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On the range of a closed operator

in an L1-space of vector-valued functions

Ryotaro Sato

Abstract. Let X be a reflexive Banach space and A be a closed operator in an L1-
space of X-valued functions. Then we characterize the range R(A) of A as follows. Let
0 6= λn ∈ ρ(A) for all 1 ≤ n < ∞, where ρ(A) denotes the resolvent set of A, and assume
that limn→∞ λn = 0 and supn≥1 ‖λn(λn−A)−1‖ < ∞. Furthermore, assume that there

exists λ∞ ∈ ρ(A) such that ‖λ∞(λ∞ − A)−1‖ ≤ 1. Then f ∈ R(A) is equivalent to
supn≥1 ‖(λn −A)−1f‖1 < ∞. This generalizes Shaw’s result for scalar-valued functions.

Keywords: reflexive Banach space, L1-space of vector-valued functions, closed operator,
resolvent set, range and domain, linear contraction, C0-semigroup, strongly continuous
cosine family of operators

Classification: Primary 47A35; Secondary 47A05, 47D06, 47D09

1. Introduction

Let A be a (bounded or unbounded) closed operator in a Banach space Y with
range R(A) and domain D(A). By assuming that the resolvent set ρ(A) of A
includes a countable set {λn : n ≥ 1}, with λn 6= 0 for all n ≥ 1, such that
limn→∞ λn = 0 and supn≥1 ‖λn(λn − A)−1‖ < ∞, it was shown in [11] that the
obviously necessary condition

sup
n≥1

‖(λn − A)−1x‖ < ∞

is sufficient for an element x of Y to be in the range R(A) of A when Y is reflexive.
This can be regarded as a generalization of a result of Browder [2]; motivated by
a result of Gottschalk and Hedlund (cf. Theorem 14.11 in [5]), he studied the
problem of finding a necessary and sufficient condition for an element x of a
Banach space Y to be in the range of T − I when T is power-bounded on Y , and
proved that the obviously necessary condition

(∗) sup
n≥1

∥

∥

∥

∥

n−1
∑

k=0

T kx

∥

∥

∥

∥

< ∞

is sufficient when Y is reflexive.
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It was shown in [8] that also for T a contraction of L1(µ) condition (∗) implies
x ∈ R(T − I), and in [6] an analogue for semigroups of contractions in L1(µ)
was proved. A unified treatment of these two results was given in [11]. The
problem whether in L1(µ) the norm condition ‖T ‖ ≤ 1 can be replaced by power-
boundedness is still unresolved; a partial answer was given in [1].

In this paper we treat the case of operators in the space L1((Ω,B, µ);X) of
vector-valued norm-integrable functions on a σ-finite measure space (Ω,B, µ),
with values in a reflexive Banach space X . The main result (Theorem 1) is the
vector-valued version of [11]. The applications extend accordingly the results of
[8], [6] and [11].

Let (X, ‖ · ‖X) be a reflexive Banach space, and (Ω,B, µ) be a σ-finite measure
space. For 1 ≤ p ≤ ∞, let Lp(Ω;X) = Lp((Ω,B, µ);X) denote the usual Banach
space of all X-valued strongly measurable functions f on Ω with the norm

‖f‖p :=

(
∫

‖f(ω)‖p
X dµ(ω)

)1/p

< ∞ if 1 ≤ p < ∞,

‖f‖∞ := ess sup{‖f(ω)‖X : ω ∈ Ω} < ∞ if p =∞.

We consider a closed operator A in L1(Ω;X) with range R(A) and domain
D(A). We assume that the resolvent set ρ(A) of A includes a countable set {λn :
n ≥ 1}, with λn 6= 0 for all n ≥ 1, such that limn→∞ λn = 0 and supn≥1 ‖λn(λn−

A)−1‖ < ∞. Then we prove that supn≥1 ‖(λn − A)−1f‖1 < ∞ implies f ∈
R(A), under the additional hypothesis that there exists λ∞ ∈ ρ(A) such that
‖λ∞(λ∞ − A)−1‖ ≤ 1. It would be interesting to ask whether this implication
holds without the additional hypothesis. Concerning the problem the author
would like to note that Assani [1] considered a power-bounded linear operator T
on L1 of scalar-valued functions, and under the hypothesis that

(∗∗) lim
n→∞

hn = 0 a.e. implies lim
n→∞

Thn = 0 a.e.,

he proved that supn≥1 ‖
∑n

k=1 T kf‖1 < ∞ is equivalent to f ∈ R(T − I). It
seems to the author that it is an open problem to prove this equivalence relation
without assuming condition (∗∗). (See also [10], where similar results are proved
for vector-valued functions.)

As applications of the result we characterize the range R(A) of A, where A is
the generator of a discrete semigroup {T n : n ≥ 0}, or a C0-semigroup {T (t) :
t ≥ 0}, or a strongly continuous cosine family {C(t) : −∞ < t < ∞} of linear
contractions on L1(Ω;X). The results obtained below generalize Shaw’s results
(see [11, Corollaries 4, 6, and 8]) for scalar-valued functions. See also Lin and
Sine [8], Krengel and Lin [6] for related topics.
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2. The range of a closed operator in L1(Ω;X)

The following theorem is our main result.

Theorem 1 (cf. Theorem 2 of Shaw [11]). Let X be a reflexive Banach space,
and A be a closed operator in L1(Ω;X) with domain D(A) and range R(A). Let
ρ(A) denote the resolvent set of A, and assume that 0 6= λn ∈ ρ(A) for all n ≥ 1
and limn→∞ λn = 0. If M := supn≥1 ‖λn(λn − A)−1‖ < ∞, and there exists

λ∞ ∈ ρ(A) such that ‖λ∞(λ∞ − A)−1‖ ≤ 1, then the following conditions are
equivalent for f ∈ L1(Ω;X).

(I) supn≥1 ‖(λn − A)−1f‖1 < ∞.
(II) f ∈ R(A).

To prove this theorem we need the following lemma, which may be regarded as
a generalization of the Yosida-Hewitt theorem on vector-measures (see [3, p. 30,
Theorem I.5.8]).

