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A note on the structure of WUR Banach spaces

S.A. Argyros, S. Mercourakis

Abstract. We present an example of a Banach space E admitting an equivalent weakly
uniformly rotund norm and such that there is no Φ : E → c0(Γ), for any set Γ, linear,
one-to-one and bounded. This answers a problem posed by Fabian, Godefroy, Hájek and
Zizler. The space E is actually the dual space Y ∗ of a space Y which is a subspace of a
WCG space.
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Classification: 46B20, 46B26, 03E05

Introduction

Our motivation for the present work was two questions posed to us, in Paseky’s
conference (2004), by G. Godefroy and V. Zizler. Shortly after, we suspected
that one of the examples of our recent paper [A-Me] is a possible candidate for
answering both questions. Furthermore, discussing with S. Troyanski during his
visit in Athens, we realized that Zizler’s question is closely related to a problem
posed by M. Fabian, G. Godefroy, P. Hájek and V. Zizler [F-G-H-Z]. Thus our
goal is to show that the second example of [A-Me] answers negatively the following
two questions.

Q1. Let X be a Banach space with a WUR norm. Does there exist a bounded,
linear, one-to-one operator Φ : X → c0(Γ), for some set Γ?

Q2. Let X be a Banach space such that X is a subspace of a WCG and also
there exists a norm-one projection P : X∗∗ → X . Is then X a WCG
space?

The example from [A-Me] answering the aforementioned questions is a subspace
Y of a Banach space X with the following properties.

(i) The space X is WCG and it does not contain ℓ1.
(ii) Both spaces X and Y are duals, X∗∗ = X ⊕ ℓ2(Γ) and Y ∗∗ = Y ⊕ ℓ2(Γ).
In particular X∗∗ is WCG.

(iii) The space Y is not WCG and X/Y is reflexive.

Research partially supported by a grant of EPEAEK programme “Pythagoras”.
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The space X is of the form
(
∑∞

n=1⊕J(Tn)
)

2, where (Tn)n is the remarkable
Reznic̆enko sequence of trees. This is a sequence of trees with each Tn of height ω
and which satisfy a strong Baire property. The original construction of (Tn)n was
based on a transfinite (for ξ < ω1) recursive argument. In the present paper we
provide a new construction with the use of a coding function σ. Each Tn consists
of all σ-admissible sequences with first element the natural number n, ordered by
the initial segment inclusion. It is worth pointing out that the space X is also a
James tree space with T =

⋃∞
n=1 Tn, which shows that the WCG J(T ) spaces are

not hereditarily WCG. The following is the key property for our results.

Proposition. Let Y be the subspace of X mentioned before. Then there is no
Φ : Y ∗ → c0(Γ) linear, one-to-one and bounded.

This proposition in conjunction with the property that X∗∗ is Hilbert-generated
yields a negative answer to Q1. Let us recall that if E admits an equivalent
WUR norm, then E∗ is a subspace of a WCG ([F-H-Z]). In particular, if E is
isomorphic to Y ∗ for some Banach space Y , then Y could not contain ℓ1. This
actually shows that any example Y ∗ answering in negative Q1, should satisfy the
following properties. First ℓ1 does not embed in Y and second, Y ∗∗ is a non-WCG
subspace of a WCG Banach space. Namely the space Y must satisfy the basic
properties of the example presented here.

Reznic̆enko sequences of trees

We start with the construction of the sequence (Tn)n mentioned above. First
we fix a well ordering ≺ of the set R of real numbers.
Let {Iα : α < c}, with |Iα| = c for α < c, be a disjoint family of subsets of the

set R \N, where c denotes the cardinality of the continuum. We denote by L the
set of all sequences ~s = (s1, s2, . . . ) with the following properties:

(1) for every k ∈ N, sk = (t0, t1, . . . , tdk
), where t0 ∈ N, dk ≥ 0, ti ∈ R \ N

for 1 ≤ i ≤ dk, ti 6= tj for 1 ≤ i < j ≤ dk and
(2) sk ∩ sm = ∅ for k < m.

Fix a one-to-one mapping σ : L → [0, c), where [0, c) is the interval of all ordinals
smaller than c.

Definition 1. A finite sequence (t0, t1, . . . , td), where t0 ∈ N, d ≥ 1, ti ∈ R \ N

for 1 ≤ i ≤ d, is said to be σ-admissible if t0 ≺ t1 ≺ · · · ≺ td and for all
i = 1, 2, . . . , d, there exists ~si ∈ L such that (t0, t1, . . . , ti−1) ∈ ~si and ti ∈ Iσ(~si).

