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Semivariation in L
p-spaces

Brian Jefferies, Susumu Okada

Abstract. Suppose that X and Y are Banach spaces and that the Banach space X⊗̂τ Y
is their complete tensor product with respect to some tensor product topology τ . A uni-
formly bounded X-valued function need not be integrable in X⊗̂τ Y with respect to a
Y -valued measure, unless, say, X and Y are Hilbert spaces and τ is the Hilbert space
tensor product topology, in which case Grothendieck’s theorem may be applied.
In this paper, we take an index 1 ≤ p < ∞ and suppose that X and Y are Lp-spaces

with τp the associated Lp-tensor product topology. An application of Orlicz’s lemma

shows that not all uniformly bounded X-valued functions are integrable in X⊗̂τp
Y with

respect to a Y -valued measure in the case 1 ≤ p < 2. For 2 < p < ∞, the negative
result is equivalent to the fact that not all continuous linear maps from ℓ1 to ℓp are
p-summing, which follows from a result of S. Kwapien.

Keywords: absolutely p-summing, bilinear integration, semivariation, tensor product

Classification: Primary 28B05, 46G10; Secondary 46B42, 47B65

1. Introduction

Bilinear integration arises in many areas of analysis, such as the representation
of solutions of evolution equations [8]. Given a vector measure m : E → Y with
values in a Banach space Y and defined over a measurable space (Σ, E), an E-
measurable simple function s =

∑n
j=1 xjχEj

with values in a Banach space X

has an indefinite integral s ⊗ m : E → X ⊗ Y with respect to m defined by

(1.1) (s ⊗ m)(E) =
n
∑

j=1

xj ⊗ m(Ej ∩ E), E ∈ E .

If the tensor product X ⊗ Y of X and Y has a given locally convex topology τ ,
then by a suitable limiting procedure, the integral (1.1) can be extended to more
general functions f : Σ → X so that the indefinite integral f ⊗ m : E → X⊗̂τY
takes values in the completion X⊗̂τY of the tensor product X⊗τ Y endowed with
the topology τ .

This paper could not have been written without the advice of H. Jarchow and S. Geiss to
whom we are deeply indebted.
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A general procedure of this nature is studied in [9] in the case that the tensor
product topology τ satisfies the special condition that X ′⊗Y ′ separates the space
X⊗̂τY , see [9] for the relationship of this approach to other bilinear integrals
([1], [6]). It is a fact of bilinear life that not all uniformly bounded, strongly
E-measurable functions f : Σ→ Y need be m-integrable in X⊗̂τY .

A simple example is given in [9, Proposition 4.2]. Take X = Y = L2([0, 1])
and let π be the projective tensor product topology on L2([0, 1])⊗L2([0, 1]). For
the Borel σ-algebra B([0, 1]) of [0, 1], the vector measure m : B([0, 1])→ L2([0, 1])
is defined by m(B) = χB for every set B ∈ B([0, 1]). A function f : [0, 1] →

L2([0, 1]) is m-integrable in L2([0, 1])⊗̂πL2([0, 1]) if and only if there exists a
trace-class operator on L2([0, 1]) with kernel (x, y) 7→ k(x, y), x, y ∈ [0, 1], such
that f(x) = k(x, ·) for almost all x ∈ [0, 1]. For f to bem-integrable in the Banach
space L2([0, 1])⊗̂πL2([0, 1]), it is simply not enough that there exists M > 0 such
that ‖f(x)‖2 ≤ M for almost all x ∈ [0, 1].

A key consideration here is whether or not there exists a bound C > 0 such
that

(1.2) ‖(s ⊗ m)(Σ)‖τ ≤ C‖s‖∞

for everyX-valued E-measurable simple function s. Here we suppose that the ten-
sor product topology τ is actually given by a norm ‖ ·‖τ and ‖s‖∞ = maxj ‖xj‖X

for s =
∑n

j=1 xjχEj
and {Ej}

n
j=1 pairwise disjoint. If the bound (1.2) holds,

then we can hope to approximate a bounded X-valued function by the pointwise
limit of uniformly bounded sequence of X-valued simple functions.