Lemma 1. Let X be a reflexive Banach space, and let ℓ ∈ L∞(Ω;X
∗)∗

(= L1(Ω;X)
∗∗). Then there exist unique ℓc and ℓp in L∞(Ω;X

∗)∗ such that

(a) ℓ = ℓc + ℓp, and ‖ℓ‖ = ‖ℓc‖+ ‖ℓp‖;
(b) there exists g ∈ L1(Ω;X) with

(1) ℓc(f) =

∫

Ω
〈g(ω), f∗(ω)〉 dµ(ω) for all f∗ ∈ L∞(Ω;X

∗);

(c) if we define a scalar-valued function Gx∗ on B for each x∗ ∈ X∗ by

(2) Gx∗(B) := ℓp(χB(·)x
∗) (B ∈ B),

then Gx∗ is a purely finitely additive measure on B, i.e., there is no (count-
ably additive) measure λ on B satisfying 0 ≤ λ(B) ≤ |Gx∗ |(B) for all
B ∈ B, where |Gx∗ | denotes the variation of Gx∗ (cf. [3, p. 2]).

Proof: For B ∈ B, define a linear functional F (B) on X∗ by

(3) F (B)(x∗) := ℓ(χB(·)x
∗) (x∗ ∈ X∗).

Since |F (B)(x∗)| ≤ ‖ℓ‖‖x∗‖, it follows that ‖F (B)‖ ≤ ‖ℓ‖. Thus we may regard
F (B) as an element of X∗∗ = X , and hence we can write

(4) 〈F (B), x∗〉 = ℓ(χB(·)x
∗) (B ∈ B, x∗ ∈ X∗).

Clearly, F : B → X is finitely additive. To see that F is a finitely additive
vector-measure of bounded variation, let {B1, . . . , Bn} be a finite measurable
decomposition of Ω, and x∗j ∈ X∗(j = 1, . . . , n) be such that ‖x∗j‖ ≤ 1. Then

∣

∣

∣

∣

n
∑

j=1

〈F (Bj), x∗j 〉

∣

∣

∣

∣

=

∣

∣

∣

∣

ℓ

( n
∑

j=1

χBj
(·)x∗j

)∣

∣

∣

∣

≤ ‖ℓ‖ ·

∥

∥

∥

∥

n
∑

j=1

χBj
(·)x∗j

∥

∥

∥

∥

L∞(Ω;X∗)
≤ ‖ℓ‖,
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so that
∑n

j=1 ‖F (Bj)‖ ≤ ‖ℓ‖. Therefore, F is of bounded variation. Let |F |

denote the variation of F . Then, since |F |(Ω) ≤ ‖ℓ‖, it follows from Corollary I.5.3
of [3] that F is strongly additive; and hence by the Yosida-Hewitt theorem (cf.
[3, p. 30, Theorem I.5.8]), there exist unique strongly additive X-valued measures
Fc and Fp on B (which are of bounded variation) such that

(i) Fc is countably additive;
(ii) for each x∗ ∈ X∗, x∗Fp is purely finitely additive on B;
(iii) F = Fc + Fp ;
(iv) Fc and Fp are mutually singular, i.e., for each ǫ > 0 there exists E ∈ B

such that |Fc|(Ω \ E) + |Fp|(E) < ǫ;
(v) |F | = |Fc|+ |Fp|.

Since X has the Radon-Nikodym property (cf. [3, p. 82, Corollary III.3.4]),
there exists g ∈ L1(Ω;X) such that Fc(B) =

∫

B g dµ for all B ∈ B. Using this g,
we define a linear functional ℓc on L∞(Ω;X

∗) by

ℓc(f) :=

∫

Ω
〈g(ω), f∗(ω)〉 dµ(ω) (f∗ ∈ L∞(Ω;X

∗)).

It is clear that ℓc ∈ L∞(Ω;X
∗)∗ and ‖ℓc‖ = ‖g‖1. We then put

ℓp := ℓ − ℓc,

so that ℓp ∈ L∞(Ω;X
∗)∗ and ℓ = ℓc + ℓp. Let x∗ ∈ X∗ and B ∈ B. Then, by (2)

and (3),

Gx∗(B) = ℓp(χB(·)x
∗) = (ℓ − ℓc)(χB(·)x

∗) = ℓ(χB(·)x
∗)− ℓc(χB(·)x

∗)

= 〈F (B), x∗〉 − 〈Fc(B), x∗〉 = 〈Fp(B), x∗〉,

which implies that x∗Fp = Gx∗ on B for each x∗ ∈ X∗. Thus, Gx∗ is purely
finitely additive on B by (ii).
Next, we prove that ‖ℓ‖ = ‖ℓc‖ + ‖ℓp‖. To do this, let ǫ > 0. Then, by (iv)

there exists E ∈ B such that

(5) |Fc|(Ω \ E) + |Fp|(E) < ǫ.

Since the set of all countably X∗-valued functions in L∞(Ω;X
∗) is a dense subset

of L∞(Ω;X
∗), there exists f∗

1 ∈ L∞(Ω;X
∗) of the form

f∗
1 =

∞
∑

n=1

χBn
(·)x∗n,

where x∗n ∈ X∗, ‖x∗n‖ ≤ 1, and {Bn : n ≥ 1} is a countable measurable decompo-
sition of Ω, such that

(6) |ℓp(f
∗
1 )| > ‖ℓp‖ − ǫ.
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Write En = E ∩ (
⋃n

j=1Bj). It follows that En ↑ E as n → ∞, and

|Fc|(Ω \ E) =

∫

Ω\E
‖g(ω)‖X dµ(ω)

= lim
n→∞

∫

Ω\En

‖g(ω)‖X dµ(ω) = lim
n→∞

|Fc|(Ω \ En).