Define for every k ∈ N a partial order <k in R as follows:
If t, s ∈ R, then t <k s iff there exist a σ−admissible sequence (t0, t1, . . . , td)

with t0 = k and 0 ≤ i < j ≤ d such that t = ti and s = tj .
Set Tk = {t ∈ R \ N : k <k t} ∪ {k} for k ∈ N. Then the sequence of partially

ordered sets (Tk, <k), k ∈ N, has the properties of a sequence of Reznic̆enko
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trees (see also Definition 3.1 and Proposition 3.2 in [A-Me]). In fact we have the
following

Theorem 2. (i) For every k ∈ N, the partially ordered set (Tk, <k) is a tree of
height ω with root k.
(ii) If k1 6= k2 and Ii is a segment of Tki

, i = 1, 2, then |Ik1 ∩ Ik2 | ≤ 1.
(iii) For every non empty subset M of N and In initial segment of Tn, n ∈ M ,

such that In ∩ Im = ∅ for n 6= m, there exist uncountable many t ∈ R \ N such

that t ∈ Sn
max In

, for all n ∈ M , (where for t ∈ Tk we denote by Sk
t the set of all

immediate successors of t in the tree Tk).

Proof: (i) Let us observe that the definition of the σ-admissible sequences yields
that for any k ∈ N and every pair (k = t0, t1, . . . , td1), (k = s0, s1, . . . , sd2) of σ-
admissible sequences, there exists 0 ≤ i0 ≤ min{d1, d2} such that for all i ≤ i0
we have ti = si and the sets {ti0+1, . . . , td2}, {si0+1, . . . , sd2} are disjoint. This
shows that (Tk, <k) is a tree of height ω.
(ii) By (i), it is enough to show the property only for initial segments. Let k1 6= k2
and (k1, t1, . . . , td1), (k2, s1, . . . , sd2) be σ-admissible sequences. Assume that
|{k1, t1, . . . , td1}∩{k2, s1, . . . , sd2}| ≥ 2. Namely, there exist 1 ≤ i1 < i2 ≤ d1 and
1 ≤ j1 < j2 ≤ d2 such that {ti1 , ti2} = {sj1 , sj2}. Since ti1 ≺ ti2 and sj1 ≺ sj2
for the fixed well ordering ≺ of R, we conclude that ti1 = sj1 and ti2 = sj2 .
This yields a contradiction since the σ-admissible sequences (k1, t1, . . . , ti2−1),
(k2, s1, . . . , sj2−1) have common σ-extension although they are not disjoint.
(iii) It follows immediately from the definitions of the function σ and the σ-
admissible sequences. �

Any sequence of trees Tk, k ∈ N, satisfying the assertions (i) to (iii) of the
above theorem is called a sequence of Reznic̆enko trees. As it is shown in [A-
Me] (Proposition 3.3), any sequence of Reznic̆enko trees satisfies a sort of Baire
category property. To this end we need the following definition.

Definition 3. Let T be a tree. A subset D of T is said to be successively dense
in T if there exists t0 ∈ T such that for every t ∈ T with t0 ≤ t we haveD∩St 6= ∅.

Let us point out that if T has the additional property that for each t ∈ T
St 6= ∅, then every successively dense subset D of T must contain an infinite seg-
ment. Under the above terminology we have the following fundamental property
of Reznic̆enko sequences of trees.

Theorem 4. Let Tn, n ≥ 1 be any sequence of Reznic̆enko trees, so that each Tn

has as a root the number n ∈ N and T =
⋃∞

n=1 Tn. If Dn, n ≥ 1 is any sequence
of subsets of T with T =

⋃∞
n=1Dn, then there exists k0 ∈ N such that the set

Dk0 is successively dense in Tk0 . In particular, there exists t0 ∈ Sk0
k0
such that for

every t ∈ Tk0 with t0 ≤k0 t we have |Sk0
t ∩ Dk0 | ≥ ω1.

The proof follows the arguments of [A-Me, Proposition 3.3].
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Remarks. (1) It follows in particular from Theorem 4 that the set Dk0 ∩ Tk0
contains an infinite segment.
(2) An interesting modification, in a countable setting, of the concept of the

sequences of Reznic̆enko trees, is given in [A-M]. This modification is used there
for other purposes.

