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Colombeau product of currents

Jirf JELINEK

Abstract. Colombeau product of de Rham’s currents coincides with generalized Itano
one. Sufficient conditions are found under which it is diffeomorphism invariant.
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Introduction

A diffeomorphism invariant Colombeau algebra G is introduced in [11] and de-
noted G4 by Grosser et al. in [6] and [8] to distinguish it from other Colombeau
algebras examined there, too. The term ‘diffeomorphism invariant’, introduced
in [6], only indicates that the canonical embedding of distributions into g is diffeo-
morphlsm invariant; for de Rham’s currents this no more holds. Let €, Q be open
sets in RY, 4 : Q—-Qa diffeomorphism, R a current on 2, p*R its pullback on
Q and (R 1ts canonical image into the space of generalized dlfferentlal forms on (2.
We will see that 7*(¢R) (pullback of tR) is associated but in general not equal to
t(p*R). If S is another current on 2, then E*(¢R) AT*(1S) = T*(tR A 1S) need
not even be associated (see §6, Example) to ¢(u*R) A ¢(u*R). So the Colombeau
product of currents (§4, Definition, §6, Example) is not diffeomorphism invariant.
Using Itano’s definition [9] of wedge product, we will find sufficient conditions
for the Colombeau product of two currents to be diffeomorphism invariant. In
general, it will be shown that the Colombeau product is equivalent to the Itano
one, generalized in an appropriate way.

Notations and basic definitions

We deal with distributions, (generalized) functions, currents etc. defined on an
open subset € (sometimes Q) of R%. Following [14] and [8], a distribution S will
be equivalently denoted e.g. by S(z). Then p*S can be denoted by S(u(x)) that
is more intuitive. However if S is a function, it will be stated explicitly (provided
it is not clear) that a stands for a variable, i.e. that S(z) means the same as S
or z — S(z) and does not mean the value of S at a fixed point z.
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We mostly refer to the book [8] by M. Grosser, M. Kunzinger, M. Ober-
guggenberger and R. Steinbauer. The scaling and translating operators [8, Def-
inition 2.3.1] will be denoted by bold letters here to avoid misunderstanding if
another object (e.g. a distribution) is denoted S or T'. So, for a function ¢ on
R? >0 and z,h € R?, we have

Sep(x) := E_dsa(g),

Typ(e) = gz — b),
T(p,z) := (Tze, ).

As usually, define on R?

Ao :={oe?; [p&)dE =1},
A= Ay — Ag,

Ay ={p € Ay; [p(€)E*dE =0 whenever a € N¢, 1< |a|<q} (¢€N),
U() = {(p,2) € Ao x 2; Top € Ag(Q)}.

A representative of a generalized function on {2 is a smooth complex valued
function on U(2) (element of €°°(U())) that is moderate in the following
meaning:

VK e, aeNg, keNy INeN:

0*d*R-(p, x)[1,. .., vg] = 0(™™) (e \,0)

uniformly if z € K, ¢ runs over any bounded subset of Ao(Rd) and ¥1,..., Y
run over any bounded subset of A(R?). Here d* denotes the k-th partial differ-
ential of the representative with respect to the first variable, while the derivatives
with respect to the second variable are denoted 9“. The set of representatives is
denoted by &yp.

A path is a mapping of the interval ]0, 1] into a locally convex space, mostly
into €*°(Q—Ap) and is often denoted by € — (z +— ¢5) or € — (gpi)xeg.
Grosser et al. in [6], [7] and [8] use the notation ¢(e,z) instead of 5. A path

e (#)seq € FFOA)

is said to have asymptotically vanishing moments of order ¢ € N iff for every
K & Q and BENg with 1 < || < ¢ it is

sup
zeK

/Rd @2(5){6 df‘ = 0(e9) (e \, 0).
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Several equivalent definitions of the ideal N' C &y of negligible representatives
can be found in References. Let us recall the following one [8, Theorem 2.5.4,
(0%)].

VEeQ,neN 3JgeN V& (bounded) C Z2(RY):

R(Sep,x) =0(") (e \0)

uniformly for z € K, p € ZN Ay.

Then G is defined to be the quotient algebra &y/N. For R € &y, denote
[R] := R+ N € G/N, ie. the generalized function with a representative R.
The canonical embedding ¢ of the space of Schwartz distributions 2’() into the
algebra of representatives Ey((€2) is defined: for S € 2/, 1S(p,z) := (S, Tzp).
Consequently the embedding ¢ of €>° C 2’ into &y is defined, but we do not use
the notation o for another embedding €°° — &y [8, Definition 1.4.3] to avoid
a confusion with the same notation of a generalized differential form.

Association and canonical embedding

§1. The main difference of the diffeomorphism invariant Colombeau algebra from
the original one is the smoothness of representatives and the moderateness of all
partial differentials with respect to the first variable. Also the notion of association
is different. In order to obtain a diffeomorphism invariant notion, M. Grosser et
al. [7, Definition 6.1] or [8, Definition 3.3.22] have introduced on a manifold
an intrinsic definition of association that, thanks to Localisation properties [7,
Lemma 4.2] or [8, Lemma 3.3.14], can be formulated on Q as follows. We will
call it G-association to distinguish it from the original Colombeau’s association
[4], called C-association here.

Definitions.
(1°) A generalized function [R] € G(Q) is called C-associated to 0, denoted

[R] < 0, if for some (hence every) representative R of [R] the following
holds:
Ywe 2(Q) 3g € Ny Vo € Ay(R?) we have:

;{I%)/R(Sgw, z)w(z)dr = 0.