To be more precise, the X-semivariation of m in X⊗̂τY is the set function
βX (m) : E → [0,∞] defined by

(1.3) βX(m)(E) = sup







∥

∥

∥

∥

k
∑

j=1

xj ⊗ m(Ej)

∥

∥

∥

∥

τ







for every E ∈ E ; the supremum is taken over all pairwise disjoint sets E1, . . . , Ek
from E∩E and vectors x1, . . . , xk fromX , such that ‖xj‖X ≤ 1 for all j = 1, . . . , k
and k = 1, 2, . . . . The bound (1.2) therefore holds exactly when βX (m)(Σ) < ∞.
If βX(m)(Σ) < ∞ and the Banach space X⊗̂τY contains no copy of c0, then
the X-semivariation βX (m) is continuous in the sense of Dobrakov, namely,
βX (m)(Ak) → 0 whenever {Ak}

∞
k=1 is a sequence in E decreasing to the empty

set; see [6, *-Theorem]. This suffices to deduce that bounded strongly measur-
able X-valued functions are m-integrable in X⊗̂τY , see [7, Theorem 5] and [9,
Theorem 2.7]. For the converse statement, see [13, Theorem 6]. If, in particular,
‖x⊗ y‖τ = ‖x‖ · ‖y‖ for all x ∈ X and y ∈ Y (that is, ‖ · ‖τ is a cross norm), then
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(1.4) ‖m‖(E) ≤ βX(m)(E), E ∈ E .

Here ‖m‖ : E → [0,∞) denotes the usual semivariation of the vector measure m,
[4, Definition I.1.4].
This note is concerned with the natural situation in which 1 ≤ p < ∞, µ and ν

are σ-finite measures, X = Lp(µ), Y = Lp(ν) and τ is the relative tensor product
topology of the space Lp(µ ⊗ ν) of functions pth-integrable with respect to the
product measure µ ⊗ ν. The completion Lp(µ)⊗̂τLp(ν) may be identified with
any of the spaces Lp(µ ⊗ ν), Lp(µ, Lp(ν)) or Lp(ν, Lp(µ)) and in the case p = 1,
the tensor product topology τ is just the projective tensor product topology π,
[4, Example VIII.1.10].
In the main result of this work, Theorem 3.3, we show that for every 2 < p < ∞,

there is some vector measure m : E → Lp([0, 1]) whose Lp([0, 1])-semivariation
in Lp([0, 1]2) is infinite. We prove this by reducing the problem to determining
whether or not any continuous linear mapping from ℓ1 into ℓp is p-summing.
That this is false follows from a result of S. Kwapien [10, Theorem 7, 20] and
some standard Banach space arguments. The proof does not obviously give an
explicit example of a continuous linear map from ℓ1 into ℓp that is not p-summing
when 2 < p < ∞. It is a well-known consequence of Grothendieck’s inequality
that any continuous linear map from ℓ1 into ℓ2 is absolutely summing and so
p-summing for all 1 ≤ p < ∞.
Some background on semivariation in Lp-spaces is provided in Section 2. Many

of the basic facts given in Section 2 were proved by the authors prior to the
publication of [8], where they were needed for the representation of evolutions.
The connection between absolutely p-summing maps and semivariation in Lp-
spaces is explained in Section 3, where the main result Theorem 3.3 is stated.
The short argument that reduces the search for a non-p-summing map from ℓ1

into ℓp to Kwapien’s result is given in Lemma 4.1 in Section 4.

