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Two weight norm inequalities for fra
tionalone-sided maximal and integral operatorsLiliana de RosaAbstra
t. In this paper, we give a generalization of Fe�erman-Stein inequality for thefra
tional one-sided maximal operator:

Z +∞

−∞

M+
α (f)(x)pw(x) dx ≤ Ap

Z +∞

−∞

|f(x)|pM−
αp(w)(x) dx,where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem andweighted norm inequalities for the one-sided fra
tional integral I+α .Keywords: one-sided fra
tional operators, weighted inequalitiesClassi�
ation: Primary 26A33; Se
ondary 42B251. Introdu
tionFor ea
h 0 < α < 1 and f lo
ally integrable on the real line R the fra
tionalone-sided maximal operators are de�ned by

M+
α (f)(x) = sup

h>0 1
h1−α

∫ x+h

x
|f(y)| dy and M−

α (f)(x) = sup
h>0 1

h1−α

∫ x

x−h
|f(y)| dy.In the 
ase α = 0 we have M+0 = M+ and M−0 = M− the one-sided maximalHardy-Littlewood operators.The fra
tional one-sided integral operators are de�ned by

I+α (f)(x) = ∫ +∞

x

f(y)(y − x)1−α
dy and I−α (f)(x) = ∫ x

−∞

f(y)(x − y)1−α
dy.For ea
h x in R we 
onsider the family of intervals Ax = {I = [a, b) : I is dyadi
and 0 < a− x ≤ b− a}. For ea
h lo
ally integrable fun
tion f and 0 < α < 1, itsone-sided dyadi
 fra
tional maximal operator is given by

M+
α,D(f)(x) = sup{ 1

|I|1−α

∫

I
|f | : I ∈ Ax

}

.



36 L. de RosaSimilarly, M−
α,D(f) was introdu
ed.By Proposition 2.5 in [7℄ for ea
h 0 < α < 1, there exist two 
onstants Pα and

Qα su
h that(1.1) Qα M+
α,D(f)(x) ≤ M+

α (f)(x) ≤ Pα M+
α,D(f)(x).Let X be a Bana
h fun
tion spa
e on R. We re
all that generalized H�olderinequality(1.2) ∫

R

|f(y)g(y)| dµ(y) ≤ ‖f‖X‖g‖X′holds, where X ′ is the asso
iated spa
e.The X-average of a measurable fun
tion f over a bounded interval I is givenby
‖f‖X,I = ‖δ|I|(fχI)‖X ,where δs is the dilation operator δsf(x) = f(sx), s > 0.As a 
onsequen
e of (1.2) we have that for every interval I the inequality(1.3) 1

|I|

∫

I
|f(y)g(y)| dµ(y) ≤ ‖f‖X,I‖g‖X′,Iholds. The one-sided maximal Hardy-Littlewood operators asso
iated to X werede�ned by

M+
Xf(x) = sup

b>x
‖f‖X,(x,b) and M−

Xf(x) = sup
a<x

‖f‖X,(a,x).We refer the reader to [1℄ for a 
omplete study of Bana
h fun
tion spa
es.Given an interval I = [a, b) we will denote by I− the interval [a − (b − a), a).If p > 1 its 
onjugate exponent will be denoted by p′.A weight w is a non negative and lo
ally integrable fun
tion de�ned on R.The following theorem gives us a weak type boundedness for the one-sideddyadi
 fra
tional maximal operator M+
α,D with respe
t to a pair of weights. Itwill be proved in Se
tion 2.Theorem 1.1. Let 1 < p < ∞ and 0 < α < 1. Let X be a Bana
h fun
tionspa
e satisfying the following property: there exists a 
onstant C > 0 su
h thatfor every dyadi
 interval J = [b, c) and ea
h y ∈ J− the inequality(1.4) ‖f‖X,J ≤ C‖f‖X,(y,c)



Fra
tional one-sided operators 37holds, and the operator M+
X : Lp(R) −→ Lp(R) is bounded, that is, there existsa 
onstant Cp su
h that for every f

‖M+
X(f)‖p ≤ Cp‖f‖p.Suppose that the pair of weights (w, v) satis�es the 
ondition(1.5) |J |α

[ 1
|J |

wp(J−)]1/p

‖v−1‖X′,J ≤ Kfor every dyadi
 interval J .Then, if for every t > 0 we denote
Et = {x : M+