Hence, we can choose EN satisfying (5) with EN in place of E. Then we can
choose f∗

2 ∈ L∞(Ω;X
∗) of the form

f∗
2 =

∞
∑

j=1

χDj
(·)y∗j ,

where y∗j ∈ X∗, ‖y∗j‖ ≤ 1, and {Dj : j ≥ 1} is a countable measurable decompo-

sition of the set EN , such that

(7) |ℓc(f
∗
2 )| =

∣

∣

∣

∣

∫

EN

〈g(ω), f∗
2 (ω)〉 dµ(ω)

∣

∣

∣

∣

>

∫

EN

‖g(ω)‖X dµ(ω)− ǫ.

Lastly, define an X∗-valued function f∗ on Ω by

f∗(ω) =

{

f∗
1 (ω) if ω ∈ Ω \ EN ,

f∗
2 (ω) if ω ∈ EN .

It is clear that f∗ ∈ L∞(Ω;X
∗) and ‖f∗‖∞ ≤ 1. Furthermore, by (5) with EN

in place of E, (6) and (7),

|ℓ(f∗)| = |ℓc(f
∗
2 ) + ℓp(f

∗
1 ) + ℓc(χΩ\EN

f∗
1 ) + ℓp(f

∗
2 )− ℓp(χEN

f∗
1 )|

>

(
∫

EN

‖g(ω)‖X dµ(ω)− ǫ

)

+ (‖ℓp‖ − ǫ)− |ℓc(χΩ\EN
f∗
1 )|

− |ℓp(f
∗
2 )| − |ℓp(χEN

f∗)|

> (‖ℓc‖ − 2ǫ) + (‖ℓp‖ − ǫ)− ǫ − ǫ − ǫ = ‖ℓc‖+ ‖ℓp‖ − 6ǫ.

Since ǫ was arbitrary, this proves ‖ℓ‖ ≥ ‖ℓc‖+ ‖ℓp‖. Consequently, ‖ℓ‖ = ‖ℓc‖ +
‖ℓp‖.
The uniqueness of the decomposition ℓ = ℓc + ℓp follows from the uniqueness

of the decomposition F = Fc + Fp, and this completes the proof. �

Proof of Theorem 1: (I) ⇒ (II). We may assume here that λ∞ 6= 0, because
λ∞ = 0 implies R(A) = L1(Ω;X). Since {(λn − A)−1f : n ≥ 1} is a bounded
subset of the dual space of L∞(Ω;X

∗), it is relatively compact with respect to
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the weak∗-topology. It follows that there exists η ∈ L1(Ω;X)
∗∗ which is a weak∗-

cluster point of the sequence {(λn − A)−1f}∞n=1.
Let u ∈ L∞(Ω;X

∗) and 0 6= λ ∈ ρ(A). Then there exists a subsequence
{nj}

∞
j=1 of the sequence {n}

∞
n=1 such that

〈(λ(λ − A)−1)∗∗η, u〉 = 〈η, (λ(λ − A)−1)∗u〉

= lim
j→∞

〈(λnj − A)−1f, (λ(λ − A)−1)∗u〉

= lim
j→∞

〈λ(λ − A)−1(λnj − A)−1f, u〉

= lim
j→∞

λ

λ − λnj

· 〈(λnj − A)−1f − (λ − A)−1f, u〉

= 〈η, u〉 − 〈(λ − A)−1f, u〉,

where the last but one equality is due to the resolvent equation. Consequently,
we obtain that

(8) (λ(λ − A)−1)∗∗η = η − (λ − A)−1f (λ ∈ ρ(A), λ 6= 0).

Here, we apply Lemma 1 for η as follows. By Lemma 1, there exist unique ηc and
ηp in L1(Ω;X)

∗∗ such that

(i) there exists g ∈ L1(Ω;X) with

ηc(u) =

∫

Ω
〈g(ω), u∗(ω)〉 dµ(ω) (u ∈ L∞(Ω;X

∗));

(ii) if we define a scalar-valued function Gx∗ on B for each x∗ ∈ X∗ by

Gx∗(B) := ηp(χB(·)x
∗) (B ∈ B),

then Gx∗ is a purely finitely additive measure on B;
(iii) η = ηc + ηp, and ‖η‖ = ‖ηc‖+ ‖ηp‖.

By (i) we may identify ηc with g. Then, putting λ = λ∞, we have by (8)

(λ∞(λ∞ − A)−1)∗∗η = g + ηp − (λ∞ − A)−1f.

On the other hand, we also have

(λ∞(λ∞ − A)−1)∗∗η = (λ∞(λ∞ − A)−1)∗∗(g + ηp)

= λ∞(λ∞ − A)−1g + (λ∞(λ∞ − A)−1)∗∗ηp,
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whence

(9) (λ∞(λ∞ − A)−1)∗∗ηp = ηp + g − (λ∞ − A)−1f − λ∞(λ∞ − A)−1g.

Since ‖(λ∞(λ∞ − A)−1)∗∗‖ = ‖λ∞(λ∞ − A)−1‖ ≤ 1 by hypothesis, it follows
that

‖ηp‖ ≥ ‖(λ∞(λ∞ − A)−1)∗∗ηp‖ = ‖ηp + g − (λ∞ − A)−1f − λ∞(λ∞ − A)−1g‖.

Here we notice that g − (λ1 − A)−1f − λ1(λ1 − A)−1g is a function in L1(Ω;X)
and ηp is an element of L1(Ω;X)

∗∗ satisfying condition (ii). Thus by Lemma 1
we have

‖ηp‖ = ‖ηp‖+ ‖g − (λ1 − A)−1f − λ1(λ1 − A)−1g‖1,

which implies
g = (λ1 − A)−1f + λ1(λ1 − A)−1g.

Consequently, g ∈ D(A) and (λ1 − A)g = f + λ1g, so that f = A(−g) ∈ R(A).

(II) ⇒ (I). If f = Ag for some g ∈ L1(Ω;X), then

(λn − A)−1f = (λn − A)−1Ag = A(λn − A)−1g = λn(λn − A)−1g − g,

and thus ‖(λn − A)−1f‖1 ≤ ‖λn(λn − A)−1‖‖g‖1 + ‖g‖1 ≤ (M + 1)‖g‖1 for all
n ≥ 1.
This completes the proof of Theorem 1. �

Using the argument of the above proof we can prove the following proposition,
which is of independent interest in view of the results of [4] and [12].

