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A d.c. C
1
function need not be difference

of convex C
1
functions

David Pavlica

Abstract. In [2] a delta convex function on R
2 is constructed which is strictly differ-

entiable at 0 but it is not representable as a difference of two convex function of this
property. We improve this result by constructing a delta convex function of class C1(R2)
which cannot be represented as a difference of two convex functions differentiable at 0.
Further we give an example of a delta convex function differentiable everywhere which
is not strictly differentiable at 0.
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Classification: Primary 26B25; Secondary 26B05

Let X be a normed vector space. We say that a function f : X → R is delta
convex (d.c.) if there exist continuous convex functions f1, f2 on X such that
f = f1 − f2.
We denote B(a, r) = {x ∈ X : ‖x− a‖ ≤ r}. Let g be a function defined on an

open set A ⊂ X . We say that L ∈ X∗ is the strict derivative at a point a ∈ A if
for every ε > 0 there exists δ > 0 such that for each x, y ∈ B(a, δ) we have

|g(x)− g(y)− L(x− y)| ≤ ε‖x− y‖.

Note that if a convex function on X is Fréchet differentiable at a point a then it
is strictly differentiable at a ([6, Proposition 3.8]).
If X is a finite dimensional space then every function f ∈ C2(X) can be

represented as f = f1−f2, where f1, f2 are convex and f1 ∈ C2(X), f2 ∈ C∞(X)
(see [3], where other related results are obtained).
In [2], a d.c. function f : R2 → R is constructed which is strictly differentiable

at 0 and is not representable as a difference of two convex functions with this
property. But this function is not differentiable everywhere. We shall improve
the construction of [2] to obtain a d.c. function of class C1(R2) not representable
as a difference of convex functions differentiable at 0.
We shall denote λn the Lebesgue measure on R

n. We say that f : R
2 → R is

Lipschitz with the constant L if for each x, y ∈ R
2 is |f(x)− f(y)| ≤ L‖x− y‖.

In the following we shall use the notion of the dual convex function.

The author was supported by the grant GAČR 201/03/0931.
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Definition. Let f : R
n → R be a convex function. The dual function f∗ of the

function f is defined on (Rn)∗ by

f∗(x∗) = sup
x∈Rn

(〈x, x∗〉 − f(x)) , x∗ ∈ (Rn)∗.

It follows immediately from the definition that if f, g : R
n → R are convex

functions, f ≤ g and f∗ is finite everywhere then g∗ is finite everywhere. Therefore
if f ≥ ‖ · ‖2 − 1 then f∗ is finite everywhere.
As usual, we identify the dual space (Rn)∗ with R

n and 〈·, ·〉 denotes both the
duality and the scalar product.

Facts. If f : Rn → R is a convex function and f∗ is finite everywhere then

(f∗)∗ = f,(1)

x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗).(2)

The statement (1) can be found in [4, Theorem 12.2] and (2) in [4, Theo-
rem 23.5].
In [2] a function Ḡ : R2 → R is constructed in the following way.

Fix a sequence of positive integers {ki} such that cos(
2π
ki
) ≥ 1 − 2−i−3 for

i ∈ N. Let us denote

M :=

{(

2−i cos

(

2πk

ki

)

, 2−i sin

(

2πk

ki

))

: i ∈ N, k ∈ {1, . . . , ki}

}

.

Set
F (x) = ‖x‖+ 4‖x‖2 for x ∈ R

2.

For each z ∈M define

Gz(x) = F (z) + 〈F ′(z), x− z〉 = (8‖z‖+ 1)
〈x, z〉

‖z‖
− 4‖z‖2.

Since F is convex we have Gz ≤ F on R
2. Let us define for x ∈ R

2

Ḡ(x) = sup {Gz(x) : z ∈M} , G(x) = max{Ḡ(x), ‖x‖2 − 1}.

Obviously Ḡ and G are convex functions,
The following 3 lemmas are proved in [2] (Lemmas 3,4,5).

