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The maximal regular ideal of some 
ommutative ringsEmad Abu Osba, Melvin Henriksen, Osama Alkam, F.A. SmithAbstra
t. In 1950 in volume 1 of Pro
. Amer. Math. So
., B. Brown and N. M
Coyshowed that every (not ne
essarily 
ommutative) ring R has an ideal M(R) 
onsistingof elements a for whi
h there is an x su
h that axa = a, and maximal with respe
t tothis property. Considering only the 
ase when R is 
ommutative and has an identityelement, it is often not easy to determine when M(R) is not just the zero ideal. Wedetermine when this happens in a number of 
ases: Namely when at least one of a or1 − a has a von Neumann inverse, when R is a produ
t of lo
al rings (e.g., when R is

Zn or Zn[i℄), when R is a polynomial or a power series ring, and when R is the ring ofall real-valued 
ontinuous fun
tions on a topologi
al spa
e.Keywords: 
ommutative rings, von Neumann regular rings, von Neumann lo
al rings,Gelfand rings, polynomial rings, power series rings, rings of Gaussian integers (mod n),prime and maximal ideals, maximal regular ideals, pure ideals, quadrati
 residues, Stone-�Ce
h 
ompa
ti�
ation, C(X), zerosets, 
ozerosets, P -spa
esClassi�
ation: 13A, 13FXX, 54G10, 10A101. Introdu
tionThroughout R will denote a 
ommutative ring with identity element 1 unlessthe 
ontrary is stated expli
itly, and the notation of [AHA04℄ will be followed.1.1 De�nition. An element a ∈ R is 
alled regular if there is a b ∈ R su
h that
a = a2b. Let vr(R) = {a ∈ R : a is regular} and nvr(R) = R \ vr(R). An ideal
I of R is 
alled a regular ideal if I ⊂ vr(R). The element a is 
alled m-regular ifthe ideal generated by a is a regular ideal. Let M(R) = {a ∈ R : a is m-regular}.A ring R is 
alled von Neumann regular ring (VNR ring) if R = vr(R).This terminology is motivated in part by a theorem of Brown and M
Coy inwhi
h they show that M(R) is a regular ideal. Indeed it is the largest regularideal or R. See [BM50℄. R may 
ontain regular elements whi
h are not m-regular,as one 
an see easily that 3 ∈ vr(Z4) \ M(Z4). (As usual, Zn denotes the ring Zof integers mod n for a positive integer n.)If S ⊂ R, then Ann(S) denotes {a ∈ R : aS = {0}}, the set of maximal idealsof R is denoted by Max(R), and their interse
tion J(R) is the Ja
obson radi
alof R. In [BM50℄, the following is also established.



2 E.Abu Osba, M.Henriksen, O.Alkam, F.A. Smith1.2 Lemma.
M(R�M(R)) = {0}.
M(R) ∩ J(R) = {0}.
M(R) ⊂ Ann(J(R)).
M(R) ∩ Ann(M(R)) = {0}.If R�J(R) is VNR-ring, then M(R) = {0} if and only if Ann(J(R)) ⊂ J(R).If R satis�es the des
ending 
hain 
ondition on ideals, then R = M(R) +Ann(M(R)).For ea
h ideal I of R, let mI = {a ∈ I : a ∈ aI} = {a ∈ R : I +Ann(a) = R}.Then mI is 
alled the pure part of I. An ideal I is 
alled a pure ideal if I = mI. Itis 
lear that a ∈ mM for an M ∈ Max(R), if and only if Ann(a) is not 
ontainedin M .The following des
ription of M(R) will be used frequently below.1.3 Theorem. If R is not a von Neumann regular ring, then M(R) = ⋂

{mM :
M ∈ Max(R) and M 6= mM} is the interse
tion of the pure parts of thosemaximal ideals M of R that are not pure.Proof: If a /∈ M(R), then there is an x ∈ R su
h that ax /∈ vr(R). So byTheorem 2.4 of [AHA04℄, there is an N ∈ Max(R) su
h that ax ∈ N \ mN . Itfollows that N is not pure and a /∈