2. Semivariation

An example of an Lp([0, 1])-valued measure without finite Lp([0, 1])-semivaria-
tion in Lp([0, 1]2) was given in [9, Example 2.2], for any 1 ≤ p < 2, as a conse-
quence of Orlicz’s Theorem [11, Theorem 1.c.2]; see Example 2.3 below.
In the case p = 2, let X = L2(µ) and Y = L2(ν) for σ-finite measures µ

and ν. The inner product is denoted by ( · | · ). Then with (s ⊗ m)(E) given by
formula (1.1) and ‖xj‖2 = 1 for j = 1, . . . , n, we note that

‖(s ⊗ m)(E)‖22 =
(

(s ⊗ m)(E)|(s ⊗ m)(E)
)

=
n
∑

j,k=1

(xj |xk) ·
(

m(Ej ∩ E)
∣

∣m(Ek ∩ E)
)
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≤ KG sup

∣

∣

∣

∣

n
∑

k,j=1

sjtk
(

m(Ej ∩ E)
∣

∣m(Ek ∩ E)
)

∣

∣

∣

∣

= KG

(

‖m‖(E)
)2

.

Here the supremum on the right is over all complex numbers sj , tk with j, k =
1, . . . , n, such that |sj | ≤ 1 and |tk| ≤ 1 for all j, k = 1, . . . , n, KG is Grothen-
dieck’s constant [11, Theorem 2.b.5] and the bound is uniform in n = 1, 2, . . . .
The L2(µ)-semivariation in L2(µ ⊗ ν) of any L2(ν)-valued vector measure m is
therefore finite and (1.4) gives

‖m‖(E) ≤ βX(m)(E) ≤
√

KG‖m‖(E), E ∈ E .

We note this in the following statement.

Proposition 2.1 ([8, Proposition 4.5.3]). Let H be a Hilbert space and m : E →
L2(ν) a measure. Let ‖m‖ : E → [0,∞) be the semivariation of m in L2(ν).
Then the measure m has finite H-semivariation βH(m) in L2(ν, H). Moreover,
there exists a constant C > 0, independent of H and m, and a finite measure η
with 0 ≤ η ≤ ‖m‖ such that limη(E)→0 ‖m‖(E) = 0 and βH (m)(E) ≤ C‖m‖(E),

for all E ∈ E , and hence βH(m) is continuous in the sense of Dobrakov.

On the positive side, by [8, Proposition 4.5.1], for every 1 ≤ p < ∞ and any
Banach space X , an Lp(ν)-valued measure m with order bounded range has finite
X-semivariation in Lp(ν, X) and βX (m) is continuous.
Now consider the case p = ∞, every L∞(ν)-valued measure m automatically

has order bounded range because its range is bounded ([4, Corollary I.2.7]). So,
m admits σ-additive modulus |m| : E → L∞(ν)+, [12, Theorem 5]. The same
argument as in the proof of [8, Proposition 4.5.1] shows that

βX(m)(A) ≤
∥

∥|m|
∥

∥(A), A ∈ E

and hence, m has finite X-semivariation for every Banach space X . So it is the
oscillatory nature of vector measures that is of concern in this note.
Let Y be a Banach space and 1 ≤ p < ∞. A vector measure m : E → Y is said

to have finite p-variation if there exists C > 0 such that for every n = 1, 2, . . .
and every finite family of pairwise disjoint sets Ej , j = 1, . . . , n, the inequality
∑n

j=1 ‖m(Ej)‖
p
Y ≤ C holds.

According to the following observation, for any 1 ≤ p < ∞, the property
of having finite Lp(µ)-semivariation in Lp(µ ⊗ ν) is stronger than having finite
p-variation.

Proposition 2.2 ([8, Proposition 4.5.5]). Let 1 ≤ p < ∞ and let m : E → Lp(ν)
be a measure. Let F be a σ-algebra of subsets of a set Λ and µ : F → [0,∞)
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a finite measure for which F contains infinitely many, pairwise disjoint non-µ-null
sets. If the measure m has finite Lp(µ)-semivariation βLp(ν)(m) in Lp(µ ⊗ ν),
then m has finite p-variation.

We use this observation to construct, for 1 ≤ p < 2, an example of an Lp(ν)-
valued measure without finite Lp(µ)-semivariation in Lp(µ ⊗ ν).

