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Two weight norm inequalities for fractional
one-sided maximal and integral operators

LiLIANA DE RosaA

Abstract. In this paper, we give a generalization of Fefferman-Stein inequality for the
fractional one-sided maximal operator:

+oo +oo
M (f)(@)Pw(z)dz < Ap /7 |f (@) [P Mg (w)(z) d,

— 00

where 0 < @ < 1 and 1 < p < 1/a. We also obtain a substitute of dual theorem and
weighted norm inequalities for the one-sided fractional integral 17,
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1. Introduction

For each 0 < a < 1 and f locally integrable on the real line R the fractional
one-sided maximal operators are defined by

1 z+h _ 1 T
M) = s o [y and Mg (@) = swp i [ 15y

In the case a = 0 we have MJ’ =M and M, = M~ the one-sided maximal
Hardy-Littlewood operators.
The fractional one-sided integral operators are defined by

“+o0 T
Hnw= [ A @ = [

For each z in R we consider the family of intervals A; = {I = [a,b) : I is dyadic
and 0 < a —x < b—a}. For each locally integrable function f and 0 < o < 1, its
one-sided dyadic fractional maximal operator is given by

Mg p()@) = { o [T e AL
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Similarly, M_ ,,(f) was introduced.

By Proposition 2.5 in [7] for each 0 < a < 1, there exist two constants P, and
Qo such that

(1.1) Qa M7 p(f)(@) < MF (f)(x) < Pa M7 p(f)(@).

)

Let X be a Banach function space on R. We recall that generalized Holder
inequality

(1.2) /le(y)g(y)ldu(y) < [I£x gllx-

holds, where X' is the associated space.
The X-average of a measurable function f over a bounded interval I is given
by
1Al x,r = 116, (fx0)ll x5

where 05 is the dilation operator 0sf(z) = f(sz), s > 0.
As a consequence of (1.2) we have that for every interval I the inequality

(1.3) ﬁ /I F@)e)| duty) < 1Flx.rllglxo s

holds. The one-sided maximal Hardy-Littlewood operators associated to X were
defined by

M3 f(z) = sup 1l x,(z,p) and My f(z) = sup £ x,(a,2)-

We refer the reader to [1] for a complete study of Banach function spaces.

Given an interval I = [a,b) we will denote by I~ the interval [a — (b — a), a).
If p > 1 its conjugate exponent will be denoted by p'.

A weight w is a non negative and locally integrable function defined on R.

The following theorem gives us a weak type boundedness for the one-sided
dyadic fractional maximal operator M(jD with respect to a pair of weights. It
will be proved in Section 2.

Theorem 1.1. Let 1 < p < 0o and 0 < a < 1. Let X be a Banach function
space satisfying the following property: there exists a constant C > 0 such that
for every dyadic interval J = [b,c) and each y € J~ the inequality

(1.4) 1 lx,0 < Clfllx (.0
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holds, and the operator M)Jg : LP(R) — LP(R) is bounded, that is, there exists
a constant Cy, such that for every f

1M ()l < Cpll £llp-

Suppose that the pair of weights (w,v) satisfies the condition

a 1 — 1/ -1
(1.5) 1 | )| e < K
for every dyadic interval J.
Then, if for every t > 0 we denote

By = {a: M} (@) > 1}

we have that,

wP (Ey)

PO C “+o0
s / £ Poly)? dy.

tP — oo
In this paper, every theorem has a corresponding one reversing the orientation
of the real line.

For each 0 < a < n, we consider the maximal operator

1

Ma(Pla) = sup it [ (7l dy
: 2eQ Q' Jq

where the supremum is taken over all cubes @ in R™ with edges parallel to the

coordinate axes and |@| denotes its Lebesgue measure. The inequality

Mo (f)(@)Pw(z) do < Ap/ | (@) Map(w)() dx,

R™ R

where 1 < p < n/a and w is any weight, for & = 0 was obtained by C. Fefferman
and E.M. Stein in [3] and for 0 < a < 1 was proved by D. Cruz-Uribe, in Theo-
rem 1.7 of [2]. We study the one-sided problem and give a proof of the following
result in Section 2.