⋂

{mM : M ∈ Max(R) and M 6= mM}. Thus
⋂

{mM : M ∈ Max(R) and M 6= mM} ⊂ M(R).If instead a ∈ M(R) and there is an M ∈ Max(R) and an x ∈ M \ mM ,then ax ∈ mM and so as noted above, there is a b /∈ M su
h that bax = 0. So
ba ∈ Ann(x) whi
h is 
ontained in M be
ause this maximal ideal in not pure.But M is a prime ideal, so a ∈ M . Thus M(R) ⊂ mM . Hen
e M(R) ⊂ ⋂

{mM :
M ∈ Max(R) and M 6= mM}. �In this arti
le, we determine when M(R) is not the zero ideal for a number of
lasses of rings. In Se
tion 2, we study rings in whi
h at least one of a or 1 − ahas a von Neumann inverse. Se
tion 3 is devoted to the study of produ
ts of lo
alrings (e.g., the ring Zn of integers modulo an integer n ≥ 2 and to Zn[i℄). The
ompli
ated 
onditions needed to des
ribe when M(Zn[i℄) 6= {0} hint at why itmay be quite diÆ
ult to des
ribe when the maximal regular ideal of a �nite ring isnonzero. In Se
tion 4, it is shown that the maximal regular ideal of a polynomialor powers series ring is the zero ideal, and in Se
tion 5, it is determined whenthe maximal regular ideal of the ring of all 
ontinuous fun
tions on a topologi
alspa
e is nonzero.2. Von Neumann lo
al and strong von Neumann lo
al ringsRe
all from [AHA04℄ that R is 
alled a von Neumann lo
al (VNL) ring if
a ∈ vr(R) or 1− a ∈ vr(R) for ea
h a ∈ R. It is easy to see that VNR rings andlo
al rings are VNL rings. R is 
alled a strong von Neumann lo
al (SVNL) ring if



The maximal regular ideal of some 
ommutative rings 3whenever the ideal 〈S〉 generated by a subset S of R is all of R, then some elementof S is in vr(R), or equivalently if 〈nvr(R)〉 6= R. Clearly every SVNL ring is aVNL ring, but the validity of the 
onverse remains an open problem. R is 
alleda Gelfand ring or a PM ring if ea
h of its proper prime ideals is 
ontained in aunique maximal ideal. If M is a maximal ideal of R, then OM denotes interse
tionof all of the (minimal) prime ideals of R that are 
ontained in M .2.1 Lemma. Every VNL ring R is a Gelfand ring and if R is also redu
ed, then
mM = OM whenever M ∈ Max(R).Proof: The �rst assertion is shown in [C84℄. (Combine in that paper Propo-sition 4.4, Theorems 3.2 and 2.4 with Proposition 1.1.) The se
ond assertion isshown in Proposition 3 of [H77℄. �See also [DO71℄.Next, we make use of Theorem 1.1 above.In Theorem 2.6 of [AHA04℄ it is shown that R is an SVNL ring that is not aVNR ring if and only if it has exa
tly one maximal ideal that fails to be pure.Combining this with Theorem 1.3 yields:2.2 Theorem. If R is an SVNL ring that is not a VNR ring, then it has a uniquemaximal N that is not pure. Moreover M(R) = mN = OM .Proof: The �rst assertion is part of Theorem 2.6 of [AHA04℄, and the se
ond isimmediate from Theorem 1.3 and Lemma 2.1. �Next we begin to exhibit a 
lass of rings whose maximal regular ideal is notthe zero ideal.2.3 Lemma. If R and S are 
ommutative rings with identity whose dire
t sum
R ⊕ S is a VNL ring, then at least one of R and S is a VNR ring.Proof: Suppose instead that there are r ∈ R and s ∈ S that are not vonNeumann regular. Then neither (r, 1 − s) nor (1, 1) − (r, 1 − s) = (1 − r, s) arevon Neumann regular in R ⊕ S, so the 
on
lusion follows. �2.4 Theorem. If R is a VNL ring that is neither lo
al nor a VNR ring, then
M(R) 
ontains fR for some idempotent f not in {0, 1} and hen
e is not the zeroideal.Proof: By Theorem 4.6 of [AHA04℄, a nonlo
al VNL ring has an idempotent
e /∈ {0, 1}, so R = eR ⊕ (1− e)R. Thus by Lemma 2.3, exa
tly one of these twosummands must be a VNR ring, whi
h is a nonzero ideal in
luded in M(R). �3. Produ
ts of lo
al ringsIn this se
tion, it will be determined when a dire
t produ
t of lo
al rings hasa nonzero maximal regular ideal.