α,D(f)(x) > t}we have that,
wp(Et) ≤ 2KpCpC

tp

∫ +∞

−∞
|f(y)|pv(y)p dy.In this paper, every theorem has a 
orresponding one reversing the orientationof the real line.For ea
h 0 ≤ α < n, we 
onsider the maximal operator

Mα(f)(x) = sup
x∈Q

1
|Q|1−α/n

∫

Q
|f(y)| dywhere the supremum is taken over all 
ubes Q in R

n with edges parallel to the
oordinate axes and |Q| denotes its Lebesgue measure. The inequality
∫

Rn

Mα(f)(x)pw(x) dx ≤ Ap

∫

Rn

|f(x)|pMαp(w)(x) dx,where 1 < p < n/α and w is any weight, for α = 0 was obtained by C. Fe�ermanand E.M. Stein in [3℄ and for 0 < α < 1 was proved by D. Cruz-Uribe, in Theo-rem 1.7 of [2℄. We study the one-sided problem and give a proof of the followingresult in Se
tion 2.Theorem 1.2. Let 0 ≤ α < 1 and 1 < p < 1/α. There exists a 
onstant Ap su
hthat for every weight w the inequality
∫ +∞

−∞
M+

α (f)(x)pw(x) dx ≤ Ap

∫ +∞

−∞
|f(x)|pM−

αp(w)(x) dxholds, for every measurable fun
tion f and every weight w.The one-sided fra
tional maximal operator M+
α is not a linear operator. As adual version of Theorem 1.2 we will prove the following result in Se
tion 3.



38 L. de RosaTheorem 1.3. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a 
onstant C > 0su
h that the inequality
∫ +∞

−∞
M+

α (f)(x)p [M+
αp′(M [p′℄w)(x)℄1−p dx ≤ C

∫ +∞

−∞
|f(x)|p w(x)1−p dxholds, for every measurable fun
tion f and every weight w where M [p′℄ is themaximal Hardy-Littlewood operator iterated [p′℄ times.For the one-sided fra
tional integral operator I+α we have the following weightednorm inequality whi
h will be proved in Se
tion 3.Theorem 1.4. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a 
onstant C > 0su
h that the inequality

∫ +∞

−∞
|I+α (f)(x)|p [M+

αp′(M [p′℄w)(x)℄1−p dx ≤ C

∫ +∞

−∞
|f(x)|p w(x)1−p dxholds, for every measurable fun
tion f and every weight w where M [p′℄ is themaximal Hardy-Littlewood operator iterated [p′℄ times.Throughout this paper, the letters A, B and C will denote positive 
onstants,not ne
essarily the same at ea
h o

urren
e.2. Proofs of Theorem 1.1 and Theorem 1.2The following proposition is a fra
tional version of Calderon-Zygmund de
om-position. It will be applied in the proof of Theorem 1.1.Proposition 2.1. Let f belong to L1(R), 0 < α < 1 and t > 0. There exists a
ountable family {Jk}k≥1 of dyadi
 disjoint intervals su
h that for every k ≥ 1

t <
1

|Jk|
1−α

∫

Jk

|f | ≤ 21−αt.Moreover,
Et = {x : M+

α,D(f)(x) > t} = 
− ∪ A,where 
− = ⋃

k≥1 J−
k and A = ⋃

k≥1Akwith Ak = (Et\
−) ∩ Jk and for ea
h x in Ak there exists a dyadi
 interval Ijsatisfying
I−j ∪ Ij ⊆ Jk, x ∈ I−j and t <

1
|Ij |1−α

∫

Ij

|f |.



Fra
tional one-sided operators 39Proof: Let D = {I = [a, b) : I is dyadi
}. Given an interval I in D su
h that(2.1) t <
1

|I|1−α

∫

I
|f |we have that

|I| <

(

‖f‖1
t

)
11−α

,hen
e, the measure |I| is �nite and there exist maximal dyadi
 intervals satisfying(2.1). Let
Ct = {J ∈ D : J is maximal with the property t <

1
|J |1−α

∫

J
|f |

}

.Let J belong to Ct. There exists an interval H ∈ D su
h that J ⊂ H and |H | =2|J |. Taking into a

ount that J is maximal with respe
t to the property (2.1)then H /∈ Ct and,
t <

1
|J |1−α

∫

J
|f | ≤

21−α

|H |1−α

∫

H
|f | ≤ 21−αt.Sin
e the family of dyadi
 intervalsD is 
ountable we 
an denote Ct = {Jk}k≥1.By the de�nition of M+