Lemma 1. The function Ḡ satisfies

‖x‖+ ‖x‖2 ≤ Ḡ(x) ≤ ‖x‖+ 4‖x‖2 = F (x)

for ‖x‖ < 1.
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Corollary 1. Therefore G ≡ Ḡ on B(0, 1) and ∂G(0) = ∂Ḡ(0) = B(0, 1). (In-
deed, ∂(‖ · ‖+ a‖ · ‖2)(0) = B(0, 1) for each a ≥ 0.)

Lemma 2. If x ∈ R
2, ‖x‖ < 1, z ∈M , ‖z‖ ≤ ‖x‖

9 then

Gz(x) ≤ Ḡ(x) −
‖x‖2

9
.

Lemma 3. If x ∈ R
2, 0 < ‖x‖ < 1

16 and

Mx := {z ∈M : ‖z‖ ≤ 2‖x‖, 〈x, z〉 ≥ ‖z‖·‖x‖(1− 8‖z‖)}

then

Ḡ(x) = sup {Gz(x) : z ∈Mx} .

Corollary 2. Let x ∈ R
2, 0 < ‖x‖ < 1

16 . Then there exists a neighbourhood W
of x such that, for w ∈W ,

G(w) = sup {Gz(w) : z ∈Mx}

holds.

Proof: The set Nz := {u ∈ R
2 : 0 < ‖u‖ < 1

16 , z /∈ Mu} is obviously open for
all z ∈M . Hence

U :=
⋂

z∈M\(Mx∪B(0, ‖x‖
18
))

Nz

is a neighbourhood of x. SinceMx∪B(0,
‖x‖
18 ) ⊃Mw for everyw ∈ U , we conclude,

using Lemma 2 and Lemma 3 for w, that we can put W = U ∩B(x, ‖x‖/2). �

Lemma 4. Let Ĝα : R
2 → R, α ∈ A, be a family of affine functions with the

Lipschitz constant L and Ĝ(w) = sup{Ĝα(w) : α ∈ A} for w ∈ R
2, Ĝ : R

2 → R.

Let x ∈ R
2 and u∗ ∈ ∂Ĝ(x). Then ‖u∗‖ ≤ L.

Proof: The function Ĝ(w) is obviously Lipschitz with the constant L. Therefore
‖u∗‖ ≤ L. �

Lemma 5. If x ∈ R
2, 0 < ‖x‖ < 1

16 and x
∗ ∈ ∂G(x), then

∥

∥

∥

∥

x∗ −
x

‖x‖

∥

∥

∥

∥

≤ 24‖x‖1/2.

Proof: Let z ∈Mx and

y∗ =
z

‖z‖
+ 8z ∈ ∂Gz(x).
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Clearly
∥

∥

∥

∥

z

‖z‖
−

x

‖x‖

∥

∥

∥

∥

2

= 2−
2〈z, x〉

‖z‖·‖x‖

and by the definition ofMx we have 1−
〈z,x〉
‖z‖·‖x‖

≤ 8‖z‖ and ‖z‖ ≤ 2‖x‖. Therefore

∥

∥

∥

∥

y∗ −
x

‖x‖

∥

∥

∥

∥

≤ 8‖z‖+

∥

∥

∥

∥

z

‖z‖
−

x

‖x‖

∥

∥

∥

∥

= 8‖z‖+

(

2−
2〈z, x〉

‖z‖·‖x‖

)1/2

≤ 16‖x‖+ (2 · 8‖z‖)1/2

≤ 16‖x‖1/2 + (32‖x‖)1/2 ≤ 24‖x‖1/2.

Therefore Gz − 〈 x
‖x‖

, ·〉 is Lipschitz with the constant 24‖x‖1/2 for z ∈ Mx.