Example 2.3. Let Y be an infinite-dimensional Banach space. If {λj}
∞
j=1 is

a sequence of positive numbers such that
∑∞

j=1 λ2j < ∞, then there exists an

unconditionally summable sequence {yj}
∞
j=1 in Y such that ‖yj‖ = λj , ([11, The-

orem 1.c.2]). Let 1 ≤ p < 2. We can choose {λj}
∞
j=1 such that

∑∞
j=1 λ2j < ∞

and
∑∞

j=1 λp
j = ∞. It follows that there exists an unconditionally summable

sequence {yj}
∞
j=1 in Y such that

∑∞
j=1 ‖yj‖

p = ∞. For Y = Lp(ν), the vec-

tor measure m : 2N → Y defined by m(E) =
∑

j∈E yj , E ⊆ N, therefore has

infinite p-variation, and so it has infinite Lp(µ)-semivariation in Lp(µ ⊗ ν) by
Proposition 2.2.

We show in Theorem 3.3 below, that for every 2 < p < ∞, there is some vector
measure m : E → Lp([0, 1]) whose Lp([0, 1])-semivariation in Lp([0, 1]2) is infinite.
Nevertheless, for 2 ≤ p < ∞, every vector measure m : E → Lp([0, 1]) does have
finite p-variation as will be shown in the following proposition, and therefore it is
not possible to adapt the arguments in Example 2.3.

Proposition 2.4. Let 2 ≤ p < ∞ and let ν be a σ-finite measure. Then every
vector measure m : E → Lp(ν) has finite p-variation.

Proof: According to [5, Corollary 10.7], every weak ℓ1-sequence is a strong
ℓp-sequence and there exists C > 0 such that





n
∑

j=1

‖xj‖
p
p





1

p

≤ C sup
‖x′‖q≤1

n
∑

j=1

|〈xj , x
′〉|,

for all {xj}
n
j=1 ⊂ Lp(ν) and all n = 1, 2, . . . . In particular, the bound





n
∑

j=1

∥

∥m(Ej)
∥

∥

p
p





1

p

≤ C sup
‖x′‖q≤1

n
∑

j=1

∣

∣〈m(Ej), x
′〉
∣

∣ ≤ C‖m‖(Σ) < ∞,

holds for all finite E-partitions E1, . . . , En of Σ. �



430 B. Jefferies, S. Okada

3. Absolutely p-summing maps and semivariation

Let X and Y be Banach spaces. Let 1 ≤ p < ∞. A continuous linear map
u : X → Y is called absolutely p-summing if there exists C > 0 such that

(3.1)





k
∑

j=1

∥

∥u(xj)
∥

∥

p
Y





1

p

≤ C sup
‖x′‖X′≤1





k
∑

j=1

∣

∣〈xj , x
′〉
∣

∣

p





1

p

for all xj ∈ X , j = 1, . . . , k and k = 1, 2, . . . . The set of all absolutely p-summing
maps from X into Y is denoted by Πp(X, Y ). An absolutely summing map
(for p = 1) is characterised by the fact that it maps unconditionally summable
sequences into absolutely summable sequences.
To see how p-summing maps relate to semivariation, let us start with the

following general result.

Lemma 3.1. LetM(2N, Y ) denote the vector space of all Y -valued vector mea-

sures on the σ-algebra 2N. Let τ be a cross norm on the tensor product X ⊗ Y
and assume that βX (m)(N) < ∞ for every m ∈ M(2N, Y ). Then there exists a
constant C > 0 such that

βX (m)(N) ≤ C‖m‖(N), m ∈ M(2N, Y ).

Proof: It is clear that the vector spaceM(2N, Y ) is complete in the norm ‖·‖sv :

m 7→ ‖m‖(N). Define another norm by ‖m‖bsv = βX(m)(N) for m ∈ M(2N, Y ).
By (1.4) this new norm ‖ · ‖bsv is stronger than ‖ · ‖sv. From this we can deduce

thatM(2N, Y ) is complete even in the new norm. Hence, it follows from the open
mapping theorem that these two norms ‖ · ‖sv and ‖ · ‖bsv are equivalent, which
completes the proof. �

Now, let n = 1, 2, . . . and suppose that Fn = (f1, . . . , fn) is a finite ordered
subset of Lp([0, 1]) with n elements. The norm of Lp([0, 1]) is denoted by ‖ · ‖p.
Set mFn

(A) =
∑

j∈A fj for every subset A of the finite set {1, . . . , n}. Then, this

Lp([0, 1])-valued vector measure mFn
satisfies

(3.2)
(

βLp(mFn
)
)

([0, 1]) = sup
‖xj‖p≤1

∥

∥

∥

∥

∥

∥

n
∑

j=1

xj ⊗ fj

∥

∥

∥

∥

∥

∥

Lp([0,1]2)

.

