Referen
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