4 E.Abu Osba, M.Henriksen, O.Alkam, F.A. SmithIt is an exer
ise to show that a lo
al VNR ring is a �eld. Moreover, if M isthe unique maximal ideal of R, and a = am ∈ mM for some m ∈ M , then a = 0sin
e 1− m in invertible. Be
ause ea
h element of M(R) is in mM , we 
on
ludefrom Theorem 1.3 that:3.1 Lemma. If R is a lo
al ring, then R is a �eld or M(R) = {0}.3.2 Lemma. If R = ∏

i∈I Ri is the dire
t produ
t of rings Ri with identity, then(1) (ri)i∈I ∈ vr(R) if and only if ri ∈ vr(Ri) for ea
h i ∈ I, and(2) (ri)i∈I ∈ M(R) if and only if ri ∈ M(Ri) for ea
h i ∈ I.Proof: (1) (ri)i∈I ∈ vr(R) if and only if there exists (xi)i∈I ∈ R su
h that(ri)i∈I = ((ri)i∈I )2 (xi)i∈I = (r2i xi)i∈I if and only if ri = r2i xi for ea
h i ∈ I ifand only if ri ∈ vr(Ri) for ea
h i ∈ I.(2) Suppose that (ri)i∈I ∈ M(R). Pi
k rk ∈ Rk and let x ∈ Rk.De�ne xi = {

x i=k0 i6=k
.Now, (ri)i∈I(xi)i∈I ∈ vr(R), so there exists (yi)i∈I ∈ R su
h that (ri)i∈I(xi)i∈I= ((ri)i∈I(xi)i∈I)2(yi)i∈I = ((rixi)2yi)i∈I . In parti
ular rkx = (rkx)2yk. Thus

rk ∈ M(Rk). Conversely, suppose that ri ∈ M(Ri) for ea
h i ∈ I. Let (xi)i∈I ∈ R.Then rixi ∈ vr(Ri) for ea
h i ∈ I, whi
h implies that there exists yi ∈ Ri su
hthat rixi = (rixi)2yi for ea
h i ∈ I. Hen
e (ri)i∈I(xi)i∈I = ((rixi)2yi)i∈I =((ri)i∈I (xi)i∈I)2(yi)i∈I whi
h implies that (ri)i∈I ∈ M(R). �It follows that:3.3 Theorem. If R = ∏

i∈I Ri is the dire
t produ
t of rings Ri with identity,then M(R) = ∏

i∈I M(Ri).Be
ause a lo
al VNR ring is a �eld and if R is a �eld, then R = M(R), itfollows that:3.4 Corollary. If R = ∏

i∈I Ri is the dire
t produ
t of lo
al rings Ri withidentity, then M(R) 6= {0} if and only if Rj is a �eld for at least one j ∈ I.In Chapter VI of [M74℄, it is shown that every �nite 
ommutative ring withidentity element is a dire
t produ
t of lo
al rings. Hen
e we have3.5 Theorem. If R is �nite, then M(R) 6= {0} if and only if R is a dire
tprodu
t of lo
al rings at least one of whi
h is a �eld.Mu
h more is said about �nite lo
al rings in [M74℄. If R is su
h a ring thenits unique maximal ideal M is nilpotent and M(R) = {0} by Lemma 3.1. Indeed,every element of R is either nilpotent or invertible.Next, some examples are 
onsidered.It is well known that if n > 1 is in Z, then Zn is lo
al if and only if n = pk forsome prime p and positive integer k, and is a �eld if and only if k = 1.