Proposition 1. Let X be a reflexive Banach space, and A be a closed operator
in L1(Ω;X) with domain D(A) and range R(A). Suppose there exists λ ∈ ρ(A)
such that ‖λ(λ − A)−1‖ ≤ 1. Then A(U ∩ D(A)) is a closed subset of L1(Ω;X),
where U is the closed unit ball of L1(Ω;X), i.e., U = {f ∈ L1(Ω;X) : ‖f‖1 ≤ 1}.

Proof: Let fn ∈ U ∩ D(A), n = 1, 2, . . . , and f ∈ L1(Ω;X) be such that
limn→∞ ‖Afn − f‖1 = 0. We must prove that f ∈ A(U ∩ D(A)). To do this, let
η ∈ L1(Ω;X)

∗∗ be a weak∗-cluster point of the sequence {fn}
∞
n=1(⊂ L1(Ω;X)

∗∗).
Then, for u ∈ L∞(Ω;X

∗) there exists a subsequence {nj}
∞
j=1 of the sequence

{n}∞n=1 such that

〈(λ(λ − A)−1)∗∗η, u〉 = 〈η, (λ(λ − A)−1)∗u〉 = lim
j→∞

〈fnj , (λ(λ − A)−1)∗u〉

= lim
j→∞

〈λ(λ−A)−1fnj , u〉= lim
j→∞

〈(I +A(λ−A)−1)fnj , u〉

= lim
j→∞

〈fnj + (λ − A)−1Afnj , u〉 = 〈η + (λ − A)−1f, u〉.
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It follows that (λ(λ − A)−1)∗∗η = η + (λ − A)−1f . Thus, as in the proof of
(I) ⇒ (II) of Theorem 1, letting η = ηc + ηp and identifying ηc with a function g
in L1(Ω;X), we see that

λ(λ − A)−1g + (λ(λ − A)−1)∗∗ηp = g + ηp + (λ − A)−1f,

so that
(λ(λ − A)−1)∗∗ηp = ηp + g + (λ − A)−1f − λ(λ − A)−1g.

By this and the fact ‖(λ(λ − A)−1)∗∗‖ ≤ 1, it follows from Lemma 1 that

g + (λ − A)−1f − λ(λ − A)−1g = 0.

Hence (λ − A)g + f − λg = 0, and we see that f = Ag with g ∈ D(A) and
‖g‖1 ≤ ‖η‖ ≤ 1. This completes the proof. �

3. Applications

Let T be a bounded linear operator on L1(Ω;X). For γ 6= −1, −2, . . . we
define the Cesàro means of order γ (or γ-Cesàro means) C

γ
n(T ) of the discrete

semigroup {T n : n ≥ 0} by

(10) Cγ
n(T ) :=

1

σγ
n

n
∑

k=0

σγ−1
n−kT k (n ≥ 0),

where σβ
n := (β + 1)(β + 2) . . . (β + n)/n! for n ≥ 1, and σβ

0 := 1 (cf. [15,

Chapter 3]). Among them are the following two particular means: C0n(T ) = T n

and C1n(T ) = (n + 1)
−1∑n

k=0 T k. As is well-known, only the case γ > −1 is of
interest. The Abel means of {T n : n ≥ 0} are the operators

(11) Ar(T ) := (1− r)

∞
∑

n=0

rnT n

defined for 0 < r < 1/r(T ), where r(T ) := limn→∞ ‖T n‖1/n denotes the spectral
radius of T . It is known (cf. [15, Chapter 3]) that if r(T ) ≤ 1 and 0 < γ < β < ∞,
then

(12) sup
n≥0

‖T nf‖1 ≥ sup
n≥0

‖Cγ
n(T )f‖1 ≥ sup

n≥0
‖Cβ

n (T )f‖1 ≥ sup
0<r<1

‖Ar(T )f‖1

for every f ∈ L1(Ω;X).
The first application of Theorem 1 is the following



On the range of a closed operator in an L1-space of vector-valued functions 357

Theorem 2 (cf. Theorem 7 of [8]). Let X be a reflexive Banach space, and T
be a linear contraction on L1(Ω;X). Assume that α ≥ 1. Then the following
conditions are equivalent for f ∈ L1(Ω;X).

(I) supn≥0 n‖Cα
n (T )f‖1 < ∞.

(II) sup0<r<1 ‖
∑∞

n=0 rnT nf‖1 < ∞.

(III) f ∈ R(T − I).

Proof: (I) ⇒ (II). Since

nCα
n (T )f =

n

σα
n

n
∑

k=0

σα−1
n−kT kf and

σα
n

σα−1
n

=
α+ n

α
∼

n

α
(n → ∞),

n‖Cα
n (T )f‖1 = O(1) (n → ∞) is equivalent to

C := sup
n≥0

‖
1

σα−1
n

n
∑

k=0

σα−1
n−kT kf‖1 < ∞.

Then, for 0 < r < 1 we have

∞
∑

n=0

rnT nf = (1− r)α(1− r)−α
∞
∑

n=0

rnT nf

= (1− r)α
( ∞

∑

n=0

σα−1
n rn

)( ∞
∑

n=0

rnT nf

)

= (1− r)α
∞
∑

n=0

σα−1
n rn

(

1

σα−1
n

n
∑

k=0

σα−1
n−kT kf

)

,

so that
∥

∥

∥

∥

∞
∑

n=0

rnT nf

∥

∥

∥

∥

1
≤ (1− r)α

∞
∑

n=0

σα−1
n rn · C = C.

(II) ⇒ (III). Putting A = T − I, we have for λ > 0

(λ − A)−1 = (λ+ 1− T )−1 =
1

λ+ 1

∞
∑

n=0

(
1

λ+ 1
)nT n,

whence ‖T ‖ ≤ 1 implies

‖λ(λ − A)−1‖ ≤
λ

λ+ 1

∞
∑

n=0

(
1

λ + 1
)n = 1.
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Furthermore, we get from (II) that

sup
λ>0

‖(λ − A)−1f‖1 = sup
λ>0

∥

∥

∥

∥

1

λ+ 1

∞
∑

n=0

(
1

λ+ 1
)nT nf

∥

∥

∥

∥

1

≤ sup
λ>0

∥

∥

∥

∥

∞
∑

n=0

(
1

λ + 1
)nT nf

∥

∥

∥

∥

1
< ∞.