Using Corollary 2 and Lemma 4 applied for Gz − 〈 x
‖x‖

, ·〉, z ∈ Mx, we obtain

‖u∗‖ ≤ 24‖x‖1/2 for u∗ ∈ ∂(G− 〈 x
‖x‖

, ·〉)(x). Since

x∗ −
x

‖x‖
∈ ∂

(

G−

〈

x

‖x‖
, ·

〉)

(x),

whenever x∗ ∈ ∂G(x), this completes the proof of Lemma 5. �

By Corollary 1, G∗ ≡ 0 on B(0, 1) since G(0) = 0.
Define a function α : [0,+∞)→ R,

α(t) = 0, t ∈ [0, 1),

= (t− 1)4, t ∈ [1,+∞),

and ψ(x∗) := α(‖x∗‖), for x∗ ∈ R
2. Then ψ is a convex function on R

2, since ‖ · ‖
is convex and α is convex and increasing. Notice that

ψ′(x∗) = 4(‖x∗‖ − 1)3
x∗

‖x∗‖

for ‖x∗‖ ≥ 1.
Set K := G∗ + ψ and G̃ := K∗.
The function G̃ is differentiable on R

2 \ {(0, 0)}. Otherwise there exist x ∈
R
2 \ {(0, 0)} and x∗, y∗ ∈ ∂G̃(x), x∗ 6= y∗. Then x ∈ ∂K(x∗) ∩ ∂K(y∗).
It is easy to see that then K is affine on conv{x∗, y∗} and x ∈ ∂K(z∗), for

each z∗ ∈ conv{x∗, y∗}. Since K ≡ 0 on B(0, 1) and x 6= 0, the interior of
B(0, 1) is disjoint with conv{x∗, y∗}. Further there is no line segment in ∂B(0, 1),
consequently the function K is affine on some line segment in R

2 \ B(0, 1). Also
ψ is affine on this line segment (since ψ and G∗ are convex). But it is impossible
since ψ′ is one-to-one on R

2 \B(0, 1).
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Lemma 6. For every ε > 0 there exists δ > 0 such that if x ∈ R
2, 0 < ‖x‖ < δ,

then
∥

∥

∥

∥

(G̃)′(x) −
x

‖x‖

∥

∥

∥

∥

≤ ε.

Proof: Set

δ := min

{

( ε

9 · 243

)2
,
1

16

}

.

Let 0 < ‖x‖ < δ. Denote x∗ := (G̃)′(x) and x′ := x − ψ′(x∗). Then, by Fact (2),
x ∈ ∂K(x∗) and therefore, since K ≡ 0 on B(0, 1), we have ‖x∗‖ ≥ 1.
Clearly x′ ∈ ∂(K − ψ)(x∗) = ∂G∗(x∗) and, using again Fact (2), x∗ ∈ ∂G(x′).

Further x′ 6= 0, since if ‖x∗‖ = 1 then clearly x′ = x and if ‖x∗‖ > 1 we use
x∗ ∈ ∂G(x′) and Corollary 1.
Since ∂G is monotone, 0 ∈ ∂G(0) and x∗ ∈ ∂G(x′), we have 〈x′, x∗〉 ≥ 0.

Hence

〈x′, ψ′(x∗)〉 = 〈x′, x∗〉
4(‖x∗‖ − 1)3

‖x∗‖
≥ 0.

Consequently ‖x′‖2 = 〈x′, x−ψ′(x∗)〉 ≤ 〈x′, x〉 ≤ ‖x′‖ · ‖x‖ which implies ‖x′‖ ≤
‖x‖ < δ. Now we compute, using Lemma 5 for x′,

∥

∥

∥

∥

(G̃)′(x) −
x

‖x‖

∥

∥

∥

∥

≤

∥

∥

∥

∥

x∗ −
x′

‖x′‖

∥

∥

∥

∥

+

∥

∥

∥

∥

x′

‖x′‖
−

x

‖x‖

∥

∥

∥

∥

≤ 24‖x′‖1/2 +

∥

∥

∥

∥

(‖x‖x′ − ‖x′‖x′) + (‖x′‖x′ − ‖x′‖x)