The maximal regular ideal of some 
ommutative rings 53.6 Corollary. If n = ∏s
i=1 pki

i is the prime power de
omposition of the positiveinteger n, then Zn is the dire
t produ
t of the lo
al rings Z
p

ki

i

and M(R) 6= {0}if and only if kj = 1 for at least one j ∈ {1, . . . , s}.3.7 De�nition. If i2 = −1 and Z[i℄ = {a+ ib : a, b ∈ Z} is the ring of Gaussianintegers, then for any integer n > 1, Zn[i℄ = Z[i℄/nZ[i℄ = {a + ib : a, b ∈ Zn}denotes the ring of Gaussian integers mod n.3.8 Lemma. (a) If an element a+ ib of Zn[i℄ is nilpotent [resp. idempotent℄then a2 + b2 is nilpotent [resp. idempotent℄ in Zn.(b) a + ib is a unit in Zn[i℄ if and only if a2 + b2 is a unit of Zn.(
) (a+ ib)2 = a+ ib is a nontrivial idempotent if and only if a2− b2 = a and2ab = b in Zn and neither a nor b is zero in Zn.Proof: (a) If a + ib is nilpotent, then so is (a − ib)(a + ib) = a2 + b2 be
ause
omplex 
onjugation is an automorphism of Zn[i℄. The proof for idempotents issimilar.(b) follows be
ause (a− ib)(a+ ib) = a2+ b2 and any divisor of a unit is a unit.(
) is an exer
ise. �As in Corollary 3.6, if n = ∏s
i=1 pki is the prime power de
omposition of thepositive integer n, then Zn[i℄ is the dire
t produ
t of the rings Z

p
ki

i

[i℄. So byTheorem 3.3, M(Zn[i℄) = ∏s
i=1 M(Z

p
ki

i

[i℄) 6= {0} if and only if at least one of theideals in this latter produ
t is nonzero. This motivates the question:(∗) If p and k are positive integers and p is prime, when is M(Zpk [i℄) 6= {0}?While it is true that Zn is a lo
al ring whenever n is a power of a prime, thisis not the 
ase for Zn[i℄ as will be shown next. Re
all that if a ring R is �nite,then R is lo
al if and only if its only idempotents are 0 and 1 (whi
h are 
alledtrivial idempotents).3.9 Theorem. If m = pk for some prime p and positive integer k, then Zm[i℄ islo
al if and only if p = 2 or p ≡ −1(mod 4).Proof: We will show that if a+ ib is a nontrivial idempotent of Zm[i℄, then(i) 2a ≡ 1(mod pk), and(ii) there is a c su
h that c2 ≡ −1(mod pk).To see (i), re
all from Lemma 3.8 that if a + ib is an nontrivial idempotent,then a2− b2 = a and 2ab = b in Zm and neither a nor b is 0(mod pk). This latterequation says b(2a − 1) ≡ 0(mod pk). By Lemma 3.8, a2 + b2 is an idempotentin Zm and hen
e is 
ongruent to 0, so if p | b, then p | a. It follows that p2 | bbe
ause 2ab = b. A routine indu
tion yields pk | b and hen
e that b ≡ 0(mod pk);
ontrary to the assumption that a+ ib is a nontrivial idempotent. Hen
e p is nota divisor of b, i.e. b is a unit in Zm, but b(2a− 1) ≡ 0(mod pk). So (i) holds.