Hence, f ∈ R(A) = R(T − I) by Theorem 1.

(III) ⇒ (I). Suppose f = (T − I)g for some g ∈ L1(Ω;X). Using the funda-

mental relation Cβ
n (T )(T − I) = β

n+1 (C
β−1
n+1 (T ) − I) for β > 0 and n ≥ 0, which

can be proved by an elementary calculation (cf. [15, Chapter 3]), we see that

nCα
n (T )f = nCα

n (T )(T − I)g =
nα

n+ 1
(Cα−1

n+1 (T )− I)g.

Then, since ‖Cα−1
n+1 (T )‖ ≤ 1 (which comes from the hypotheses that ‖T ‖ ≤ 1 and

that α ≥ 1), it follows that

n‖Cα
n (T )f‖1 ≤ α(‖Cα−1

n+1 (T )‖+ 1)‖g‖1 ≤ 2α‖g‖1 (n ≥ 0).

This completes the proof of Theorem 2. �

Remarks (on Theorem 2). (a) If −1 < α < 1, then (III) ⇒ (I) does not hold in
general. To see this, first suppose that α 6= 0 and −1 < α < 1. Then we can use
the equation Cα

n (T )(T − I) = α
n+1 (C

α−1
n+1 (T )− I). If f = (T − I)g, then

(13) nCα
n (T )f = nCα

n (T )(T − I)g =
nα

n+ 1
(Cα−1

n+1 (T )g − g),

so that limn→∞ ‖Cα−1
n (T )g‖1 =∞ implies

(14) ‖nCα
n (T )f‖1 ≥

n|α|

n+ 1
(‖Cα−1

n+1 (T )g‖1 − ‖g‖1) −→ ∞ as n → ∞.

To see the possibility of the case that limn→∞ ‖Cα−1
n (T )g‖1 = ∞, let m be the

counting measure on the set Z of all integers, and L1(Z, m) be the L1-space of
real-valued functions on Z with respect to the measure m. Define a positive
linear isometry T on L1(Z, m) by Tf(k) = f(k−1) for k ∈ Z. Then, the function
g = χ{0} satisfies T ng = χ{n} for n ≥ 0, and hence

‖Cα−1
n (T )g‖1 =

∥

∥

∥

∥

1

σα−1
n

n
∑

k=0

σα−2
n−kT kg

∥

∥

∥

∥

1
≥

1

|σα−1
n |

‖σα−2
0 χ{n}‖1 =

1

|σα−1
n |

−→ ∞
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as n → ∞, since σα−1
n ∼ nα−1/Γ(α) (n → ∞) (cf. [15, p. 77]). (For related

topics we refer the reader to [7].)
Next, suppose that α = 0. In this case, for any isometry T 6= I and any f 6= 0,

with f ∈ R(T −I), we have n‖C0n(T )f‖ = n‖T nf‖ = n‖f‖ → ∞ as n → ∞. This
completes the proof.

(b) The implication (I)⇒ (II) holds for every α > −1, with α 6= 0. To see this,
it suffices to consider only the case where −1 < α < 1 and α 6= 0, by Theorem 2.
Now, choose β > 0 satisfying β + α ≥ 1. Then, since

C := sup
n≥0

‖
1

σα−1
n

n
∑

k=0

σα−1
n−kT kf‖1 < ∞,

n
∑

k=0

σβ+α−1
n−k T kf =

n
∑

k=0

σβ−1
n−k

k
∑

l=0

σα−1
k−l T lf, and σβ+α−1

n =

n
∑

k=0

σβ−1
n−kσα−1

k ,

it follows that

∥

∥

∥

∥

1

σβ+α−1
n

n
∑

k=0

σ
β+α−1
n−k T kf

∥

∥

∥

∥

1
≤

∑n
k=0 σ

β−1
n−kσα−1

k C
∑n

k=0 σβ−1
n−kσα−1

k

= C,

whence supn≥0 n‖Cβ+α
n (T )f‖1 < ∞, and thus f ∈ R(T − I) by Theorem 2.

On the other hand, if α = 0, then the implication (I) ⇒ (II) fails to hold in
general. To see this, let µ be the measure on Z defined by

µ({k}) =

{

1 if k ≤ 0,

(k + 1)−1 if k ≥ 1.

Let T be the positive linear contraction on L1(Z, µ) defined by Tf(k) = f(k − 1)
for k ∈ Z. Then the function g = χ{0} satisfies

(15) n‖C0n(T )g‖1 = n‖T ng‖1 = n‖χ{n}‖1 =
n

n+ 1
< 1 (n ≥ 0).

By the definitions,

∥

∥

∥

∥

n
∑

j=0

T jg

∥

∥

∥

∥

1
= ‖χ[0, n]‖1 =

n
∑

j=0

1

j + 1
→ ∞

as n → ∞, so g /∈ L1(T − I). Thus (II) with g in place of f does not hold, by
Theorem 2.



360 R. Sato

(c) In Theorem 2 the condition sup0<r<1 ‖
∑∞

n=0 rnT nf‖1 < ∞ can be re-
placed with the weaker condition lim infr↑1 ‖

∑∞
n=0 rnT nf‖1 < ∞, which follows

from Theorem 1.