(2°) A generalized function [R] € G(Q) is called G-associated to 0, denoted

G
[R]= 0, if for some (hence every) representative R of [R] the following
holds:
Vw e 2(2) 3¢ € Ny such that for every bounded path

£ (go‘;)meg € %w(QﬁAo(Rd))
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that has asymptotically vanishing moments of order ¢, we have

g{r%)/R(Sgwi, z)w(z)dr = 0.

In both cases two generalized functions are defined to be associated if its dif-
ference is associated to 0.

The product with w(z) in the integrals above is understood to vanish for
x ¢ suppw even if the factor by w(z) is not defined at this point . Then one
can check that, if the path is bounded, these integrals are always defined for € > 0
sufficiently small.

Following [8, 3.3.22] (if this is well understood and well localized) we say that a
generalized function [R] € G(2) admits F € 2/(2) as an associated distribution

G
if [R]= o(F) ,1ie. if Ywe 2(Q) ¢ e Ny such that for every bounded path
e (93)zeq € €X(2—Ao(R?))

that has asymptotically vanishing moments of order ¢, we have
lim /R(Sggoi,x)w(x) dz = (F,w).
e\.0

It is not proved in [8] that both formulations are equivalent, and properties of
association are only briefly described with vague reference to local theory (the
formulation in [8] is more general, concerning generalized functions on a manifold).
The former formulation only says that Yw € 2(Q2) 3Jq € Ny such that for every
bounded path

e (5)ncq € EQ—Ap(RD)

that has asymptotically vanishing moments of order ¢, we have
h\r%/ (R(Ses, z) — L(F)(Seys, z))w(z) dz = 0.
1>

Apparently the authors of [8] have known or supposed the very expected fact
(quite easy for C-association) that

(1) hm / )(Sews, x)w(z) dz = (F,w),

i.e. that «(F) has F as its associated distribution by the latter formulation. We
do not prove it here; the reader can prove it by himself similarly as §9, Lemma (3°)
is proved.
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Example. We are going to show that C-association, defined on a diffeomorphism
invariant Colombeau algebra, is not diffeomorphism invariant. Consequently, it
is strictly weaker than G-association. On the interval |0, 1] define

R(p,x) := cos/ o (for ¢ € Ag(R) and independent on x € ]0,1[)

(of course, only values at (¢, z) € U(]0,1[) matter) and

w:ll e[ —]0,1]

T — xz=p@) :=Z.

R(Sepa) = cos (£ [107)).

This is independent on z, so it is straightforward that [R] is not C-associated to
0. On the other hand (see [8, Definition 2.8.1]), 7(@,Z) = (v, z) with x = u(Z)
and (&) = p(u~ Mz + &) —7) - |1 (v~ @ + &), so the pullback

Then

R3.3) = TR (3,3) = R(p,a) = cos / B @ &) —F)2- i (w4 6) 2 de

(substitution £ = p(@ + &) — x)
—cos [ [FE -0/ @+ O = cos [ 15O - @+ €
Hence
(.57 = cos [ S[a(5)[' 6+ 8108 = con [12@R(Z +8)

Integrating per partes in Definition (1°) above, we obtain

/é(seg, ) w(7) d’f:/ cos/|ga +§) A€ d7
:/ '(F) s1n/|g0 +g) d€dz,

so [R] is C-associated to 0.
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§2. Notations. Following [8], we denote by 7. (2) the ¥°°-module of smooth
(r, s)-tensor fields on . We often work with differential forms, so we also use (be-

sides 7.0) Ttano’s notation (different from [8]) £ for the ¥™°-module of differential
forms (this always means smooth, even differential forms) of order s.

Like for the simplified algebra in [8, 3.2.27(iii)], the tensor product of €°°-
modules G(2) ® ) 77 (), briefly denoted by G ® 7] (), is the €°*°-module

S
(and G-module) of generalized (r, s)-tensor fields on Q. Similarly G ® £(2) resp.

S
2" ® E(Q) is the €°°-module of generalized differential forms resp. of currents
on . Here &y resp. G is considered to be a €°°-module with multiplication

fR:=(p,2) = f(x)R(p,x)  (fe€ EF Reéy)

resp.

(2) fIR):= [fR] = [f] - [R].

The last equality is an important property of smooth functions, see e.g. [8, The-
orem 2.4.6(iii)]. Let z!,... 2% be standard coordinates on R? (namely on ).
Following [8, p. 245], denote

Td = {I = (i1,... ,is) EN% 1 <iq < - <ig < d},

dol = dz™ A - A dats.

S
Then {dwl ; I e Ig} is a basis of the ¥°°-module &, so a generalized differential

S
form o0 € G ® £() has a unique (up to the order of terms, if there is any)
expression

3) o= [Sieds’  ([S/] €G().

Iez?

S
Every 3, 74 Sjoda! € &y ® £(Q) where S} € [S], is called a representative
of 0. We denote the set of all representatives of o by [EleId Sr® d:zrl]. It
S S
can be identified with o. Similarly a current S € 2’ ® £(Q) (Itano’s notation
in [9] for homogenous currents) has a unique expression ;.74 S1® dz! with

S; € 2'(Q). The notation Y 74 Sy dz! can be accepted, too, as it hardly can
cause a misunderstanding.
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Definitions. We say that two generalized differential forms

p=> [Rlede’ and o= [Si]eds’ ([Rf],[S]]€9),
IeTd IeTd

are C-associated (resp. G-associated) if their corresponding coefficients [Ry] and
[S7] are C-associated (resp. G-associated).