Here x⊗f is the element of Lp([0, 1]2) defined for functions x and f in Lp([0, 1]) by
the function (s, t) 7−→ x(s)f(t), for almost all s, t ∈ [0, 1]. If the Lp-semivariation
of every Lp-valued measure were finite in Lp([0, 1]2), then Lemma 3.1 would imply
that there exists C > 0 such that

(3.3)
(

βLp(mFn
)
)

([0, 1]) ≤ C sup
|aj |≤1

∥

∥

∥

∥

∥

∥

n
∑

j=1

ajfj

∥

∥

∥

∥

∥

∥

p
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for any finite set Fn ⊂ Lp([0, 1]) and n = 1, 2, . . . .
Let ℓ1n = Cn with the ℓ1-norm and then denote the standard basis vectors by

ej , j = 1, . . . , n. For any finite ordered subset Xn = (x1, . . . , xn) of the closed

unit ball of Lp([0, 1]) with n elements, let UXn
: ℓ1n → Lp([0, 1]) denote the linear

map such that UXn
(ej) = xj for j = 1, . . . , n.

For any finite ordered subset Fn = (f1, . . . , fn) of L
p([0, 1]) with n elements,

let FFn
(t) =

∑n
k=1 fk(t)ek ∈ ℓ1n for almost all t ∈ [0, 1]. Then the bound (3.3)

can be rewritten as

(3.4)

(∫ 1

0

∥

∥UXn
◦ FFn

(t)
∥

∥

p
p dt

)

1

p

≤ C sup
‖ξ‖ℓ∞≤1

∥

∥〈FFn
(·), ξ〉

∥

∥

p

for any choice of the finite n-tuples Xn,Fn and n = 1, 2, . . . .

Lemma 3.2. Suppose that the linear map u : ℓ1 → Lp([0, 1]) maps the closed
unit ball of ℓ1 into the closed unit ball of Lp([0, 1]). For each n = 1, 2, . . . , let
Xn =

(

u(e1), . . . , u(en)
)

with ej , j = 1, 2, . . . , being the standard basis vectors

of ℓ1.
Then there exists C > 0 (which depends on u) such that the bound (3.4)

holds for every finite ordered subset Fn of Lp([0, 1]) with n elements and every
n = 1, 2, . . . if and only if the map u is absolutely p-summing.

Proof: Suppose first that (3.4) holds for every finite subset Fn of L
p([0, 1]) with

n elements and every n = 1, 2, . . . . Let N = 1, 2, . . . and let yj , j = 1, . . . , N ,

be elements of ℓ1. For each n = 1, 2, . . . , denote the projection onto the first n
coordinates by Pn : ℓ

1 → ℓ1 and identify ℓ1n with the finite-dimensional subspace
Pn(ℓ

1) of ℓ1. Let Ej , j = 1, . . . , N , be pairwise disjoint intervals in [0, 1] with

positive length |Ej |, j = 1, . . . , N , such that
⋃N

j=1Ej = [0, 1]. Define FFn
:

[0, 1]→ ℓ1n by

(3.5) FFn
(t) =

N
∑

j=1

|Ej |
−1/p · χ

Ej
(t) · Pn(yj), t ∈ [0, 1].