Theorem 1.2. Let 0 < o < 1and1 < p < 1/a. There exists a constant Ay such
that for every weight w the inequality

+oo +oo

Mg (f)(@)Pw(z) de < Ap/ | (@) [P Mgy (w)() d
—c0 —00
holds, for every measurable function f and every weight w.

The one-sided fractional maximal operator M is not a linear operator. As a
dual version of Theorem 1.2 we will prove the following result in Section 3.



38

L.de Rosa

Theorem 1.3. Let 1 <p < co and 0 < a < 1/p’. There exists a constant C' > 0
such that the inequality

+o0 , +oo
MO M O @) e <0 [ @ w@! P do

—00

holds, for every measurable function f and every weight w where MP s the
maximal Hardy-Littlewood operator iterated [p'] times.

For the one-sided fractional integral operator I~ we have the following weighted
norm inequality which will be proved in Section 3.

Theorem 1.4. Let 1 <p < oo and 0 < o < 1/p’. There exists a constant C > 0
such that the inequality

+00 ; +oo
| mn@p prg, 0 e@l <o [ @ we! i

—0 —00
holds, for every measurable function f and every weight w where MPT s the
maximal Hardy-Littlewood operator iterated [p'] times.

Throughout this paper, the letters A, B and C will denote positive constants,

not necessarily the same at each occurrence.

2. Proofs of Theorem 1.1 and Theorem 1.2

The following proposition is a fractional version of Calderon-Zygmund decom-
position. It will be applied in the proof of Theorem 1.1.

Proposition 2.1. Let f belong to L'(R), 0 < o < 1 and t > 0. There exists a
countable family {Jj}1>1 of dyadic disjoint intervals such that for every k > 1

1
t<7_/ If| < 2'79.
BALE A

Moreover,
Ey={z: M ,(f)(z) >t} =Q UA,

where

0O =JJ; and A=[] A4,
k>1 k>1

with A, = (E¢\Q¥7) N Jp, and for each x in Ay, there exists a dyadic interval I;
satisfying

1
I-UI; CJp, zel, and t<7/ fl.
J J J |[H1—a Q| |
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PRrOOF: Let D = {I = [a,b) : I is dyadic}. Given an interval I in D such that

1
(2.1) t<|l|ﬂ/l|f|

1< (W)™
t ?

hence, the measure |I| is finite and there exist maximal dyadic intervals satisfying
(2.1). Let

we have that

1
Cy =< J € D: Jis maximal with the property t < f/ If] -
[Ty

Let J belong to C;. There exists an interval H € D such that J C H and |H| =
2|J|. Taking into account that J is maximal with respect to the property (2.1)
then H ¢ Cy and,

21—0!

1 1_
t< ——r < <2 7%
7 1= e 1=

Since the family of dyadic intervals D is countable we can denote Ct = {Jy }>1-
By the definition of M;F,D we have that Q~ U A C E.
We shall prove that

E,COQ UA

where

Q" = U J, and A= U A with  Ap = (EB\Q7) N Jg.
k>1 k>1

Suppose that € Fy and x ¢ Q7. We shall prove that « € Ay, for some k > 1.
Since x € Ey, there exists an interval I € D such that

1
el d t<——
x an |I|1—a/1|f|

and the definition of Cy implies that I C Jj for some k > 1.

It must be I # Jj, because if I = Ji, then x € J and x ¢ Q7. Thus, I # J;,
which implies that I~ C J or I~ C J. Necessarily I~ C Ji, because in the
other case z € J,_ and z ¢ 27, a contradiction. In consequence, I~ U T C Jj.

39
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Since the family of dyadic intervals is countable, there exists a sequence {;};>1
of disjoint dyadic intervals satisfying

- - 1
A=, uLcJg, and f<|].|Ta/|f|'
= J I; 0

Proor orF THEOREM 1.1: By a standard argument it will be sufficient to consider
bounded functions f with compact support. Applying Proposition 2.1

E,=Q"UA

where

O =JJ and A=[] 4
k>1 k>1

with A = (B:\Q7) N Jp.
For each k > 1 by the inequality (3.1), condition (1.5) and hypothesis (1.4) we

have that
_ wP(J;) 1 p
D k
W) < 5 i | ]