S S
Let A +— Ty be a net of currents with Ty = >/ 74 T)\,[®d$1 (Thg € 2" ()

S S
and A running over a neighbourhood of 0 in R). We say that limy_,o Ty = Tg

on the domain g of TSO if for every test function ¢ € 2(€) and I € Z¢ we
have limy_,o(T 1,9) = (To,1,¥) -

§3. Remark. Note that we consider smooth functions to be directly elements of
2', but not of G. We only have a canonical embedding (let us denote it by [¢])
2" > S+ [1S] of 2’ into G and consequently of € into G. Similarly (smooth)
differential forms are currents but they are not generalized differential forms. Now
we are going to extend, with the same notation, the embedding ¢ on currents. We
will see that this extension of the canonical embedding is no more diffeomorphism
invariant.

S
Definition. For a current S =) ;74 S® da! with S; € 2'(Q), define

S S
LS = Z WSrede! € &y © £(Q),
Ie7d

S
so the canonical image of S is

S

1S = (8] = S S e da! € G o E(Q).

This also defines the canonical embedding of differential forms.

s

Proposition. Let A be a finite set of indices and (w®) € £(Q) for every a € A.
Then:
(1°) If for smooth functions fr,ga € €°°(2)

D gaw® =Y frdat,

a€cA Iezd

then

Z [tga]@w® = Z[Lf[]@ da’ .

« 1
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(2°) If for distributions Fr,Gqo € 2'()

Z Gaow® = Z FI®de,

acA Ie7d

then

Z [(Ga]ow® Y Z[LF[]@dZEI .
I

(63
PROOF OF (1°): We have 3, frdz! =3 gow®. Writing
(4) w = Z a$ da! (af € €°(Q)),
Iezd
we get

ijd:cI:ZgaZa?d:cl,
1 e} I

s0 fr =) o 9aaf and the right hand side of the equality in (1°) is

S lflede’ =33 (g af)ledal .
I ] «

S
Now we transform the left hand side of the equality in (1°) by (4) in G® &:

Z [tga]o@w™ = Z [tga]® Z af dz! = Z Z afligal® da’ .
I I «

e} e}

The coefficient at dz! in this expression is aftga] = [aF][tgal (see (2)). This
is equal to the corresponding coefficient on the right hand side above [1(gq af)]
because the canonical embedding of € into G preserves multiplication (conse-
quence of [8, Theorem 2.4.6(iii)]). O

PROOF OF (2°): is the same as the proof of (1°) above, only at the end of
the proof the equality [ta][tGa] = [t(aT Ga)] does not hold in general, but the
association holds, see [8, formula (3.106)]. O

§4. Notation. Let p:Q — Q= ;L((NZ) be a diffeomorphism and

3) o= [Sieds’  ([S/]€G(%)

Iez?
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a generalized differential form. The mapping 7 [8, Definition 2.3.7] is defined

i UQ) — UQ) =naU@)
(,7) = (p,2)

where

z = ()
e€) =F(u Nz +€) —7) |Jacp  (z+&)|

(Jac denotes the jacobian). If Vol stands for the standard volume on R? (as an
odd differential form), this notation means that the test density Ty - Vol is the
pullback via =1 of the test density T5p - Vol. Equivalently, ¢ is the unique
function for which

[ Teet= [ Tt

supp Tz supp Tz o

for every function f € €°(Q).

Now, if R € £3;(), then its pullback is 7*R € EM(KNZ) and we consider the
generalized function [7*R] € G(Q) to be the pullback (via u) of the generalized
function [R] € G(©2). In [8, §2.8] the authors have shown that the pullback of
a generalized function (denoted fi there) is well defined. For the generalized
differential form defined by (3), we define

(5) pro =Y [ Sjeu*dz’.
Iez?d

We do not introduce a special notation for the pullback of a generalized differential
form, different from the one for the pullback of a smooth differential form, similarly
as e.g. Bishop and Goldberg in [1] also use the same notation p* for pullbacks via

p of different objects (functions, differential forms, connections, ... ) although
the definition of the pullback depends on the type of this object.

For the following proposition, if ¢ is given by (3) and vy,... ,vs are smooth
vector fields on {2, then, like for smooth differential forms, o(vy,... ,vs) is the

generalized function

(6) > dal(vr,... ) - (S]]

Iez?

(€°°-module multiplication, see (2)).
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Propositions.
(1°) The application @* : Eyi(Q) — Eni(Q) preserves the €°°-module structure.
This means that the multiplication with a function defined before (2) fulfills

F(fR) =i -WR  (f € €¥(Q), Re Eu(®))

where, as usually, pu*f means fopu.

(2°) Let A be a finite set of indices and w® € E(Q) for every oo € A. If (besides
(3))
o= [RaJow®  ([Ra] € G()),

a€cA

then we have (besides (6) also)

o(vy,...,vs) = Z w*(v1,. .. ,0s) - [Ral-

a€cA

S ~
(3°) The generalized differential form p*o € GRE(Q) by (5) is the pullback of the
S
generalized differential form o € G ® £(Q). This means that, for arbitrary

smooth vector fields v1,... ,Vs on Q and their direct images [ixV1, ... , xUs
on Q, the generalized function (u*o)(v1,...,Us) € G(R) is the pullback of
the generalized function o(usv1, ... ,uxvs) € G(Q).