‖x‖·‖x′‖

∥

∥

∥

∥

≤ 24‖x′‖1/2 +
2‖x− x′‖

‖x‖
= 24‖x′‖1/2 +

2‖ψ′(x∗)‖

‖x‖

≤ 24δ1/2 +
8(‖x∗‖ − 1)3

‖x‖
≤ 24δ1/2 + 8

243‖x′‖3/2

‖x‖

≤ δ1/2(24 + 8 · 243) ≤ ε,

since by Lemma 5 we also have ‖x∗‖ − 1 ≤ 24‖x′‖1/2. �

Theorem. The function H := G̃−‖ · ‖ is a C1 delta-convex function on R
2 and

there does not exists a convex function h differentiable at the origin such that
H + h is convex.

Proof: As was already proved, G̃ is differentiable on R
2 \ {(0, 0)} and therefore,

since it is convex, G̃ is also C1 on R
2\{(0, 0)}. Obviously ‖·‖ is C1 on R

2\{(0, 0)}.
Hence H ∈ C1(R2 \ {(0, 0)}). The Fréchet derivative of H at the origin is 0 since,
by Lemma 6, for every ε > 0 there exists δ > 0 such that

|H(u)−H(0)| =

∣

∣

∣

∣

∫ 1

0
〈u,H ′(tu)〉 dt

∣

∣

∣

∣

≤

∫ 1

0
‖H ′(tu)‖ dt‖u‖ ≤ ε‖u‖,
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for each u ∈ R
2, 0 < ‖u‖ < δ. It also follows immediately from Lemma 6 that H ′

is continuous at the origin.
Now we shall prove that H has no control function differentiable at 0. For a

contradiction let us suppose that h, h + H are convex functions on R
2 and h is

differentiable at 0. We may assume h′(0) = 0. Then 0 is the strict derivative of h
at 0 ([3, Proposition 3.8]). Find 0 < R < 1/(82 · 246) such that

|h(x) − h(y)| <
1

48
‖x− y‖ if x, y ∈ B(0, 2R).

Denote for z ∈M

Sz := {x ∈ [−R/2, R/2]2 : G(x) = Gz(x)},

Ŝz := Sz + ψ
′(F ′(z)), Ŝ :=

⋃

z∈M

Ŝz .

Claim 1. The function G̃ is affine on Ŝz for each z ∈ M . Further, for z1, z2 ∈
M, z1 6= z2, we have int Ŝz1 ∩ int Ŝz2 = ∅.

Proof of Claim 1:

If z ∈ M and u ∈ Sz then clearly F
′(z) ∈ ∂G(u). By Fact (2) we have

u ∈ ∂G∗(F ′(z)). Hence u + ψ′(F ′(z)) ∈ ∂K(F ′(z)). Now, again by Fact (2),

F ′(z) ∈ ∂G̃(u+ ψ′(F ′(z))). Therefore G̃ is affine on Ŝz.

Finally int Ŝz1 ∩ int Ŝz2 = ∅ since F ′(z1) 6= F
′(z2), for z1 6= z2. �

Claim 2. Ŝz ⊂ [−R,R]2 for z ∈M .

Proof of Claim 2:

Let z ∈M , u ∈ Sz. By Lemma 5, since F
′(z) ∈ ∂G(u), we have ‖F ′(z)‖− 1 ≤

24‖u‖1/2 ≤ 24 · (R)1/2.
We easily compute

‖F ′(z)‖ =

∥

∥

∥

∥

z

‖z‖
+ 8z

∥

∥

∥

∥

= 1 + 8‖z‖ > 1.

Hence

‖ψ′(F ′(z))‖ =

∥

∥

∥

∥

4(‖F ′(z)‖ − 1)3 ·
F ′(z)

‖F ′(z)‖

∥

∥

∥

∥

≤ 4 · 243 · (R)3/2

< 4 · 243
(

1

82 · 246

)1/2

R =
R

2
.