Next, we consider a C0-semigroup T (·) ≡ {T (t) : t ≥ 0} of linear contractions
on L1(Ω;X). Thus, T (s+t) = T (s)T (t) for all s, t ≥ 0, and limt↓0 ‖T (t)f−f‖1 =
0 for each f ∈ L1(Ω;X). The infinitesimal generator A of T (·) is defined by
Af := limt↓0 t−1(T (t)f − f), with domain D(A) the set of all those f ∈ L1(Ω;X)
for which this limit exists. It is known (cf. e.g. [9]) that A is a densely defined
closed operator; and since ‖T (t)‖ ≤ 1 for all t ≥ 0, if λ > 0, then λ ∈ ρ(A)

and (λ − A)−1f =
∫ ∞
0 e−λsT (s)f ds for all f ∈ L1(Ω;X). Therefore we have

supλ>0 ‖λ(λ − A)−1‖ ≤ 1. The Cesàro means of order γ (or γ-Cesàro means)
C

γ
t (T (·)) of the semigroup T (·), where γ ≥ 0 and t > 0, are the operators defined

by C0t (T (·)) := T (t) for γ = 0, and

(16) Cγ
t (T (·))f := γt−γ

∫ t

0
(t − s)γ−1T (s)f ds (γ > 0, f ∈ L1(Ω;X)).

In particular, if γ = 1, then we have C1t (T (·))f = t−1
∫ t
0 T (s)f ds. The Abel

means Aλ(T (·)) of T (·) are the operators

(17) Aλ(T (·))f := λ

∫ ∞

0
e−λsT (s)f ds (λ > 0, f ∈ L1(Ω;X)).

Fubini’s theorem and an induction argument on n imply easily the following facts:

(i) If 0 < γ, β < ∞ then for every f ∈ L1(Ω;X) and t > 0,

(18) C
γ+β
t (T (·))f =

∫ t
0 (t − s)β−1

[∫ s
0 (s − r)γ−1T (r)f dr

]

ds
∫ t
0 (t − s)β−1

[∫ s
0 (s − r)γ−1 dr

]

ds
.

(ii) If n ≥ 1 is an integer, then for every f ∈ L1(Ω;X) and t > 0,

(19) Cn
t (T (·))f =

= n! t−n
∫ t

0

[
∫ s1

0

(
∫ s2

0

(

. . .

(
∫ sn−1

0
T (sn)f dsn

)

. . .

)

ds3

)

ds2

]

ds1.

Furthermore, as in the discrete case (cf. (12)), we obtain that if 0 < γ < β < ∞,
then for every f ∈ L1(Ω;X),

(20)

sup
t≥0

‖T (t)f‖1 ≥ sup
t>0

‖C
γ
t (T (·))f‖1

≥ sup
t>0

‖Cβ
t (T (·))f‖1 ≥ sup

λ>0
‖Aλ(T (·))f‖1.
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Theorem 3 (cf. Corollary 8 of [11]). Let X be a reflexive Banach space, and
A be the infinitesimal generator of a C0-semigroup T (·) of linear contractions on
L1(Ω;X). Assume that α ≥ 1. Then the following conditions are equivalent for
f ∈ L1(Ω;X).

(I) supt>0 t‖Cα
t (T (·))f‖1 < ∞.

(II) supλ>0 ‖
∫∞
0 e−λtT (t)f dt‖1 < ∞.

(III) f ∈ R(A).

Proof: (I) ⇒ (II). We first show that there exists an integer n ≥ α such that

(21) Mn := sup
t>0

t‖Cn
t (T (·))f‖1 < ∞.

To prove this, we may assume that α > 1. We then notice by (16) that the
condition supt>0 t‖Cα

t (T (·))f‖1 < ∞ is equivalent to

(22) M(α) := sup
t>0

‖
∫ t
0 (t − s)α−1T (s)f ds‖1

∫ t
0 (t − s)α−2 ds

< ∞.

Let β > 0. By Fubini’s theorem
∫ t

0
(t − s)β−1

(
∫ s

0
(s − r)α−1T (r)f dr

)

ds

=

∫ t

0

(
∫ t

r
(t − s)β−1(s − r)α−1 ds

)

T (r)f dr

=

∫ t

0
(t − r)β+α−1

(
∫ 1

0
(1− s)β−1sα−1 ds

)

T (r)f dr

= B(β, α)

∫ t

0
(t − r)β+α−1T (r)f dr

and
∫ t

0
(t − s)β−1

(
∫ s

0
(s − r)α−2 dr

)

ds = B(β, α − 1)

∫ t

0
(t − r)β+α−2 dr,

where B(p, q) :=
∫ 1
0 (1− x)p−1xq−1 dx (p, q > 0) is the Beta function. It follows

that

M(β + α) = sup
t>0

‖
∫ t
0 (t − s)β+α−1T (s)f ds‖1

∫ t
0 (t − s)β+α−2 ds

=
B(β, α − 1)

B(β, α)
· sup

t>0

∥

∥

∥

∫ t
0 (t − s)β−1

(∫ s
0 (s − r)α−1T (r)f dr

)

ds
∥

∥

∥

1
∫ t
0 (t − s)β−1

(∫ s
0 (s − r)α−2 dr

)

ds

≤
B(β, α − 1)

B(β, α)
· M(α) < ∞ (by (22)).
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Therefore, (21) holds for any integer n, with n > α.
Next, by Fubini’s theorem

∫ ∞

0
e−λtT (t)f dt = λ

∫ ∞

0
e−λt

[
∫ t

0
T (s1)f ds1

]

dt = . . .

= λn
∫ ∞

0
e−λt

[
∫ t

0

{
∫ s1

0

(
∫ s2

0

(

. . .

(
∫ sn−1

0
T (sn)f dsn

)

. . .

)

ds3

)

ds2

}

ds1

]

dt

= λn
∫ ∞

0
e−λt t

n−1

n!
· [tCn

t (T (·))f ] dt (by (19)).

Thus we apply (21) to get that for λ > 0,
∥

∥

∥

∥

∫ ∞

0
e−λtT (t)f dt

∥

∥

∥

∥

1
≤ λn

∫ ∞

0
e−λt t

n−1

n!
‖tCn

t (T (·))f‖1 dt

≤
M

n!
λn

∫ ∞

0
e−λttn−1 dt =

M

n
.

(II) ⇒ (III). Since (II) implies

sup
λ>0

‖(λ − A)−1f‖1 = sup
λ>0

‖

∫ ∞

0
e−λtT (t)f dt‖1 < ∞,

(III) follows from Theorem 1.