We briefly describe in the sequel the properties of the example from [A-Me,
Theorem 4.3], which we are interested in. Theorem 4.3 states that

Theorem 5. There exists a WCG Banach space X such that X∗∗ is also WCG

not containing ℓ1. Moreover there exists a closed subspace Y of X such that:

(a) the spaces Y and Y ∗∗ are not WCG;

(b) the quotient X/Y is a reflexive space.

The space X

We first recall the definition of a James space J(T ), for a given tree (T,≤).
So J(T ) is the completion of the linear space c00(T ) of finitely supported real
functions on T under the norm

‖x‖J(T ) = sup
{

n
∑

i=1

(

∑

t∈Si

x(t)2
)1/2

: S1, . . . , Sn are disjoint segments of (T,≤)
}

.

The space X in the above theorem is of the form (
∑∞

m=1⊕Xm)2, where Xm is
the James space J(Tm ×{m}) and Tm, m ≥ 1, is a sequence of Reznic̆enko trees.
Since each tree Tm is of height ω, each Xm has the following properties:
(i) Xm is a WCG, Xm

∼= Z∗
m and X∗

m/Zm
∼= ℓ2(Bm), where Zm is the closed

linear span of the set {e∗(t,m) : t ∈ Tm} in X∗
m and Bm the set of branches of the

tree Tm (clearly Zm is a WCG, since the set {e∗(t,m) : t ∈ Tm} ∪ {0} is weakly

compact in X∗
m).

Using properties of Dixmier’s projection Pm : Z
∗∗∗
m → Z∗

m we find that,
(ii) X∗∗

m
∼= Xm ⊕ ℓ2(Bm) (cf. [F-Z, Example 5.7, pp. 148 and Examples 6.49–

6.54, pp. 199–201]).
Set Z = (

∑∞
m=1⊕Zm)2. Then using properties (i) and (ii) (and Dixmier ’s

projection P : Z∗∗∗ → Z∗) we get that,
(iii) X ∼= Z∗, X∗/Z ∼= ℓ2(B) and X∗∗ ∼= X ⊕ ℓ2(B), where B =

⋃∞
m=1 Bm.

It follows in particular that X is complemented in X∗∗ by Dixmier’ s projection
P : X∗∗ → X .
We notice that, it follows for the definition of X and properties (i) and (iii)

that both of the spaces X and X∗∗ are WCG. These spaces have the additional
property to be Hilbert-generated. We recall that a Banach space Z is Hilbert-
generated if there exists a bounded linear operator from a Hilbert space onto a
dense subspace of Z (see [F-G-H-Z]).
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Lemma 6. The spaces X and X∗∗ are Hilbert generated.

Proof: It clearly follows from the definition of X and property (iii) that it is
enough to show that each James space Z = J(T ), where T is any tree of height ω,
is Hilbert-generated. Indeed, let T (n) be the n-th level of T , n ≥ 0. Then
T =

⋃∞
n=0 T (n) and each of the subspaces Zn = span{et : t ∈ T (n)} of Z is

isometric to the Hilbert space ℓ2
(

T (n)
)

. Since the union of
⋃∞

n=0 Zn generates Z,
it is easily verified that the operator F : ℓ2(T )→ Z defined by F (x) =

∑∞
n=0

xn

2n ,
where xn = x|T (n) for x ∈ ℓ2(T ) and n ≥ 0, makes Z a Hilbert-generated space.

�

The space Y

The space Y is defined as follows: for every t ∈ T =
⋃∞

m=1 Tm, set

Dt = {m ∈ N : t ∈ Tm} and xt =
∑

m∈Dt

1

2m/2
e(t,m).

Finally set, Y = span{xt : t ∈ T } ⊂ X . Then the following facts can be proved
(see [A-Me, Theorem 4.3]).
(1) There exists a family {ft : t ∈ T } ⊂ Y ∗ so that the family {(xt, ft) : t ∈ T }

is an M -basis for Y , where for t ∈ T and m ∈ Dt, ft = 2
m/2I∗(e∗(t,m)) and

I : Y → X is the natural embedding of Y into X .
(2) Let m ∈ N and b = {t1 < . . . < tn < . . . } be any branch of the tree Tm.

Then the series
∑∞

k=1 ftk is weak
∗ convergent in Y ∗.