PROOF: (1°) can be easily verified. (2°) follows simply, if we express the forms
w® in the basis (dxl)l as in the proof in §3. We are going to prove (3°). We
have by (5) and the already proved part (2°)

(7) (o) (@1, 0s) = Y (u*dal)(@1,...,T) - B8],
Ie7?
and by (6)
(8) o(fx01, . - o psls) = Z dxl(u*ﬂl, cee s aUs) - [ST)-
Iez?
The function (,u* dxl) (1, ... ,0s) is the pullback of the function da! (.01, ... ,

[xUs) , because this is the definition of the pullback of a differential form. Thus, by
(7), (8) and the part (1°), o(p«v1,... ,ux0s) is the pullback of (u*o)(v1,... ,Us),
which completes the proof. O
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§5. Remark (non commutativity of u* and [i]). The canonical image of a
current

=Y Ged!  (Gr€2'(Q)
Iez?

into G @ E(Q) is
[LG] = Z [1Gleda!

Iezd

and the pullback of the latter is (see (5))

(9) WGl = S G ent dat = 3 (Gl pt do

Ie1? Iez?

because our algebra is dlffeomorphlsm invariant. On the other hand, the pullback

of the current G is a current p* G ZIeId p*Grep* dz! on Q. For calculating

the canonical image of G, we have to express p* G in the basis (dzy);eza:

. _
WG=) pGepd =3 Fed'  (Fe2'%Q)
Iezd IeT?

and we obtain

[t G] = Z [Ff)oda’ .
Iezd

S
Comparing it with (9), we see due to §3, Proposition (2°) that [cp* G] is only

S
G-associated with p*[¢ G] and we can check that in many cases the equality does
not hold. In other words, the canonical embedding [¢] for currents is not diffeo-
morphism invariant and on a manifold it can be only defined up to association.

Wedge product

§6. The following definition is similar to the definition of the Colombeau product
of distributions inside distributions introduced in [10]. Of course, like the prod-
uct of distributions, the wedge product is not defined for arbitrary two currents.
Note that in [10] no embedding ¢ is used and distributions are considered to be
elements of G. Instead, the product in G is denoted differently from the classical
product. Moreover, only the original Colombeau algebra that is not diffeomor-
phism invariant is considered there.
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Notation. In the sequel, the currents considered will always be denoted

I8 S
R=Y Red’ € Z(@Q0E and S= 3 Syed’ € Z(Q) o0&
IeTd Jezd
(Rr, Sy € 7'(Q).

With the notation I = (i1,... i), J = (j1,...,Jjs), we denote by IJ the multi-

index (i1,... ,%r,J1,.--,Js). In relations or expressions like I NJ, containing set
operators, multi-indices are considered only as sets; this is used only for increasing
multiindices. For an arbitrary multi-index L = (f1,...,¢;) € N', we define

sgn L = 0 provided there are two equal indices £; = £; (i # j) in L; else sgn L
is the sign of the permutation of L to the increasing order.

r+s r4s
Definition. With this notation we say that a current T € 2/(Q2) ® & is the
r s r4+s rC s
Colombeau (wedge) product of R and S and denote T =RA S iff
r+s. ¢ r S
[t T]=[LR]A[LS]= Z (LR[S )@ dal Ada” .

Iezd jezd

r+s
It is known that T , if it exists, is well defined. We will see at the end of
this paper that the G-associativity gives the same result. The following example
shows that the Colombeau product is not diffeomorphism invariant.

Example. On Q := (—1,1) x (—1,1) C R? define currents (do not confuse upper
indices with powers)

; = X {E2 CCl 1171 ZC2
(10) R(z) = 6(z)® ((z° + 1)da’ + 2" dz*)

S(z) = S(z)® ((2* + 1) da* + 2! da?)

where § is the Dirac measure on R?. For defining the distribution S on €, we
first choose a function o € .@([—%, %]) with a(0) = 1. Then

wx—azlw $2
PRy A ECE

!

We deduce

Ripy) = (2 + 1)5@) (pry) da’ + 1(225(2)) (g, y) da?

= (2 + 1)8(2), Typ(x)), dz' = p(~y) da'
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and

1S(0.) = (2 + DS(@)) (g, y) dat + o(215(@)) (o) da?

= (...)dat + (S(x), 2tz —y)), da?

_(...)dx1+</R2de> dz? = (...)da! + dz?.

1 1 C
So (tR AtS)(p,y) = ¢(—y)dz! Adz?. This means RA S =@ daz! A da?.
On the other hand, consider a diffeomorphism

~1
pe @Rt d=

and calculate the pullbacks of the currents (10):
1 ~1 ~1
¥ () kS (o ~2 €z z ~2
1
and similarly for S. We can calculate that the coefficient by d#? vanishes for
both currents. The currents contain only the term with dZ!, so their Colombeau
wedge product is zero.