6 E.Abu Osba, M.Henriksen, O.Alkam, F.A. SmithThis shows that there are no nontrivial idempotents in Z2k [i℄. So this ring is lo-
al and is never a �eld be
ause it 
ontains the nonzero nilpotent ideal (1+i)Z2k [i℄.Thus M(Z2k ) = {0} for all k.Assume next that p is odd and note that by (i) and its proof (2b)2 = 4(a2−a) ≡(2a)2 − 2(2a) = (pk + 1)2 − 2(pk + 1) ≡ −1(mod pk). So c = 2b is the solutionof the equation in (ii). Thus Zm[i℄ has a nontrivial idempotent exa
tly when theequation in (ii) has a solution in whi
h 
ase 12 + i c2 is su
h an idempotent.It is noted in Chapter 5 of [L58℄ that for p odd, the 
ongruen
e c2 ≡ −1(mod pk)has a solution, i.e. −1 is a quadrati
 residue mod pk, when p is odd if and only ifit has one for k = 1. It is shown that −1 is a quadrati
 residue mod p if and onlyif p ≡ 1(mod 4). This 
ompletes the proof of the theorem. �For a more thorough dis
ussion of the topi
 of the last paragraph, see Se
-tion 5.8 of [L58℄.3.10 Corollary. If p is an odd prime, then Zp[i℄ is a VNR ring.Proof: If p ≡ −1(mod 4), then Zp[i℄ is a �eld be
ause by Theorem 7.2 of [L58℄,the 
ongruen
e a2 + b2 ≡ 0(mod p) has no solution.Assume next that p ≡ 1(mod 4). It follows by Theorem 3.9 that Zp[i℄ is notlo
al, thus Zp[i℄ (whi
h has p2 elements) is produ
t of exa
tly two lo
al rings,ea
h isomorphi
 to Zp. Hen
e Zp[i℄ is isomorphi
 to Zp × Zp a produ
t of twoVNR rings. �3.11 Corollary. If m = pk for some odd prime p and positive integer k, then
M(Zm[i℄) 6= {0} if and only if k = 1.Proof: As noted in the proof of Theorem 3.9, M(Z2k [i℄) = {0} for all k. By thelast 
orollary, if p is an odd prime and k = 1, then M(Zm[i℄) 6= {0}.Now if k > 1 and p ≡ −1(mod 4) or if p = 2, then by Theorem 3.9, Zm[i℄ is alo
al ring whi
h is not a �eld. So M(Zm[i℄) = {0} by Lemma 3.1.If k > 1, p ≡ 1(mod 4), and a+ib is a nonunit of Zm[i℄, then a2+b2 ≡ 0(mod p).If p | a, or p | b, then p divides the other, so p | (a+ ib). Thus a+ ib is a nonzeronilpotent element of Zm[i℄ sin
e k > 1. If, instead p fails to divide a or b, then itis easy to verify that p(a + ib) is a nonzero nilpotent in Zm[i℄. Thus no nonzerononunit of R 
an be m-regular, and the existen
e of the nonzero nilpotent ideal
pR shows that no unit of Zm[i℄ 
an be m-regular. Hen
e M(Zm[i℄) = {0} and theproof is 
omplete. �In summary we have using Theorem 3.3 and the above:3.12 Corollary. If n = ∏s

i=1 pki

i is the prime power de
omposition of the posi-tive integer n, then M(Zn[i℄) 6= {0} if and only if pj is an odd prime and kj = 1for at least one j ∈ {1, . . . , s}.



The maximal regular ideal of some 
ommutative rings 74. Polynomial and power series ringsFor ea
h ring R, we write the polynomial ring as R[x℄ = {
∑n

i=0 aix
i : ai ∈

R} and the power series ring by R[[x℄℄ = {
∑∞

i=0 aix
i : ai ∈ R} where ad-dition is 
oeÆ
ientwise, and in ea
h 
ase (∑ aix

i)(∑ bjx
j) = ∑

ckxk, where
ck = ∑

i+j=k aibj . The 
oeÆ
ient of xk in c(x) = ∑

ckxk is denoted by ck. Bothof these rings are 
ommutative and have an identity. The next lemma is wellknown. See the �rst set of exer
ises in [AM69℄ and Se
tion 1 of [B81℄.4.1 Lemma. (a) u(x) is invertible in R[x℄ if and only if u0 is invertible andthe 
oeÆ
ient of ea
h nonzero power of x is nilpotent.(b) u(x) is invertible in R[[x℄℄ if and only if u0 is invertible in R.Note that if e2 = e is an idempotent, then (1− 2e)2 = 1, so:4.2 Lemma. If e is an idempotent, then (1− 2e) is a unit of R.We 
ombine these two lemmas to obtain:4.3 Lemma. If a(x) is an idempotent in R[x℄ or R[[x℄℄, then a(x) = a0 ∈ R.Proof: If a(x) = ∑∞
i=0 aix