(III)⇒ (I). Suppose f = Ag for some g ∈ L1(Ω;X). Then, since
∫ t
0 T (s)f ds =

T (t)g − g for t > 0, it follows that

(23) M1 = sup
t>0

t‖C1t (T (·))f‖1 = sup
t>0

‖T (t)g − g‖1 ≤ 2‖g‖1 < ∞.

Thus, (I) holds for α = 1. If α > 1, then by Fubini’s theorem
∫ t

0
(t − s)α−1 T (s)f ds =

∫ t

0

(
∫ t

s
(α − 1)(t − r)α−2 T (s)f dr

)

ds

= (α − 1)

∫ t

0
(t − r)α−2

(
∫ r

0
T (s)f ds

)

dr,

and thus
∥

∥

∥

∥

∫ t

0
(t − s)α−1T (s)f ds

∥

∥

∥

∥

1
≤ (α − 1)

∫ t

0
(t − r)α−2

∥

∥

∥

∥

∫ r

0
T (s)f ds

∥

∥

∥

∥

1
dr

≤ (α − 1)

∫ t

0
(t − r)α−2M1 dr =M1 tα−1,

so that
sup
t>0

t‖Cα
t (T (·))f‖1 ≤ αM1.

This completes the proof of Theorem 3. �
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Remarks (on Theorem 3). (d) The implication (III) ⇒ (I) does not hold for
0 ≤ α < 1. Indeed, let L1(−∞, ∞) be the usual L1-space of scalar-valued
functions on the real line R := (−∞, ∞). Let T (t), t ∈ R, be the operators on
L1(−∞, ∞) defined by

(24) T (t)f(x) := f(x+ t).

Then T (·) := {T (t) : t ≥ 0} is a C0-semigroup of positive invertible linear isome-
tries on L1(−∞, ∞). The following are well-known:

(i) D(A) = {g ∈ L1(−∞, ∞) : g is absolutely continuous, and
g′ ∈ L1(−∞, ∞)};

(ii) Ag = g′ for g ∈ D(A).

Hence the function f = χ[0, 1) − χ[1, 3) + χ[3, 4) belongs to D(A), and f = Ag,

where g(x) :=
∫ x
−∞ f(s) ds.

Now, suppose 0 < α < 1. Then, for every x with 0 < t − 1 < x < t, we have

tCα
t (T (·))f(−x) = αt1−α

∫ t

0
(t − s)α−1f(s − x) ds

= αt1−α
∫ t

x
(t − s)α−1 ds = t1−α(t − x)α,

whence

‖tCα
t (T (·))f‖1 ≥ t1−α

∫ t

t−1
(t − x)α dx = t1−α 1

α+ 1
.

This implies limt→∞ ‖tCα
t (T (·))f‖1 = ∞, because 1 − α > 0 . Next, suppose

α = 0. Then, clearly, we have ‖tC0t (T (·))f‖1 = t‖T (t)f‖1 = t‖f‖1 = 4t → ∞ as
t → ∞.

(e) The computations in the proof of (I)⇒ (II) apply to the case α > 0, so that
the implication (I) ⇒ (II) holds for all α > 0. But, if α = 0, then the implication
(I) ⇒ (II) fails to hold in general. This can be seen by modifying the example in
Remark (b). Indeed, let w be the function on R defined by w(x) = 1 if x ≥ −1,
and w(x) = (−x)−1 if x < −1, and let µ be the measure on R defined by µ = w dx,
where dx stands for the Lebesgue measure on R. Then the operators T (t), t ≥ 0,
of the form T (t)f(x) = f(x + t) define a C0-semigroup T (·) of positive linear
contractions on L1(R, µ) of scalar-valued integrable functions with respect to µ,
and the function f := χ[0, 1) satisfies

sup
t>0

t‖C0t (T (·))f‖1 = sup
t>0

t‖T (t)f‖1 = sup
t>0

t‖χ[−t,−t+1)‖1 < 2.

But, it is known that

(i) D(A) = {g ∈ L1(R, µ) : g is locally absolutely continuous, and
g′ ∈ L1(R, µ)};

(ii) Ag = g′ for g ∈ D(A).



364 R. Sato

Thus, if f = Ah for some h ∈ D(A), then we must have f = χ[0, 1) = h′, and

h(x+ t)− h(x) =

∫ t

0
f(x+ s) ds (t ≥ 0, x ∈ R).

Therefore, h(x) = h(1) for x ≥ 1, and h(x) = h(0) for x ≤ 0. But, since

h(1) − h(0) =
∫ 1
0 h′(s) ds = 1, this proves that h cannot belong to L1(R, µ), a

contradiction. Thus, f /∈ R(A), and (II) does not hold by Theorem 3.

Lastly, we give an application to the infinitesimal generator A of a strongly
continuous cosine family C(·) ≡ {C(t) : t ∈ R} of linear contractions on L1(Ω;X).
By definition, the family C(·) satisfies

(i) C(s+ t) + C(s − t) = 2C(s)C(t) for all s, t ∈ R;
(ii) C(0) = I;
(iii) C(t)f is continuous in t ∈ R for each f ∈ L1(Ω;X).

The infinitesimal generator A is defined by Af := limt→0(C(2t)f − f)/2t2,
with domain D(A) the set of all those f ∈ L1(Ω;X) for which this limit ex-
ists. Since ‖C(t)‖ ≤ 1 for all t ∈ R, it is known (cf. e.g. [13], [14]) that A
is a densely defined closed operator such that if λ > 0, then λ ∈ ρ(A) and

λ(λ2 − A)−1f =
∫ ∞
0 e−λsC(s)f ds for all f ∈ L1(Ω;X). Therefore we have

supλ>0 ‖λ(λ − A)−1‖ ≤ 1.
The associated sine family S(·) ≡ {S(t) : t ∈ R} of linear operators on L1(Ω;X)

is defined by

(25) S(t)f :=

∫ t

0
C(s)f ds (t ∈ R, f ∈ L1(Ω;X)).

Elementary properties of S(·) and C(·) can be found in [14]. The Cesàro means
of order γ (or γ-Cesàro means) Cγ

t (S(·)) of the sine family S(·), where γ ≥ 0 and

t > 0, are the operators defined by C0t (S(·)) := S(t), and

(26) Cγ
t (S(·))f := γt−γ

∫ t

0
(t − s)γ−1S(s)f ds (γ > 0, f ∈ L1(Ω;X)).