P P
=k er [ [ o]

tp | Jk|
wP(J,) -1
< Tk | T | P ||fUXJk||I))(,Jk [[v ”I;(’,Jk
KP D
< Ty | Jk| ||fUXJk||X,Jk
KP
<

o /J ||vaJk||§(’Jk dy

k

KPCOP
< M) 0 dy

Taking into account that the operator M)+< is bounded from LP(R) to LP(R), we
obtain KPO.CP
W) < 2 [ g,
tp Ji
In consequence,

(22) @) < ) < 2 [ e
Uk21‘]k

k>1
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By Proposition 2.1, for each k > 1 it follows that

Ay = UI-_,

j>1
where

1 _
<|I]|Ta/l|f| and Ij UI]ng
J

for every 5 > 1. Then,

WP (A4y) < D wl (1

Jj=1

P
1 1
< iy | / I
tijI J l|]j|1—a I
P
1 1
= LS wpayger | L / oot |
tp 4 3 5] J1

j=1

By the inequality (1.3), condition (1.5), hypothesis (1.4) and keeping in mind that
{Ij_ }j>1 is a family of disjoint dyadic intervals contained in Jj,

1

wP(A) < = > wP UG foxa i 1o
j=1
KP
< T3 Z |Ij|HfUXJk||§(]
§>1
< / 1 Foxs % 1, du
7j>1
Kpcp
< B / ME(fors,) ()P dy
7j>1
KpCP
< /J M (fox,) )P dy.
k

Since M;( is bounded from LP(R) into LP(R) and {Jj};>1 is a family of disjoint
dyadic intervals,

KPC,CP
=3 wh(4y) < [P
k>1 v Uk>1 Jx
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Then, by (2.2)
2KPC,CP
w(B) < @) +ur() < 2 [ P ay,
UkZI Ik

As a consequence of Theorem 1.1 we obtain the next two corollaries.

Corollary 2.2. Let 1 <7 < p < o0, 0 < a < 1 and assume that the pair of
weights (w,v) satisfies the following condition: there exists a constant K such
that for every dyadic interval J,

(2.3) BiE [i wp(J_)]l/p [ﬁ /JU_TJ} ok

Then, for every t > 0 we have

P
gl+2 KPC,), /+oo

w? (Lo ME (D) > 1)) <« —— @) Po(a)P dz,

—o
where Cp/r is the constant of the strong type (p/r,p/r) of the one-sided maximal
Hardy-Littlewood operator M +.

PRrROOF: Suppose that X is the Orlicz space defined by the Young function B(t) =
t", its associated space X’ is given by B(t) ~ . Since 1 < r < p < oo then
M; = M," : LP(R) — LP(R) is bounded. Taking into account that

1 , 1/7’
lo Y x = [— / v—’“}
’ [J| Jr

holds for every dyadic interval J, the pair of weights (w,v) satisfies the condi-
tion (1.5). O

Corollary 2.3. Let 1 < p < 1/a and w be a weight. Then, for every measurable
function f and every t > 0 we have that

w({o:Mip@ > 1)) < 2 [ parg, e

T

where By, = 22+p_o‘pCp and Cy is the constant of the strong type (p,p) of the
one-sided maximal Hardy-Littlewood operator M ™.
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PROOF: Let r = 1. Given a dyadic interval J = [b,¢) if J~ = [a,b) for each
x € J we have that

1 xT
M, (w)(x :sup—/ w(y) d
@) = s o= [ ) ay

> 1 Dl dy = -
= ey J, Y e et
Thus,

1 aqve
P [m w(J )] 1M ()™ 75 s o

1 _ 1/p 1 1 3 —-1/p B
< |J]* [m w(J )} [mmw(J ) — o(1/p)—a

Then, the pair of weights (w!/P, Mojp(w)l/p) satisfies the condition (2.3) in Corol-
lary 2.2. O

PrOOF OF THEOREM 1.2: If o = 0, the pair (w, M~ (w)) is independent of p and
this result is a consequence of the weak type (1,1) with respect to (w, M~ (w))
proved by F.J. Martin-Reyes in Theorem 1 of [5], the strong type (0o, 00) and the
Marcinkiewicz interpolation theorem:.