S

T
87. Also Itano in [9] has defined the wedge product of currents R, S, roughly

r4s
speaking, to be the section T (z) (if it exists) of the direct product

r r+s
R(z) xS(y) = > (Ri@) x Syw)e(d’Ady’) e 2/ Q@x Q)& €

Iezd,jez?
on the diagonal A := {(x,y) € 2 x Q; z =y}. The direct product of distribu-
tions is introduced by Schwartz [15] for arbitrary two distributions. For calculating
the section on a submanifold A, we have to choose coordinates (z,y) for which
A = {(z,9y); y=0}. The reader need not know exactly what is the section of
the current. As it is shown in [9] that the result does not depend on a particular
choice of coordinates, choose e.g. t =T+ vy, y = —y. We get, after omitting

r+s
the tildes, that we can define T (z) to be the section of the current

r+s r s
Wo(z,y) =R@+y)S-y) = >  (Ri@+ySs;@—y)e
Ie1d,jez?
((dxil + dy) Ao A (dat + dy't) A (dadt = dyB) A A (dads — dyjs))

with the notation I=(i1,... i), J=(1,---,7s)s
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defined on
(11) I‘::{(x,y)eRZd;:c—i—yEQ,:v—yEQ},

for y = 0. The products of distributions Rj(x + y)Sj(z — y) have always sense,
being pullbacks of direct products. The section is defined exactly as Lojasiewicz
has introduced for distributions in [14], i.e

r+s r+s
T (z) := )\hrrb W (z, \y)

provided the limit exists and does not depend on y (more precisely the left hand

r+s
side could be written T (z) x 1(y) where 1 stands for the constant function
__1)

S
Let usdo a shght generahzatlon replacmg the current R( ) x S(y) above with

the current 1(R () % S( )+ R(y) X S (x)). This gives the following definition:

r+s r+s
Definition. We say that a current T € 2’/ ® & (Q) is the Itano (wedge)

r S r+s r 1 s r+s
product of currents R, S by Notation 6 and denote T =RA S iff T (x) is the

section of the current

r+s r

W () 1= 5 (R +9)8( —9) + Rz — ) 8(z +))

for y=0.

The reason for this definition is (besides the generalization) that in a similar
way the Colombeau product of distributions is characterized in [10]. However for
currents the Itano product is not equivalent with the Colombeau one, because the
Itano product, having in [9] an intrinsic definition, is diffeomorphism invariant.

§8. Note that by this definition the wedge product can exist although the wedge
products Ry dzfAS 7 dz” of some particular terms does not. So the Itano product
cannot be calculated term by term. There is some may be unexpected displea-

I
sure that for I NJ # 0 the product R;dxz! A S;dz’ need not always be = 0.
Although it cannot be nonzero, it need not exist. So we generalize the Itano’s
definition, setting the wedge products of these terms = 0 by definition. Thus we

obtain a generalized Itano product denoted by ﬁ%\l §, but this notation becomes
superfluous when we prove that the generalized Itano product is equivalent to the
Colombeau one. Consequently the (non-generalized or only slightly generalized
in §7) Itano product is strictly stronger and represents sufficient conditions under
which the Colombeau product is diffeomorphism invariant.
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Definition (see §6, Notation).

(1°)

We say that a current

+ +
T = Y nedelcr/(@e't

Lezd |

T S r+s rgls
is the generalized Itano product of R and S and denote T = RA S iff

for all L € Zﬁl_,_s the distribution 77 (z) is the section for y = 0 of the
distribution

sgn(lJ
e = Y B (geiy)sieon RG0S )
Iezd, jezd
INJ=0,1UJ=L

defined on T, see (11).
r+s r gl s r+s
Equivalentlyy, T = RA S is the section for y = 0 of the current W’

obtained from the current

r+s 1, r S T S
W (@,9) i= 5 (R +y)S(z —y) + R(z - y) S(z +y))
r+s
expressed in the form Z Z W, vz, y)e dzl' A ™ € 2'(Q)
t=0 LeTf
MeT?

r+s—t

by eliminating all terms with ¢ < r + s, i.e. keeping only M = () in the last
expression.

The equivalence is straightforward.

89. The rest of the paper is devoted to prove the equivalence of the Colombeau
product with the generalized Itano product. We often refer to [10] where similar
things are done for distributions.

r+s ro s
Lemma. Let T by §8, Definition (1°) and R, S by §6, Notation be currents
on 2. Then

(1°)

r+s rC s
T =RA S on Q iff the following holds:

Voe2(Q) 3geNyg Yoed, YLeIl,

we have

<TL7 w> = ah\rf%)<WL7 775>

451
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where
Ne(@,y) == 27Scp(z — 1) Scp(w +y) *4 w(2)
=24 / Sep(—h —y) Sep(—h + y) w(z + h) dh.

Moreover, the number q in the definition of C-association for the relation

r+s. ¢ T S
[t T]=[tR]A[tS] in §6, Definition can be chosen the same as in this
statement.

r+s G . T S
[0 T]=[R]A[S] on Q iff the following holds: Yw € Z(2) 3Jq € Ny
such that for every bounded path

€ (wi)meﬁ € %OO(Q—nAO(Rd))

that has asymptotically vanishing moments of order q, and VL € I,‘? L sr WE
have

T = lim (W
< L7w> 6{?0< L7<€>
where
Geloyy) =20 [ Supilo = 2 1) Seilo — 2+ ) wle) s
=24 / Sezqn(—h —y)Sepiin(=h+y)w(x+ h)dh.

Moreover, the number ¢ in the definition of G-association §1, Definition (2°)
r+s. g T S
for the relation [v T |=[tR]A[tS] can be chosen the same as in this state-

ment.