It is direct to see that (18), (19) and (20) hold with S(·), S(r), S(sn) and S(t)
in place of T (·), T (r), T (sn) and T (t), respectively.

Theorem 4 (cf. Corollary 8 of [11]). Let X be a reflexive Banach space, and A
be the infinitesimal generator of a strongly continuous cosine family C(·) of linear
contractions on L1(Ω;X). Assume that α ≥ 1. Then the following conditions are
equivalent for f ∈ L1(Ω;X).

(I) supt>0 t‖Cα
t (S(·))f‖1 < ∞.

(II) supλ>0 ‖
∫∞
0 e−λtS(t)f dt‖1 < ∞.

(III) f ∈ R(A).
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Proof: (I) ⇒ (II). We first notice, as in the proof of (I) ⇒ (II) of Theorem 3,
that there exists an integer n ≥ α such that

(27) M ′
n := sup

t>0
t‖Cn

t (S(·))f‖1 < ∞.

Then, since

∫ ∞

0
e−λtS(t)f dt = λn

∫ ∞

0
e−λt t

n−1

n!
· [tCn

t (S(·))f ] dt

(cf. (19) with S(·) and S(sn) in place of T (·) and T (sn), respectively), it follows
that

∥

∥

∥

∥

∫ ∞

0
e−λtS(t)f dt

∥

∥

∥

∥

1
≤

M ′
n

n!
λn

∫ ∞

0
e−λttn−1 dt =

M ′
n

n
(λ > 0).

(II) ⇒ (III). Since (λ2 − A)−1f = λ−1
∫ ∞
0 e−λsC(s)f ds =

∫ ∞
0 e−λtS(t)f dt

for λ > 0, (II) implies

sup
λ>0

‖(λ2 − A)−1f‖1 = sup
λ>0

‖

∫ ∞

0
e−λtS(t)f dt‖1 < ∞.

Hence (III) follows from Theorem 1.
(III) ⇒ (I). Assume that f = Ag for some g ∈ L1(Ω;X). By Lemma 2.15

of [13] we have
∫ t
0 S(s)f ds =

∫ t
0 S(s)Ag ds = C(t)g − g for t > 0. Thus M ′

1 =

supt>0 ‖
∫ t
0 S(s)f ds‖1 ≤ 2‖g‖1, and hence (I) holds for α = 1. If α > 1, then we

can obtain, as in the proof of (III)⇒ (I) of Theorem 3, that supt>0 t‖Cα
t (S(·))f‖1

≤ αM ′
1.

This completes the proof of Theorem 4. �

Remarks (on Theorem 4). (f) The implication (III) ⇒ (I) does not hold for
0 ≤ α < 1. Indeed, if C(t), t ∈ R, are the operators on L1(−∞, ∞) defined by
C(t)f(x) := 2−1(f(x + t) + f(x − t)), then C(·) := {C(t) : t ∈ R} becomes a
strongly continuous cosine family of positive linear contractions on L1(−∞, ∞).
It is known (cf. e.g. [13, Theorem 4.12]) that

(i) D(A) =

{

g ∈ L1(−∞, ∞) :
g and g′ are absolutely continuous,
and g′, g′′ ∈ L1(−∞, ∞)

}

;

(ii) Ag = g′′ for g ∈ D(A).

Thus the function

f = χ[0, 1) − χ[1, 3) + χ[3, 4) − χ[4, 5) + χ[5, 7) − χ[7, 8)
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belongs to R(A). Since S(t)f(x) =
∫ t
0 2

−1(f(x+ s) + f(x− s)) ds, it follows that
if t > 2 then

(28) S(t)f(x) ≥ 1/4 for all x ∈ [−t+ (1/2), −t+ (3/2)],

and thus if s ∈ [t − (1/4), t], then, for all x ∈ [−t+ (3/4), −t+ (3/2)],

(29) S(s)f(x) =

∫ s

0
2−1(f(x+ r) + f(x − r)) dr ≥ 1/4.

Now, suppose 0 < α < 1. Then by (29), for t > 2 and x ∈ [−t + (3/4), −t +
(3/2)] we have

tCα
t (S(·))f(x) = αt1−α

∫ t

0
(t − s)α−1S(s)f(x) ds

≥ αt1−α
∫ t

t− 1
4

(t − s)α−1 ·
1

4
ds =

t1−α

4α+1
,

therefore

t‖Cα
t (S(·))f‖1 ≥

∫ −t+(3/2)

−t+(3/4)

t1−α

4α+1
dx =

3 t1−α

4α+2
−→ ∞ (t → ∞).

Next, suppose α = 0. Then by (28) we get

t‖C0t (S(·))f‖1 = t‖S(t)f‖1 ≥ t

∫ −t+(3/2)

−t+(1/2)

1

4
dx =

t

4
−→ ∞ (t → ∞).

(g) The implication (I) ⇒ (II) of Theorem 4 holds for all α > 0, as observed
in Remark (e). Here it may be of some interest to note that if α = 0 then the
implication (I) ⇒ (II) is trivial. Indeed, if (I) holds for α = 0, then we have
supt>0 t‖S(t)f‖1 < ∞ and hence limt→∞ ‖S(t)f‖1 = 0, from which we deduce
that f = 0 as follows. For a moment, assume that f 6= 0. Then there exists
s0 > 0 such that g := S(s0)f 6= 0. Then by Proposition 2.1 of [14]

C(t)g = C(t)S(s0)f = 2
−1(S(t+ s0)f − S(t − s0)f) −→ 0 as t → ∞,

and thus g = −C(2t)g + 2C(t)2g → 0 as t → ∞. But this is a contradiction.
(This proof was communicated to the author by Professor S.-Y. Shaw.)
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