i and a(x) = (a(x))2, then ∑

i+j=n aiaj = an for
n = 0, 1, 2, . . . . If n = 0, then a0 = a20, so (1− 2a0) is a unit by the last lemma.Equating 
oeÆ
ients of x yields a1(1 − 2a0) = 0, whi
h implies that a1 = 0.Doing the same with the 
oeÆ
ients of x2 yields a2(1− 2a0) = −a1a1 = 0, whi
himplies that a2 = 0. Pro
eeding indu
tively, if a1 = a2 = · · · = an−1 = 0, then
an(1 − 2a0) = −

∑

i+j=n aiaj = 0. Thus an = 0 for ea
h n ≥ 1 and hen
e
a(x) = a0 ∈ R. �We now 
hara
terize von Neumann regular elements in R[x℄ and R[[x℄℄. In theproof of the next theorem, we need the fa
t that if a is a von Neumann regularelement of a 
ommutative ring, then there is unit u su
h that a2u = a, and hen
ethat au is an idempotent. See, for example [AHA04℄.4.4 Theorem. Let a(x) = ∑n

i=0 aix
i. Then a(x) is von Neumann regular in

R[x℄ if and only if a(x) is a produ
t of a von Neumann regular element in R anda unit in R[x℄.Proof: If a(x) ∈ vr(R[x℄), then there exists a unit u(x) = ∑m
i=0 uix

i ∈ R[x℄su
h that a(x) = (a(x))2u(x). Hen
e by Lemmas 4.1 and 4.3, we have(iii) a(x)u(x) = a0u0 = (a0u0)2 and(iv) ∑

i+j=k aiuj = 0 for k = 1, 2, 3, . . . , n.By Lemma 4.1, uj is nilpotent if j ≥ 1 and by the equation in (iv) for
k = 1, a1 = −u−10 a0u1, whi
h implies that a1 is nilpotent. Similarly, a2 =
−u−10 (a0u2+a1u1), whi
h implies that a2 is nilpotent. Pro
eeding indu
tively, if
a1, a2, . . . , an−1 are nilpotents, then an = −u−10 ∑

i+j=n aiuj . So ak is nilpotent



8 E.Abu Osba, M.Henriksen, O.Alkam, F.A. Smithfor ea
h k ≥ 1, while a0 ∈ vr(R) and a(x) = a(x)a(x)u(x) = a(x)a0u0. Let
v(x) = u0+a1u20x+a2u20x2+ · · · and note that it is a unit of R[x℄ by Lemma 4.1.Then:

a(x) = n
∑

i=0 aia0u0xi = a20u0 + a1a0u0x + a2a0u0x2 + · · ·= a20u0 + a1a20u20x + a2a20u20x2 + · · · = a20v(x)is the produ
t of an element of vr(R) and a unit of R[x℄.The 
onverse is 
lear. �A similar argument will establish:4.5 Theorem. If a(x) = ∑∞
i=0 aix