Facts (1) and (2) together imply that Y is not WCG.

(3) Y ∗∗ ∼= Y ⊕ ℓ2(B).
Since Y is not a WCG, it clearly follows from fact (3) that neither Y ∗∗ is WCG.
The following lemma is the analogue for trees T of height ω of a known property

of the James tree space [J].

Lemma 7. The space Y is complemented in Y ∗∗ by a norm-one projection and

hence it is a dual space of a WCG space Y0 (having a shrinking M -basis).

Proof: Let P : X∗∗ ∼= X ⊕ ℓ2(B)→ X be Dixmier’s projection and y∗∗ ∈ Y ∗∗ ⊂
X∗∗. Then y∗∗ = y + w, where y ∈ X and w ∈ ℓ2(B). Since from fact (3),
Y ∗∗ ∼= Y ⊕ ℓ2(B) we find that X ∩ Y ∗∗ = Y , so y = y∗∗ − w ∈ X ∩ Y ∗∗ = Y .
Therefore the restriction of P on the subspace Y ∗∗ ofX∗∗ is a norm-one projection
of Y ∗∗ onto Y .
We define Y0 to be the closed linear span of the set {ft : t ∈ T } in the

space Y ∗. We shall show that Y ∗∗
0

∼= Y . So we define the operator F : Y → Y ∗
0

by F (y) = y|Y0 . It is clear that F is a well defined linear bounded (‖F (y)‖ ≤ ‖y‖)

operator and since the family {ft : t ∈ T } separates the points of Y it is also
one-to-one.
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Let g ∈ Y ∗
0 . Then by Hahn-Banach theorem there exist ĝ ∈ Y ∗∗ : ĝ|Y0 = g and

‖g‖ = ‖ĝ‖. Set P (ĝ) = y; then clearly y ∈ Y and

w = ĝ − y ∈ ℓ2(B).

So we have that for all t ∈ T ,

g(ft) = ĝ(ft) = (y + w)(ft) = y(ft) + w(ft) = y(ft),

because w(ft) = 0, for every t ∈ T (recall that, ft = 2
m/2I∗(e∗(t,m)), for m ∈ Dt).

It follows that g(y∗) = y(y∗) for all y∗ ∈ Y0, which implies that F (y) = g.
Therefore the operator F is surjective and thus an isomorphism between the
spaces Y and Y ∗

0 .
It is obvious from the above that the family {(ft, xt) : t ∈ T } is a shrinking

M -basis for Y0. �

Now we are able to prove the main result of this note.

Proposition 8. There is no bounded linear one-to-one operator F : Y ∗ → c0(Γ)
for any set Γ.

Proof: Assume, for the purpose of contradiction, that there exists a bounded
linear one-to-one operator F : Y ∗ → c0(Γ) for some set Γ. Let F ∗ : ℓ1(Γ)→ Y ∗∗

be the dual operator of F . Then we may assume without loss of generality that
F ∗(e∗γ) 6= 0 for all γ ∈ Γ and note that the set {F ∗(e∗γ) : γ ∈ Γ} ∪ {0} is a weak∗

compact (and weak∗ total) in Y ∗∗, so that for every sequence (γn)n of distinct
points of Γ we have that w∗ − limn→∞ F ∗(e∗γn

) = 0. By Lemma 7, the M -basis

{(ft, xt) : t ∈ T } of the predual Y0 of Y is shrinking, therefore the set

Ω=
{ ft

‖ft‖
: t∈ T

}

is weakly discrete and the set Ω∪{0} is weakly compact in Y0.

We consider the map

Φ : T × Γ→ R : Φ(t, γ) = F ∗(e∗γ)(ft) for (t, γ) ∈ T × Γ.

It follows that there exist partitions {Tδ : δ ∈ ∆} and {Γδ : δ ∈ ∆} of T and
Γ into countable sets, such that for every δ1, δ2 ∈ ∆ with δ1 6= δ2 and for every
t ∈ Tδ1 , γ ∈ Γδ2 , we have that Φ(t, γ) = 0 (see [F, Lemma 1.6.2] and [A-Me,
Proposition 2.1]).

We enumerate each Γδ and Tδ as {γ
δ
n : n ≥ 1}, {tδn : n ≥ 1} and for n, m ∈ N

we put

Dn,m = {t ∈ T : t = tδn for some δ ∈ ∆ and there exists γ ∈ Γδ : |Φ(t, γ)| ≥
1

m
}
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and

Γn,m =
{

γ ∈ Γ : γ = γδ
n for some δ ∈ ∆ and there exists t ∈ Tδ : |Φ(t, γ)| ≥

1

m

}

.