For ¢ € Ag the functions x,y — . (z,cy) converge in 2(Q x R%) to

2(0) [ ol=h = -+ 1) dh = 2(o) - (2 9)(20)
(¢(z) := ¢(—x)). For arbitrary bounded path

e (65) yeq € E(2-Ao(RY)),

there is an €y > 0 such that the set of functions
{x,y e (z,ey);0 < e < 50} is bounded in 2(Q x R%), and

tim (2~ [ Gl dy) =
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in 2(Q).
The proof of (1°) is left to the reader, being similar to the following

PROOF OF (2°): The hypothesis means that the corresponding coefficients are
associated (§2, Definition):

)RS sen(I) RS,
IJJ=L

By §1, Definition (2°) this means: Yw € 2(Q) 3¢ € Ng such that for every
bounded path
€ — (‘p?v)meQ € %w(QﬁAo(Rd))

that has asymptotically vanishing moments of order ¢, we have
tim [ (3 se(ID)eRi](Sept, 2)6,](Se0%, 2)~[TL) (o5, ) Jwl2) dz = .
e\0

1UJ=L
By the definition of ¢ and (1), this means
tim [ (7 sen(1)) - (Rr, Ta8e9%) - (S, TaSegl) Ju(2) dz = (T,w),
e\.0

IUJ=L

ie.

Jim, /I;Lsgn(UHRI(U), Seg’ (u—2)),(57(v), Se s (v=2)), w(z) de=(TL, w).

On the left hand side there is an action of the direct product Ry x Sj;. After

changing variables u =x —y, v =2 4y, det gg’zg = 2% the left hand side is

= lim/ Z sgn(1J) - (Rr(z —y)Ss(z+y),

IuJ=L
298, ¢S (v — y — 2)Sepi(z +y — 2)) w(z) dz

= lm MZ:L sen(1) - (Ry(w = )8, (x + 1),

2d / Sei (@ — y — 2)SepS(a +y — 2)w(z)dz).

As the test function is even in y, this is equal to Um(W7, ;) (see §8, Defini-
tion (1°) for the notation) which completes the proof of (2°). O
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PROOF OF (3°): Again, we are going to prove it only for (., the proof for 7.
being similar.

el (z, ey) = 294 / Sewsn(—h —ey) Sl p(=h +ey)w(x + h)dh

_ h _ h
= Qd&‘d/f d(ﬂ;_,’_h(—g —y)E d(ﬂ;_i_h(—g —I—y)w(z—l—h)dh

After substitution h — ch we get
(12)  eu(oen) =2 [ 5 on(—h =) Ghep Dt )l + 2h) dh

The set of applications {z — ¢%; € €]0,1]} is bounded in €°(Q—2(R%)). So
for an r € R we have supp ¢ C {y; |y| <r}  (r > 0) (euclidian norm) whenever
z € suppw. For |y| > r we have [2y| = |—(=h—y)+(—h+y)| < [-h—y[+|-h+yl,
so either | —h —y| > r or | —h+y| > r and by (12) ((z,ey) = 0. By the
similar reason, the domain of integration need not exceed {|h| < r}, so evidently
if dist(z, suppw) > er, then w(z+eh) = 0 and again (. (z,ey) = 0. Thus we have
proved that, for & small enough, the supports of the functions x,y — ¥ (z, ey)
are contained in a compact set in Q x R?. By (12) it is clear that (for ¢ small
enough) these functions form a bounded set in 2(Q x RY). Similar reasoning can
be done for 7. if we write ¢ instead of ¢ and in that case the proof is evidently
already completed.

It remains to estimate [ (.(x,y)dy. As above, for ¢ small enough, also the
functions

,y s 2% / Coren(=h —y) 0oy cp(=h +y)w(z +ch)dh

have supports contained in a compact set in Q X R?, independent on ¢’ € ]0,1].
As the set of applications {z — ¢£ ; & €]0,1]} is bounded in F°°(2—Z(R%)),
we deduce by the mean value theorem, e.g. [11, Theorem 11] that

lim (@ () = 2 - 95 (2)

in €°°(Q) uniformly with respect to ¢ € ]0,1] and z. Consequently we have in
(), so in 2(Q) uniformly with respect to £’ € ]0, 1]

611\1% <x — 24 / / Orren(=h—=v) 5 p(=h+y)w(x +ch)dh dy>

_ ( 2t [ [ chm e Chr et dhdy)

:wa(;p).zd/@; * 0y (2y) dy = w.

By (12), putting &’ = ¢ gives the result. ([l
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§10. Now we are able to prove one implication of the expected equivalence while
for the converse we will have to prove more auxiliary results.

r4s rC s

T+s gl s
Partial result. If T = RA S on Q, then also T =RA S on Q. Moreover

r+s G T S
[0 T]=[R]A[S] with ¢ = 0 in the definition of G-association, i.e. without
requirement on moments.

PROOF: By §8, Definition (1°), the hypothesis means
(13) Tpfa) % 1(y) = lim Wy(nzy) (VL Th,)

We are going to verify the conditions of §9, Lemma (2°). For an arbitrary bounded
path

e (#5) seq € CF(2=Ao(RY),
if the function (. is defined by §9, Lemma (2°), we have

Eh\mo<WL,<€> = Eli\mo<WL<x,ey>, el¢o(z, ey)).

The convergence of distributions means uniform convergence on bounded sets
in 2. By §9, Lemma (3°), the test functions in the last expression form a bounded
set, so by (13) and again by §9, Lemma (3°), the last limit is

~ lim <TL(x>, o / Gelarey) dy) = (Tuo), lim e [ ooz ay)

TL , 1lm/Cawy = (T, w).