α,D we have that 
− ∪ A ⊆ Et.We shall prove that
Et ⊆ 
− ∪ Awhere 
− = ⋃

k≥1J−
k and A = ⋃

k≥1Ak with Ak = (Et\
−) ∩ Jk.Suppose that x ∈ Et and x /∈ 
−. We shall prove that x ∈ Ak for some k ≥ 1.Sin
e x ∈ Et, there exists an interval I ∈ D su
h that
x ∈ I− and t <

1
|I|1−α

∫

I
|f |and the de�nition of Ct implies that I ⊆ Jk for some k ≥ 1.It must be I 6= Jk, be
ause if I = Jk then x ∈ J−

k and x /∈ 
−. Thus, I 6= Jkwhi
h implies that I− ⊂ J−
k or I− ⊂ Jk. Ne
essarily I− ⊂ Jk, be
ause in theother 
ase x ∈ J−

k and x /∈ 
−, a 
ontradi
tion. In 
onsequen
e, I− ∪ I ⊆ Jk.



40 L. de RosaSin
e the family of dyadi
 intervals is 
ountable, there exists a sequen
e {Ij}j≥1of disjoint dyadi
 intervals satisfying
Ak = ⋃

j≥1 I−j , I−j ∪ Ij ⊆ Jk and t <
1

|Ij |1−α

∫

Ij

|f |.

�Proof of Theorem 1.1: By a standard argument it will be suÆ
ient to 
onsiderbounded fun
tions f with 
ompa
t support. Applying Proposition 2.1
Et = 
− ∪ Awhere 
− = ⋃

k≥1 J−
k and A = ⋃

k≥1Akwith Ak = (Et\
−) ∩ Jk.For ea
h k ≥ 1 by the inequality (3.1), 
ondition (1.5) and hypothesis (1.4) wehave that
wp(J−

k ) <
wp(J−

k )
tp

1
|Jk|

(1−α)p [
∫

Jk

|f |

]p= wp(J−
k )

tp
|Jk|

αp
[ 1
|Jk|

∫

Jk

|f |vv−1]p
≤

wp(J−
k )

tp
|Jk|

αp ‖fvχJk
‖
p
X,Jk

‖v−1‖p
X′,Jk

≤
Kp

tp
|Jk| ‖fvχJk

‖
p
X,Jk

≤
Kp

tp

∫

J−
k

‖fvχJk
‖
p
X,Jk

dy

≤
KpCp

tp

∫

J−
k

M+
X(fvχJk

)(y)p dy.Taking into a

ount that the operator M+
X is bounded from Lp(R) to Lp(R), weobtain

wp(J−
k ) ≤ KpCpC

p

tp

∫

Jk

|f |pvp.In 
onsequen
e,(2.2) wp(
−) ≤ ∑
k≥1wp(J−

k ) ≤ KpCpC
p

tp

∫

S

k≥1 Jk

|f |pvp.



Fra
tional one-sided operators 41By Proposition 2.1, for ea
h k ≥ 1 it follows that
Ak = ⋃

j≥1 I−j ,where
t <

1
|Ij |1−α

∫

Ij

|f | and I−j ∪ Ij ⊆ Jkfor every j ≥ 1. Then,
wp(Ak) ≤∑

j≥1wp(I−j )
≤

1
tp

∑

j≥1wp(I−j )[ 1
|Ij |1−α

∫

Ij

|f |

]p= 1
tp

∑

j≥1wp(I−j )|Ij |
αp

[ 1
|Ij |

∫

Ij

|f |vv−1]p

.By the inequality (1.3), 
ondition (1.5), hypothesis (1.4) and keeping in mind that
{I−j }j≥1 is a family of disjoint dyadi
 intervals 
ontained in Jk,

wp(Ak) ≤ 1
tp

∑

j≥1wp(I−j )|Ij |
αp‖fvχJk

‖
p
X,Ij

‖v−1‖p

X′ ,Ij

≤
Kp

tp

∑

j≥1 |Ij |‖fvχJk
‖
p
X,Ij

≤
Kp

tp

∑

j≥1∫I−j

‖fvχJk
‖
p
X,Ij

dy

≤
KpCp

tp

∑

j≥1 ∫I−j

M+
X(fvχJk

)(y)p dy

≤
KpCp

tp

∫

Jk

M+
X (fvχJk

)(y)p dy.Sin
e M+
X is bounded from Lp(R) into Lp(R) and {Jk}k≥1 is a family of disjointdyadi
 intervals,

wp(A) =∑
k≥1wp(Ak) ≤ KpCpC

p

tp

∫

S

k≥1 Jk

|f(y)|pv(y)p dy.