Set Dm =
⋃∞

n=1Dn,m̀ and Γm =
⋃∞

n=1 Γn,m for m ∈ N. Then we have
(a) T =

⋃∞
m=1Dm;

(b) if (t, γ) ∈ T × Γ and Φ(t, γ) 6= 0 then there exists m ∈ N such that
(t, γ) ∈ Dm × Γm and
(c) for every m ∈ N and x ∈ Dm ∪ Γm there exists y ∈ Dm ∪ Γm such that,

either x ∈ Dm, y ∈ Γm and |Φ(x, y)| ≥
1

m

or x ∈ Γm, y ∈ Dm and |Φ(y, x)| ≥
1

m
.

We get from fact (3) that for every γ ∈ Γ there exists a unique pair yγ ∈ Y
and wγ ∈ ℓ2(B) such that F ∗(e∗γ) = yγ + wγ .

Let m0 ∈ N be such that Dm0 is successively dense in the tree Tm0 (see
Theorem 4 and also (a)). Using this fact and also properties (a)–(c) above, we
can choose by induction sequences (γn)n ⊂ Γm0 and (tn)n ⊂ Tm0 such that:
(d) {t1 < . . . < tn < . . . } is an infinite segment of the tree Tm0 ;

(e) for every n ≥ 1, |Φ(tn+1, γn+1)| ≥
1

m0
and tn+1 /∈ b for all branches b ∈ B

with wγn
(b) 6= 0. Note that wγ ∈ ℓ2(B) thus the set {b ∈ B : wγ(b) 6= 0} is at

most countable.
Fact (2) and (d) above imply that the series

∑∞
k=1 ftk is weak

∗-convergent in
Y ∗, say x∗ = w∗ −

∑∞
k=1 ftk . It also follows from (e) that wγn

(x∗) = 0 for all
n ≥ 1. We shall show that the sequence (F ∗(e∗γn

))n is not weakly* null. Indeed

F ∗(e∗γn
)(x∗) = (wγn

+ yγn
)(x∗) = yγn

(x∗) = lim
ℓ→∞

ℓ
∑

k=1

ftk(yγn
)

= ftn(yγn
) = (wγn

+ yγn
)(ftn) = F ∗(e∗γn

)(ftn) = Φ(tn, γn).

Therefore

|F ∗(e∗γn
)(x∗)| = |Φ(tn, γn)| ≥

1

m0
for all n ≥ 1,

which proves the claim and so the proof of the theorem is complete. �

Remarks. (1) It is clear that the space Y obtained above provides a counterex-
ample to question Q2 stated in the introduction (cf. Lemma 7).
(2) It is well known that the property of a Banach space E to admit a bounded

linear one-to-one operator into some c0(Γ) is not a three space property (see [D-
G-Z, Chapter VI, Theorem 8.8.3 and Chapter VII, Example 4.9]). The space Y ∗
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from Theorem 8 also proves the same result. Indeed, according to assertion (ii) of
this theorem, Y ∗ admits no bounded linear one-to-one operator into some c0(Γ).
On the other hand it is easy to prove that Y ∗/Y0 ∼= ℓ2(B) and of course Y0 and
ℓ2(B) both admit such operators as WCG spaces.
(3) We note that the space Y ∗ as a dual of a weakly K-analytic space Y with

dimY ≤ c, admits a bounded linear one-to-one operator into the space c1(Σ),
Σ =the Baire space of irrationals, which is also weak∗ to pointwise continuous.
Thus Y ∗ admits a dual rotund norm (see [M] and also [D-G-Z, Chapter VI., The-
orem 6.7, Chapter VII, Theorem 1.16]). We also note that since Y ∗∗ is weakly
K-analytic, the space Y ∗ admits an equivalent locally uniformly rotund (LUR)
norm ||| · |||, the dual norm of which is also LUR. In particular ||| · ||| is a Fréchet
differentiable norm and Y ∗ is an Asplund space (see [D-G-Z, Chapter VII, Theo-
rem 2.7]).