i, then a(x) is von Neumann regular in R[[x℄℄if and only if a(x) is a produ
t of a von Neumann regular element in R and aunit in R[[x℄℄.By the last two theorems, xa(x) ∈ vr(R[x℄) implies a(x) = 0, so we 
on
ludethis se
tion with:4.6 Corollary. For ea
h ring R, M(R[x℄) = {0} and M(R[[x℄℄) = {0}.5. The ring C(X)All topologi
al spa
es X are assumed to be Ty
hono� spa
es, βX the Stone-�Ce
h 
ompa
ti�
ation of X and C(X) will denote the algebra of 
ontinuous real-valued fun
tions under the usual pointwise operations. For ea
h f ∈ C(X), wedenote the zeroset of f by Z(f) = {x ∈ X : f(x) = 0}, and the 
ozeroset
oz(f) = X − Z(f). A point p ∈ X su
h that for every f ∈ C(X), f(p) = 0implies p ∈ intZ(f) is 
alled a P -point , and X is 
alled a P -spa
e if ea
h of itspoints is a P -point. If x ∈ βX , let Mx = {f ∈ C(X) : x ∈ 
lβX Z(f)} and
Ox = {f ∈ C(X) : x ∈ intβX [
lβX Z(f)℄}. The notation and terminology of[GJ76℄ is used. In this se
tion we will 
hara
terize m-regular elements in C(X),we will �nd for what spa
es X , M(C(X)) 
ontains non zero elements.Re
all from Se
tion 2 that R is a VNL ring if for ea
h a ∈ R, one of a or 1− ais von Neumann regular.The next proposition is established in [AHA04℄ and in [GJ76℄.5.1 Proposition. (a) C(X) is a VNR ring if and only if X is a P -spa
e if andonly if every Gδ-set of X is open.(b) C(X) is VNL ring if and only if at most one point of X is not a P -point(in whi
h 
ase X is said to be essentially a P -spa
e).The next simple lemma will be used below.
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ommutative rings 95.2 Lemma. If f ∈ vr(C(X)), then Z(f) is 
lopen.Proof: As is noted just above Theorem 4.4, there is a unit u in C(X) su
h that
f = f(fu) and fu is idempotent. Be
ause the zeroset of an idempotent is 
lopen,the 
on
lusion follows. �Thus we obtain:5.3 Theorem. A fun
tion f is in M(C(X)) \ {0} if and only if 
oz(f) is anonempty 
lopen P -spa
e.Proof: Suppose that f ∈ M(C(X)) \ {0}, then f ∈ vr(C(X)) and so 
oz(f)is a nonempty 
lopen set by Lemma 5.2. Let G = ⋂∞

n=1 Gn be a Gδ-set of X
ontained in 
oz(f) and suppose x ∈ G. For ea
h n there exists gn ∈ C(X) su
hthat gn(x) = 0 and gn(X \Gn) = 1. Let g = ∑∞
n=1(|gn| /2n), then g ∈ C(X) and

Z(g) = G ⊂ 
oz(f). Sin
e fg ∈ vr(C(X)), its zeroset is 
lopen by Lemma 5.2. So,be
ause Z(fg) = Z(f)∪Z(g), Z(f)∩Z(g) = ∅, and Z(f) is 
lopen, it follows that
Z(g) and hen
e 
oz(g) is 
lopen. Thus, by Proposition 5.1, 
oz(f) is a P -spa
e.Suppose 
onversely that 
oz(f) is a nonempty 
lopen P -spa
e. Then C(X) isthe dire
t produ
t of C(
oz(f)) and C(Z(f)), so f ∈ M(C(X)) \ {0}. �5.4 Corollary. M(C(X)) 6= {0} if and only if X 
ontains a nonempty 
lopen
P -spa
e.By making use of Theorem 1.3, we 
an des
ribe M(C(X)) more pre
isely.If Y is a subset of X , we let OY = ⋂

y∈Y Oy . Let P (X) be the set of all
P -points in X , then it is 
lear that OX−P (X) = ⋂

y/∈P (X)Oy ⊆ vr(C(X)) and so,
OX−P (X) ⊆ M(C(X)). For ea
h x ∈ βX , mMx = Ox, using this together withTheorem 1.3 above we 
on
lude that:5.5 Corollary. M(C(X)) = OX−P (X) for any spa
e X .We 
on
lude with an interesting example.5.6 Example. Let X1 = (0, 1) with its usual topology and X2 = N with itsdis
rete topology. Let X = X1 ⊕

X2 and de�ne f(x) = { 0 x∈X11 x∈X2 , then f ∈

M(C(X)) \ {0}, while C(X) is not a VNR ring.Referen
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