42 L. de RosaThen, by (2.2)
wp(Et) ≤ wp(
−) + wp(A) ≤ 2KpCpC

p

tp

∫

S

k≥1 Jk

|f(y)|pv(y)p dy.

�As a 
onsequen
e of Theorem 1.1 we obtain the next two 
orollaries.Corollary 2.2. Let 1 ≤ r < p < ∞, 0 < α < 1 and assume that the pair ofweights (w, v) satis�es the following 
ondition: there exists a 
onstant K su
hthat for every dyadi
 interval J ,(2.3) |J |α
[ 1
|J |

wp(J−)]1/p [ 1
|J |

∫

J
v−r′

]1/r′

≤ K.Then, for every t > 0 we have
wp
({

x : M+
α,D(f)(x) > t

})

≤
21+ p

r KpCp/r

tp

∫ +∞

−∞
|f(x)|pv(x)p dx,where Cp/r is the 
onstant of the strong type (p/r, p/r) of the one-sided maximalHardy-Littlewood operator M+.Proof: Suppose that X is the Orli
z spa
e de�ned by the Young fun
tion B(t) =

tr, its asso
iated spa
e X ′ is given by B(t) ≈ tr
′ . Sin
e 1 ≤ r < p < ∞ then

M+
X = M+

r : Lp(R) −→ Lp(R) is bounded. Taking into a

ount that
‖v−1‖X′,J = [ 1

|J |

∫

J
v−r′

]1/r′holds for every dyadi
 interval J , the pair of weights (w, v) satis�es the 
ondi-tion (1.5). �Corollary 2.3. Let 1 < p < 1/α and w be a weight. Then, for every measurablefun
tion f and every t > 0 we have that
w
({

x : M+
α,D(f)(x) > t

})

≤
Bp

tp

∫ +∞

−∞
|f(x)|pM−

αp(w)(x) dxwhere Bp = 22+p−αpCp and Cp is the 
onstant of the strong type (p, p) of theone-sided maximal Hardy-Littlewood operator M+.



Fra
tional one-sided operators 43Proof: Let r = 1. Given a dyadi
 interval J = [b, c) if J− = [a, b) for ea
h
x ∈ J we have that

M−
αp(w)(x) = sup

h>0 1
h1−αp

∫ x

x−h
w(y) dy

≥
1(2|J |)1−αp

∫ b

a
w(y) dy = 121−αp

1
|J |1−αp

w(J−).Thus,
|J |α

[ 1
|J |

w(J−)]1/p

‖M−
αp(w)−1/pχJ‖∞

≤ |J |α
[ 1
|J |

w(J−)]1/p [ 121−αp

1
|J |1−αp

w(J−)]−1/p = 2(1/p)−α.Then, the pair of weights (w1/p, M−
αp(w)1/p) satis�es the 
ondition (2.3) in Corol-lary 2.2. �Proof of Theorem 1.2: If α = 0, the pair (w, M−(w)) is independent of p andthis result is a 
onsequen
e of the weak type (1, 1) with respe
t to (w, M−(w))proved by F.J. Mart��n-Reyes in Theorem 1 of [5℄, the strong type (∞,∞) and theMar
inkiewi
z interpolation theorem.Using (1.1) and Corollary 2.3, the proof in the 
ase 0 < α < 1 and 1 < p < 1/αis similar to Theorem 1.7 in [2℄. �3. Proofs of Theorem 1.3 and Theorem 1.4Following the te
hniques employed by C. P�erez in Corollary 1.12 of [8℄ we willprove the next result.Proof of Theorem 1.3: We will 
hoose X a Bana
h fun
tion spa
e with thefollowing property: there exists a 
onstant C > 0 su
h that for all a < b < c with

b − a < c − b we have that
‖f‖X,(b,c) ≤ C‖f‖X,(a,c)and the operator M+

X : Lp(R) −→ Lp(R) is bounded. We will apply Theorem 1in [9℄. For this, it will be suÆ
ient to show that there exists a 
onstant K su
hthat(3.1) (c − b)α( 1
b − a

∫ b

a
[M+

αp′(M [p′℄w)(x)℄1−p dx

)1/p

‖w1/p′‖X′,(b,c) ≤ K



44 L. de Rosafor every a < b < c with b − a < c − b. Let X ′ be the Orli
z spa
e asso
iated toYoung fun
tion B(t) ≈ tp
′(log+ t)[p′℄.Sin
e [p′℄(p − 1) > 1, the integral