Here, the n-tuple Fn = (f1, . . . , fn) of elements of L
p([0, 1]) consists of the func-

tions

fk =

N
∑

j=1

|Ej |
−1/p · χEj

(·) · yj,k, k = 1, . . . , n,

where yj =
(

yj,k

)∞
k=1 ∈ ℓ1. For each ξ ∈ ℓ∞, we have

∥

∥ 〈FFn
(·), ξ〉

∥

∥

p
p =

∫ 1

0

∣

∣ 〈FFn
(t), ξ〉

∣

∣

p
dt

=

N
∑

j=1

∣

∣

〈

Pn(yj), ξ
〉 ∣

∣

p
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and on the other hand,

∫ 1

0
‖UXn

◦ FFn
(t)‖p

p dt =

N
∑

j=1

‖u(Pn(yj))‖
p
p ,

so that by (3.4), we have

(3.6)

N
∑

j=1

∥

∥u(Pn(yj))
∥

∥

p
p ≤ Cp sup

‖ξ‖ℓ∞≤1

N
∑

j=1

∣

∣

〈

Pn(yj), ξ
〉 ∣

∣

p
.

For each j = 1, . . . , N , the vectors Pn(yj) converge to yj in ℓ1 as n → ∞. The
continuity of u ensures that we can take n → ∞ in the estimate (3.6) to obtain
the bound (3.1) for every N = 1, 2, . . . , so that u is absolutely p-summing.
Conversely, suppose that u : ℓ1 → Lp([0, 1]) is absolutely p-summing. By the

Pietsch Domination Theorem [5, Theorem 2.12], there exist C > 0 and a weak*-
regular Borel probability measure µ on the closed unit ball B(ℓ∞) of ℓ∞ such
that

‖u(x)‖p ≤ C

(

∫

B(ℓ∞)

∣

∣〈x, ξ〉
∣

∣

p
dµ(ξ)

) 1

p

, x ∈ ℓ1.

Then for any n-tuple Fn of elements of Lp([0, 1]), the operator UXn
being the

restriction of u to Pn(ℓ
1) gives

∫ 1

0
‖UXn

◦ FFn
(t)‖p

p dt =

∫ 1

0
‖u ◦ FFn

(t)‖p
p dt

≤ Cp
∫ 1

0

(

∫

B(ℓ∞)

∣

∣〈FFn
(t), ξ〉

∣

∣

p
dµ(ξ)

)

dt

= Cp
∫

B(ℓ∞)

(∫ 1

0

∣

∣〈FFn
(t), ξ〉

∣

∣

p
dt

)

dµ(ξ)

≤ Cp sup
‖ξ‖ℓ∞≤1

∥

∥〈FFn
(·), ξ〉

∥

∥

p
p

by Fubini’s theorem. It follows that the bound (3.4) is valid. �

For each 2 < p < ∞, once we know the existence of a continuous linear
map u : ℓ1 → Lp([0, 1]) which is not absolutely p-summing, then there exists
no constant C for which the bound (3.3) holds uniformly for any choice of Fn

and n = 1, 2, . . . . Then it follows that not every Lp-valued measure has finite
Lp-semivariation in Lp([0, 1]2).
The space ℓp embeds isometrically onto a closed subspace of Lp([0, 1]) by choos-

ing pairwise disjoint intervals Ej in [0, 1] with positive length |Ej |, j = 1, 2, . . . ,
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and mapping α = (αj)
∞
j=1 ∈ ℓp to the function

∑∞
j=1 αj |Ej |

−1/pχEj
. Therefore,

if 2 < p < ∞, the existence of a continuous linear map u : ℓ1 → ℓp which is
not absolutely p-summing also implies that not every Lp-valued measure has fi-
nite Lp-semivariation in Lp([0, 1]2). Moreover, such a measure m is constructed
explicitly in the following fashion. The construction is best motivated by the
discussion preceding Lemma 3.2.
Let 2 < p < ∞ and suppose that the continuous linear map u : ℓ1 → ℓp is not

absolutely p-summing. Choose a sequence {yj}
∞
j=1 in ℓ1 such that

(3.7)

∞
∑

j=1

∣

∣〈yj , ξ〉
∣

∣

p
< ∞, for every ξ ∈ ℓ∞,

but
∑∞

j=1

∥

∥u(yj)
∥

∥

p
ℓp = ∞. Choosing pairwise disjoint intervals Ej in [0, 1] with

positive length |Ej |, j = 1, 2, . . . , the function F : [0, 1] → ℓ1 is defined in the
same manner as in (3.5) by

(3.8) F (t) =
∞
∑

j=1

|Ej |
−1/p · χ

Ej
(t) · yj , t ∈ [0, 1].