These are the required sufficient conditions in §9, Lemma (2°). O

§11. Lemma. Let r:lts = ﬁ/c\ § on Q, w e D(Q) and let a natural number
o be greater than or equal to the orders of all distributions Wy (L € IT‘,i s
the notation in §8, Definition (1°)) on some neighbourhood of suppw x 0 in
I c R x R? (see (11)). Then the following holds:

(1°) 3q € No (the same as in §9, Lemma (1°)) Vo€ A; VL € Iff_i_s we

have
<TL7w> =
20 /9 \j ,
é}{n <WL(:c v, > ﬁ(%)]w(fﬂ)fm Sep(—h—y) Sep(—h+y) I’ dh>-
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(2°) If i e N¢, |i| > d+ o0, ¢ € Ag(RY), then

lim <WL(:E, y), w() - /Rd Scp(—h —y) Scp(—h +y) B’ dh> =0.

PRrROOF: The Taylor development of w is

wa+h)= Y (%)jw(:c)-%—i—p(x,h)

l7|<d+o

where the remainder p fulfils |p(z, h)| < c|h|4t°+1 with ¢ not depending on , h.
Also we have

(14) [(52) ot h)] < lnpteer,

because (%)Jp(x, h) is the remainder of the Taylor development of (%)]w(ac—i—
h). By §9, Lemma (1°) we deduce

<TL7 w> = ah\% <WL(J;7 y)7 2d / Sa(p(_h - y) Sa(p(_h + y) w(w + h) dh>

= 1.
ti (W 2.9,

24 / Sep(-h - Seo(-h+0)( Y (5-) 'w(@.%ﬂ@,h))d@

l7|<d+o0

For proving (1°), it remains to show that

(15) 51{% <WL(:1:, ), Qd/sgw(—h — 1) Scp(=h +y) p(x, h) dh>m,y -0

As Wi, has an order not exceeding o on a neighbourhood of suppw x 0, it suffices
to prove that the net of test functions in (15) tends to zero in Z,(Q x RY).
We are proving it even for ¢ € Ag(R?). Let suppy C {y;|ly| <7} (r > 0)
(euclidian norm). Like in the proof of §9, Lemma (3°), the test function = 0 if
|y| > er. The domain of integration need not exceed {|h| < er}. For these h,
if dist(x,suppw) > er, the remainder of the Taylor development p(z,h) =0, so
we see that, for ¢ sufficiently small, the test function in (15) has the support in a
compact neighbourhood of suppw x 0 where Wy, , by hypothesis, is of order not
greater than o.
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Now we estimate the derivatives of order not greater than o of this test func-
tion:

(2 (gy)kzd / Sep(—h — ) Se(—h +y) plw, h) dh

=2t [ () Seoton - ) St ) (52) oty an

(1°) The integration domain {|h| < er} is of volume = ¢;e? for some constant
c1 not depending on €.

o o\ AL ~d—|k
(2°) If oy o(y)| < eg for all y and |k| < o, then y Sep(y)| < cae
and by Euler’s rule

’ (a%)k(sesﬁ(—h —y) Scp(—h + y))’ < cge~ 2=kl

with a constant c3 depending on ¢ but not on €.

(16)

(3°) For (3%)] p(x,h) we have estimates (14).
For |j|, |k| < o, these items give
21 [ () (seol-h =) Sep(—h+ ) (55) plast at
dy ox

< ng—2d—|k\|h|d+o+1 < E—d—|k\(€r)d+o+1 < clg—|k\+o+1

that tends to zero for |k| < o. Thus the proof of the part (1°) of Lemma is
completed. The part (2°) can be proved in the same way as (15), because the
function z, h — w(w)hi on bounded sets has the same properties required in this
proof as the function p. O

812. Lemma. For p,q € N, let a function (net of polynomials of variable
t=(t1,...,tp))

et .ty Plet, .. tp) = Pe,t) := > ag(e)t!
IeNy
11<q
be defined on {e € (0,1],t € RP}. If for all t the limit Q(t) = li\m0 P(e,t) exists,
3

then @ is a polynomial Q(t) = > bs(t) and by = 11{11()@(5).
3

PROOF: This is a well known property of polynomials. Let us give an idea of the
proof. For a convenable sufficiently large finite set of points tA 1) e RP g
polynomial is uniquely determined by its values at these points. Choose polyno-
mials Py,..., P, with Pj(ty) =05 (j,k=1,...,n) (Kronecker’s delta). Then

n .
Pe,t) = > P(a,t(]))Pj (t), that gives the result. O
j=1

457
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813. Notation. Following [15], for multiindices ¢ = (i1,... ,iq), 7 = (J1,--- ,Jd)
ENg we write 1 < j iff iq <jo (a=1,...,d); we write i < j iff i < j and
i

r+s

C
Lemma. If T =RAS on Q, then Vw € 2() 3¢ € Ny such that Vi >
(0,...,0) € NG, Vo € Ay (R?)

a0 i (Wao), w@)- [

o Sep(h—y)Sep(=h+y) B dh> —0

PrOOF: We will prove an apparently weaker but equivalent formulation of the

r4s rC s
lemma: If T =RA S on Q,then Vi > (0,...,0)eN¢ Vwe 2(Q) 3¢ eNg
such that Yo € Ay (R%) (17) holds. This is indeed equivalent, because for a
greater ¢’ so much the more the assertion holds; by §11, Lemma (2°), (17) holds
even for ¢ =0 (i.e. for every ¢') provided |i| > d + o and there are only a finite
number of multiindices i with |i| < d + 0. Hence, ¢/ in this formulation can be
chosen independent on 7.