∫ +∞

e

(

tp
′

B(t))p−1
dt

tis 
onvergent and applying Theorem 4 in [9℄ we obtain that the operator M+
B

isbounded from Lp(R) into Lp(R) where B is the asso
iated Young fun
tion to B.If A(t) = B(t1/p′) ≈ t(log+ t)[p′℄, it is easy to 
he
k that
‖w1/p′‖B,(b,c) = ‖w‖

1/p′

A,(b,c).For ea
h x ∈ [a, b℄ sin
e c − x ≤ c − a ≤ 2(c − b) we have that
M+

αp′(M [p′℄w)(x) ≥ 1(c − x)1−αp′

∫ c

x
M [p′℄(w)(z) dz

≥
1[2(c − b)℄1−αp′

∫ c

b
M [p′℄(w)(z) dz.Then, (3.1) is bounded by

I = (c − b)α [ 1[2(c − b)℄1−αp′

∫ c

b
M [p′℄(w)(z) dz

]
1−p

p

‖w‖
1/p′

A,(b,c)= 21/p′
[ 1
c − b

∫ c

b
M [p′℄(w)(z) dz

]− 1
p′

‖w‖
1/p′

A,(b,c).Taking into a

ount that A(t) ≈ t(log+ t)[p′℄ and using the estimate (24) in [8℄ weobtain that
‖w‖A,(b,c) ≤ K

1
c − b

∫ c

b
M [p′℄(w)(z) dzand, it follows that

I ≤ 21/p′K1/p′ ,whi
h proves that (3.1) holds. �We re
all that a weight w belongs to the 
lass A+
p , 1 < p < ∞, introdu
ed byE. Sawyer in [10℄ ifsup

a∈R, h>0( 1
h

∫ a

a−h
w(y) dy

)

( 1
h

∫ a+h

a
w(y)− 1

p−1 dy

)p−1
< ∞.



Fra
tional one-sided operators 45We shall say that w belongs to A+1 if there exists a 
onstant C > 0 su
h that
M−(w)(x) ≤ Cw(x) a.e.A weight w is in A+

∞ if there exist two positive 
onstants C, δ su
h that for all
a < b < c and every measurable set E ⊂ (b, c) the inequality

|E|(c − a) ≤ C

(

w(E)
w(a, b))δholds. Similarly the 
lasses A−

p , 1 ≤ p ≤ ∞, were de�ned.If 1 ≤ p < q ≤ ∞, then A+
p ⊂ A+

q and A+
p = (A+1 )(A−1 )1−p. The study ofthese 
lasses of weights 
an be found in [5℄ and [10℄.The following proposition extends Theorem 3.4 on page 158 of [4℄. Its proofwill be omitted.Proposition 3.1. Let 0 ≤ α < 1, 0 < γ < 1/(1 − α) and let µ be a positiveBorel measure on R su
h that M−

α (µ)(x) < ∞ almost everywhere. Then,[M−
α (µ)(x)℄γ ∈ A+1 with a 
onstant depending only on γ.Proof of Theorem 1.4: For ea
h 0 < β < 1, from Proposition 3.1 it followsthat M+

β (µ) ∈ A−1 . Then, M+
β (µ)1−p ∈ A+

p ⊂ A+
∞. Applying Theorem 3 in [6℄and Theorem 1.3 we have that

∫ +∞

−∞
|I+α (f)(x)|p [M+

αp′(M [p′℄w)(x)℄1−p dx

≤ C1 ∫ +∞

−∞
M+

α (f)(x)p [M+
αp′(M [p′℄w)(x)℄1−p dx

≤ C1C2 ∫ +∞

−∞
|f(x)|p w(x)1−p dx,and the proof is 
omplete. �Corollary 3.2. Let 1 < p < ∞ and 0 < α < 1/p′. There exists a 
onstant C > 0su
h that

∫ +∞

−∞
|I−α (f)(x)|p′ [M+

αp′(M [p′℄w)(x)℄ dx ≤ C

∫ +∞

−∞
|f(x)|p′ w(x) dxfor every measurable fun
tion f and every weight w where M [p′℄ is the maximalHardy-Littlewood operator iterated [p′℄ times.Proof: The assertion is an immediate 
onsequen
e of Theorem 1.4. �
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