Applications

We first recall that a norm ‖ · ‖ of a Banach space X is said to be weakly
uniformly rotund (WUR for sort) if w − lim(xn − yn) = 0 whenever ‖xn‖ =
‖yn‖ = 1 for all n and lim ‖xn + yn‖ = 2. Fabian, Hájek, and Zizler have proved
that if X is a WUR Banach space, then its dual X∗ is a subspace of a WCG.
More exactly, they proved that the space X admits an equivalent WUR norm if
and only if the bidual unit ball BX∗∗ of X∗∗ in its weak* topology is a uniform
Eberlein compact space ([F-H-Z]). The following result is an easy consequence of
the theorem of Fabian, Hájek and Zizler.

Corollary 9. Let E be a Banach space such that E∗ is a subspace of a Hilbert

generated F . Then E admits a WUR renorming.

Proof: We simply observe that (BE∗∗ , w∗) is a continuous image of a uniform
Eberlein compact space (i.e., of the ball of (BF ∗ , w∗) of F ∗), hence a well-known
result of Benyamini, Rudin andWage yields that the space (BE∗∗ , w∗) is a uniform
Eberlein compact ([B-R-W]). Now by the above mentioned result of Fabian, Hájek
and Zizler we get the conclusion. �

Summing up all the previous results, we get a negative answer to the problem of
Fabian, Godefroy, Hájek and Zizler mentioned in the introduction as question Q1.

Theorem 10. There exists a WUR renormable Banach space E that does not
admit any bounded, linear, one-to-one operator into some c0(Γ).

Proof: Set E = Y ∗, where Y is the space of Proposition 8, so there is no
bounded, linear, one-to-one operator from E to c0(Γ). On the other hand, E

∗ =
Y ∗∗ is a subspace of the Hilbert generated space X∗∗ (see Lemma 6) and hence,
by the above corollary, E admits a WUR renorming. The proof of the theorem is
completed. �

The following describes a peculiar property of James tree spaces.
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Proposition 11. Let T be a tree. Then the following are equivalent.

(i) J(T ) is weakly countably determined.
(ii) There exists a sequence (An)n∈N such that each An is an antichain of T
and T =

⋃∞
n=1An.

(iii) J(T ) is Hilbert generated (hence it is WCG).

Proof: (i)⇒(ii) Let us observe that every branch b of T is at most countable
(otherwise the ordinal ω1 will be subset of BJ(T )∗ yielding a contradiction) and

moreover the set
D = {S∗ : S is a segment of T }

is a w*-compact subset of BJ(T )∗ . HenceD is a Gulko compact subset of Σ{0, 1}
T .

Clearly the adequate closure of D,

D̂ = {A ⊆ T : ∃S ∈ D with A ⊆ S}

remains Gulko compact. This follows from Theorem 3.6 [M]. Theorem 4.2 of [L-S]
yields that T =

⋃∞
n=1An with each An an antichain of T .

(ii)⇒(iii) As we have mentioned in Lemma 6, for A antichain of T , the space
span{et : t ∈ A} is isometric to ℓ2(A). The result follows from arguments similar
to the proof of Lemma 6.

(iii)⇒(i) Obvious. �

Remarks. It follows from the above proposition that the notions Hilbert-gene-
rated, WCG, weakly K-analytic and WCD coincide within the class of James tree
spaces. However WCG J(T ) are not necessarily hereditarily WCG. Indeed, as we
have mentioned in the introduction, the space X in this paper is a J(T ) space
and its subspace Y is not WCG.

We conclude with the following open questions for a Banach space E.
(1) Assume that E is a subspace of a WCG Banach space F and that E∗ admits
a bounded, linear, one-to-one operator into some c0(Γ). Is then E a WCG? The
following special cases are important:
(a) F = E∗∗. This is a well-known open problem posed by Johnson and

Lindenstrauss [J-L] (see also [D-G-Z, Problem VI.4] and [Z, Problem 9]).
(b) F has an unconditional basis. Note that if E itself has an unconditional

basis, then by a result of Johnson the answer is positive (see [A-Me]).
(c) F = L1(µ) for some finite measure µ.
(d) E = X∗ for some WCG Banach space X .

(2) Assume that E is a WCG, so that for every closed linear subspace X of E, the
space X∗ admits a bounded, linear, one-to-one operator into some c0(Γ). Is then
E hereditarily WCG? This question is still of interest with the further assumption
that ℓ1 does not embed into E.
It is clear that a positive answer to the first question will provide a positive

answer to the second question.
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