Using (1.1) and Corollary 2.3, the proof in the case 0 < a < land 1 <p < 1/«
is similar to Theorem 1.7 in [2]. O

3. Proofs of Theorem 1.3 and Theorem 1.4

Following the techniques employed by C. Pérez in Corollary 1.12 of [8] we will
prove the next result.

PRrROOF OF THEOREM 1.3: We will choose X a Banach function space with the
following property: there exists a constant C' > 0 such that for all a < b < ¢ with
b—a < c—b we have that

1£lx,b,) < ClflIx,(are)

and the operator M; : LP(R) — LP(R) is bounded. We will apply Theorem 1
in [9]. For this, it will be sufficient to show that there exists a constant K such
that

1

b 1/p
31)  (c—b)* (m/ [M;p,(M[Nw)(I)]l—pd:c) [w P | xr ey < K
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for every a < b < ¢ with b —a < ¢ —b. Let X’ be the Orlicz space associated to
Young function B(t) ~ t*' (log™ ¢)[P'].
Since [p](p — 1) > 1, the integral

/+°° " a
e B(t) t
is convergent and applying Theorem 4 in [9] we obtain that the operator Mg is

bounded from LP(R) into LP(R) where B is the associated Young function to B.
If A(t) = B(t'/?") ~ t(log™ t)[P'], it is easy to check that
1
o' N,y = Nl {7 -

For each z € [a,b] since ¢ — z < ¢ — a < 2(c — b) we have that
+ (] I S A
Map,(Mp w)(x) > (c—z)i—o7 /x MPl(w)(z) dz
1 ¢ ,
> - [»']
> [Z(C—b)]l—ap'/b MPH(w)(z)dz
Then, (3.1) is bounded by
Iz(c—bf“[[ = 1ap/M“’ ] o (i

_otp | 1 p'] 1/p
=2 [c—b/b M (w)(z)dz} ||w|| Abye)”

Taking into account that A(t) ~ t(log™ t)[P'] and using the estimate (24) in [8] we
obtain that

,_\

1 ¢ /
lwllage < K= [ MV w)(e) s

and, it follows that
I< 21/p/K1/Pl7

which proves that (3.1) holds. O

We recall that a weight w belongs to the class A;;, 1 < p < o0, introduced by
E. Sawyer in [10] if

1 [a 1 [ath 1 p—1
o (3 [ wwar) (7 [T ew ) <
a€R, h>0 h a—h h a
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We shall say that w belongs to Af if there exists a constant C' > 0 such that
M~ (w)(z) < Cw(z) a.e.

A weight w is in AZ if there exist two positive constants C, § such that for all
a < b < ¢ and every measurable set E C (b, ¢) the inequality

(c—a w(a,b

holds. Similarly the classes A;, 1 < p < o0, were defined.
If 1 <p<q< oo, then A;; C A;r and A; = (Af)(Al_)l_p. The study of
these classes of weights can be found in [5] and [10].

The following proposition extends Theorem 3.4 on page 158 of [4]. Its proof
will be omitted.

Proposition 3.1. Let 0 < o < 1, 0 < v < 1/(1 — a) and let p be a positive
Borel measure on R such that M7 (u)(z) < oo almost everywhere. Then,
[M7 (1) (x)]Y € Af with a constant depending only on 7.

07

PROOF OF THEOREM 1.4: For each 0 < 3 < 1, from Proposition 3.1 it follows
that Mg(u) € A7 . Then, Mg(u)l_p € Af c AL. Applying Theorem 3 in [6]
and Theorem 1.3 we have that

—+00 ,
| i@ i, (@) de

— 0o
+00 ,
<[ ME(H)@)P M, (MPlw) (@) P da
—0o0
—+oco
<010 / F@)P w(z)' P da,
— 0o
and the proof is complete. O

Corollary 3.2. Let 1 <p < oo and 0 < o < 1/p’. There exists a constant C' > ()
such that

+oo ,

+OO / !
| @ g w@lds < ¢ [ 1@ w ds

—00 —00

for every measurable function f and every weight w where M ¥l is the maximal
Hardy-Littlewood operator iterated [p] times.

PROOF: The assertion is an immediate consequence of Theorem 1.4. O
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