Then

(3.9)

∫ 1

0

∣

∣〈F (t), ξ〉
∣

∣

p
dt =

∞
∑

j=1

∣

∣〈yj , ξ〉
∣

∣

p
,

that is, 〈F (·), ξ〉 ∈ Lp([0, 1]) for all ξ ∈ ℓ∞.
For each k = 1, 2, . . . , the evaluation functional δk at the k’th coordinate is

an element of (ℓ1)′ = ℓ∞, and set fk(t) = 〈F (t), δk〉 for each t ∈ [0, 1]. Then,
F (t) =

∑∞
k=1 fk(t)ek pointwise on [0, 1]. Let xk = u(ek) for each k = 1, 2, . . . .

Now u is continuous and linear, so
∑∞

k=1 fk(t)xk = u(F (t)) ∈ ℓp for all t ∈ [0, 1].
Furthermore,

∫ 1

0

∥

∥

∥

∥

∥

∞
∑

k=1

fk(t)xk

∥

∥

∥

∥

∥

p

ℓp

dt =

∫ 1

0

∥

∥u(F (t))
∥

∥

p
ℓp dt

=

∞
∑

j=1

∫

Ej

1

|Ej |

∥

∥u(yj)
∥

∥

p
ℓp dt

=

∞
∑

j=1

∥

∥u(yj)
∥

∥

p
ℓp =∞.
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Consequently, Fatou’s lemma gives

(3.10) lim inf
n→∞

∫ 1

0

∥

∥

∥

∥

∥

n
∑

k=1

fk(t)xk

∥

∥

∥

∥

∥

p

ℓp

dt =∞.

Next we claim that the sequence {fk}
∞
k=1 is unconditionally summable in

Lp([0, 1]). To this end, let p′ = p/(p− 1) and we shall show that

(3.11) sup
‖φ‖p′≤1

∞
∑

k=1

∣

∣〈fk, φ〉
∣

∣ ≤ sup
‖ξ‖ℓ∞≤1

∥

∥〈F (·), ξ〉
∥

∥

p < ∞.

Fix n ∈ N. Apply [4, Proposition I.1.11] to the Lp([0, 1])-valued vector measure

mn : A 7→
∑

k∈A fk on 2
{1,2,...,n}, in order to deduce that

(3.12) sup
‖φ‖p′≤1

n
∑

k=1

∣

∣〈fk, φ〉
∣

∣ = sup
|ǫk|≤1

∥

∥

∥

∥

∥

n
∑

k=1

ǫkfk

∥

∥

∥

∥

∥

p

.

Given scalars ǫk with |ǫk| ≤ 1 for k = 1, 2, . . . , n, since ‖
∑n

k=1 ǫkδk‖ℓ∞ ≤ 1, it

follows that
∥

∥

∑n
k=1 ǫkfk

∥

∥

p ≤ sup‖ξ‖ℓ∞≤1

∥

∥〈F (·), ξ〉
∥

∥

p. This and (3.12) estab-

lish the first inequality of (3.11). Now the linear map v : ξ 7→
(

〈yj , ξ〉
)∞
j=1 from

ℓ∞ into ℓp is continuous by the closed graph theorem. So, it follows from (3.9)
that sup‖ξ‖ℓ∞≤1

∥

∥〈F (·), ξ〉
∥

∥

p = ‖v‖ < ∞, which establishes (3.11). In particu-

lar,
∑∞

k=1

∣

∣〈fk, φ〉
∣

∣ < ∞ for every φ ∈ Lp′([0, 1]) =
(

Lp([0, 1])
)′
. The Bessaga-

Pelczynski theorem [3, Theorem V.8] implies that {fk}
∞
k=1 is unconditionally sum-

mable in Lp([0, 1]).