Fix a compact K C Q. If we confine ourself on w € Z(K), the number o
in §11, Lemma can be independent on w. We are going to prove our weaker
formulation above by contradiction. We know that there are only a finite number
of multiindices i for which the assertion of this formulation does not hold. So, if
there is any, choose a maximal such i and denote i. So for i = i the assertion
does not hold and for all i > 7 even the stronger assertion with ¢’ independent
on 4 holds. For finitely many functions w € 2(K), ¢’ can be the same. Thus we
have:

Vwe P(K) 3¢ >q in §11, Lemma (1°)
Vi>i, p€ Ay(RY), j NG with j<o+d:

(18) _
ti (WiGo0), (50 ) wl) - [ Sep(=h— ) Sepl=h ) ki dh) =o.

We deduce that for i = 7 the assertion holds, too, that will be a contradiction.
Namely, we deduce: Yw € 2(K) 3¢" > ¢ V¢ € Ay (RY)

(19 lim (W), vl /]R Scb(—h — y)Sc(~h+ ) K dh) =

Denote by ni,... SURES {1,2,...,d} indices for which

(20) Tny - Tny - Tnp =ua' (x = (21,...,29)).
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Denote ¢” := ¢’ + |i| and choose numbers t1,... - M€ Ay, we easily
deduce
li|
(21) o(@) =) | | L+ tgan,) € Ay
k=1
Then

/i
Sep(z) = Setp(w H (1+ _'r”k
k=1

and
/Rd Sco(—h —y)Sco(—h +y) 1’ dh
= [ Sev(ch =) Sev(=h +) b
/1]
t
T (14 Z = 90)) (14 2 (o 0,
Pl €
= [ Set(ch =) Sev(=h +3) b
/1]
tr\ 2
T (1 E-2hn) + () 02, ~42,)) an.
k=1
This is a polynomial of the variable ¢t = (¢1,... ,tm) whose coefficient at the

power t1 = (ty--- tm) is

/Rdsedf(_h_y)SH/J( h—|—y (Hh”k)( )H

= (D) [ sevn- v+ gy rian

due to (20). Substituting ¢ defined by (21) into §11, Lemma (1°) and applying
812, Lemma give

0= lim

e\0
<WL<:z:,y>, > (Y et ()] scvtcn-nsavni hj+fdh>.

4!
JENG
lj|<d+o
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NG

First we multiply this relation with (_—2) . Then we see by (18) that every

term in the sum with j > (0,...,0) gives the result zero, so the same holds for
the term with j = (0,...,0). Thus we have deduced (19) from (18) that is the
required contradiction. ([l
r+s rC s
Corollary. If T =RA S on Q, then YVw € 2(Q2) Fq € Ny such that V¢ €
Aq(RY)
(Tp,w) = lim (Wi (2,y), w(2) Sep*Se (v))
= lim (W (z,y), w(z) S=(¢*¢)(y))
e\.0

(@ =y p(-y)).
PROOF: By §11, Lemma (1°) and §13, Lemma we have

(T, w) = g% <WL(;c,y), 24 (z) - /R

T d ] .
= lim (Wi (r,), 2'(a) - S-p+80(29)).

L Sep(=h =y)Sep(=h +y) dh>

Replacing S, with S, /2 gives the result. ([

§14. For completing the proof of equivalence of the Colombeau product with the
generalized Itano product, we refer to [10, Theorem 3|. It is proved there that,
for a distribution F defined on a neighbourhood of 0 in R?, the following are
equivalent.

(1°) F has at 0 a value in Lojasiewicz sense = a. This means that for every
1 € Ag(RY)

(22) Ell\r%<F, Sen) = a.

(3°) If a ¢ € Np is fixed, then for every p € Ay, n:=¢*¢ (22) holds.

T r s S r+s r+s
Theorem. Let R€ 2'®E&,Sc2'®& and T € 2'® & be currents on €.
r+s rC s r+s r gl s r+s
Then T =RAS if T = RAS. In that case [ T ] is even G-associated
T

S
with «[R] A ¢[S] with ¢ =0 in the definition of G-association §1(2°), i.e. without
requirements on moments.

PROOF: A partial result is given already in §10. We only have to prove: If

r+s rC s r4s r gl s r4s rC s
T =RAS,then T =RAS. Solet T =RAS. By §8, Definition (1°), we
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have to prove that, for every L € If+s, the distribution Wy, (x,y) has for y =0
a section equal to Ty (z). Equivalently, we have to prove that, for w € 2(), the
distribution

Fly) = (W (z,y),w(@)),

depending on w and defined by
(F.0) = (W (2, ), (@) ()
has at 0 a value equal to (Ty,w). By the last Corollary, 3¢ € Ny V¢ € Aq(Rd)
23 Ty ,w) = lim (F,Sc(p .
(23) (Tp,w) = lim (F,8(p+ )
Thanks to the reference (3°) = (1°) above, we need

(24) (Tp.) = lim (F.Sc(p + ).

W (z,y) is even in y, so F is even, that means (F, ) = (F, @), so (F,p * @) =
(F, @ @). (24) follows from (23), because

1 .
(Filpx9)) = (F5(ox9) +5(6x9))
—2(F, EL 222N (Fipey)
which completes the proof. ([
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