We can now define the vector measurem : 2N → Lp([0, 1]) bym(A) =
∑

k∈A fk
for every subset A of N. With ‖u‖ denoting the operator norm of u, we have,
from the definition of βℓp(m) and (3.10), that

βℓp(m)([0, 1]) ≥
1

‖u‖
sup
n∈N

(

∫ 1

0

∥

∥

∥

∥

∥

n
∑

k=1

fk(t)xk

∥

∥

∥

∥

∥

p

ℓp

dt

)1/p

=∞

because xk/‖u‖ belongs to the unit ball of ℓp. So, the Lp-semivariation of m in
Lp([0, 1]2) is also infinite.
The same argument will work for any σ-finite measures µ and ν for which Lp(µ)

and Lp(ν) are infinite-dimensional vector spaces, that is, they have infinitely many
essentially distinct non-null sets. We now state the main result of the paper.

Theorem 3.3. Let 2 < p < ∞ and let µ, ν be σ-finite measures for which
Lp(µ) and Lp(ν) are infinite-dimensional vector spaces. Then there exists a vector

measure m : 2N → Lp(µ) with infinite Lp(ν)-semivariation in Lp(µ ⊗ ν).
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Corollary 3.4. Let 2 < p < ∞ and let µ, ν be σ-finite measures for which
Lp(µ) and Lp(ν) are infinite-dimensional vector spaces. Then there exists a vector

measure m : 2N → Lp(ν) and a bounded function f : N → Lp(µ) such that the
sequence

{

f(k)⊗ m({k})
}∞

k=1 is unbounded in Lp(µ ⊗ ν).

The proof of these statements will follow from the preceding discussion once
we show that for 2 < p < ∞, not every continuous linear map from ℓ1 into ℓp is
p-summing.

4. A non-p-summing map from ℓ1 to ℓp for p > 2

Let L(X, Y ) denote the space of all continuous linear maps from a Banach
space X into a Banach space Y . Let 2 < p < ∞ be fixed throughout this section
and let p′ = p/(p − 1) as before.

Lemma 4.1. One has Πp(ℓ
1, ℓp) 6= L(ℓ1, ℓp).

Proof: We shall assume that Πp(ℓ
1, ℓp) = L(ℓ1, ℓp) and deduce that Πp(ℓ

∞, ℓp) =

L(ℓ∞, ℓp), so contradicting [10, Theorem 7, 20]. Hence, there exists u ∈ L(ℓ1, ℓp)
such that u is not absolutely p-summing and the proof of Theorem 3.3 is then
complete.

Let u ∈ L(ℓ∞, ℓp) and let v ∈ L(ℓp′ , ℓ∞). Then u ◦ v ∈ L(ℓp′ , ℓp). Because v

is necessarily σ(ℓp′ , ℓp)-σ(ℓ∞, ℓ1)-continuous, there exists w ∈ L(ℓ1, ℓp) such that
v = w′. By assumption, w ∈ Πp(ℓ

1, ℓp), and hence, v′ = w′′ ∈ Πp((ℓ
∞)′, ℓp) by [5,

Proposition 2.19]. Therefore, (u◦v)′ = v′◦u′ ∈ Πp(ℓ
p′ , ℓp), and [5, Corollary 5.22]

then implies that u ◦ v ∈ Πp(ℓ
p′ , ℓp), too. Since v can be any continuous linear

map from ℓp′ to ℓ∞, it follows from [5, Proposition 2.7] that u ∈ Πp(ℓ
∞, ℓp). This

contradicts [10, Theorem 7, 20], so the assumption that Πp(ℓ
1, ℓp) = L(ℓ1, ℓp)

must be false. �

Continuous linear maps from ℓ1 to ℓp only just fail to be p-summing. We have

Remark 4.2. It follows from [2, Corollary 24.6] that Πq(ℓ
1, ℓp) = L(ℓ1, ℓp) when-

ever q > p > 2. This observation may be useful for obtaining conditions for a
bounded Lp-valued function to be m-integrable in Lp for p > 2.
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