This proves Claim 2. �
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According to Lemma 2, for each 0 < δ < 1, G = sup{Gz : z ∈ M \ B(0, δ/9)}
on B(0, 1) \B(0, δ).
Hence, for each δ > 0, the function G is defined on B(0, 1) \ B(0, δ) as a

supremum of finitely many Gz . Therefore
⋃

z∈M Sz = [−R/2, R/2] \ {(0, 0)}.
Since Sz are convex we get by Claim 1

λ2(Ŝ) =
∑

z∈M

λ2(Sz) = R
2.

Without loss of generality we may assume

λ2(Ŝ ∩ {(t1, t2) ∈ R
2 : 0 ≤ t1 ≤ R,−t1 ≤ t2 ≤ t1}) ≥

R2

4
.

By Fubini’s Theorem

∫ R

0
λ1({t2 ∈ [−t1, t1] : (t1, t2) ∈ Ŝ}) dt1 ≥

R2

4
.

Thus there exists 0 < r < R such that

λ1({t2 ∈ [−r, r] : (r, t2) ∈ Ŝ}) ≥
R

4
>
r

4
.

Let us denote for t ∈ [−r, r]

φ(t) := ‖(r, t)‖,

γ(t) := G̃((r, t)),

κ(t) := h((r, t)).

By Claim 1 the function γ is affine on the interval S̄z := {t ∈ [−r, r] : (r, t) ∈ Ŝz}
for z ∈ M and λ1(

⋃

z∈M S̄z) ≥ r/4. Therefore there exist −r ≤ s1 < t1 ≤ s2 <
t2 ≤ · · · ≤ sk < tk ≤ r, k ∈ N, such that γ is affine on [si, ti], for every 1 ≤ i ≤ k,

and
∑k

i=1(ti − si) ≥ r/5.
Since κ+ γ − φ is convex on [−r, r], for each i = 1, . . . , k

κ′−(ti)− κ′+(si) + γ
′
−(ti)− γ′+(si)− φ′(ti) + φ

′(si) ≥ 0

holds. Obviously γ′−(ti) = γ
′
+(si), i = 1, . . . , k.

Hence, by convexity of κ, we have κ′−(r)−κ
′
+(−r) ≥

∑k
i=1(κ

′
−(ti)−κ

′
+(si)) ≥

∑k
i=1(φ

′(ti)− φ′(si)). Since κ is Lipschitz with the constant 1/48 on [−r, r], we
have

|κ′−(r)| ≤
1

48
, |κ′+(−r)| ≤

1

48
.
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By the Mean Value Theorem there exist ξi ∈]si, ti[ such that φ
′(ti)− φ′(si) =

φ′′(ξi)(ti − si), i = 1, . . . , k.

φ′′(ξi) =
(r2 + ξ2i )

1/2 −
ξ2i

(r2+ξ2i )
1/2

r2 + ξ2i
=

r2

(r2 + ξ2)3/2
≥

r2

(2r2)3/2
≥
1

4r
.

Finally we obtain

1

24
≥ κ′−(r) − κ′+(−r) ≥

k
∑

i=1

(φ′(ti)− φ′(si))

≥
1

4r

k
∑

i=1

(ti − si) ≥
1

20
,

a contradiction.

If a convex function on a Hilbert space is Fréchet differentiable at some point
then it is strictly differentiable at this point. For d.c. functions this need not be
true. First example (on R

2) of this phenomenon is probably due to A. Shapiro
(see [5], [1] or [6]). But none of these functions is differentiable everywhere.
We shall give an example of a d.c. function on R

2 differentiable at 0 which is
of class C1 on R

2 \ {(0, 0)}, but is not strictly differentiable at 0.
Set for (x, y) ∈ R

2

f1(x, y) = y for y ≥ x2,

= x2 +
y2

x2
− y for x2 > y > 0,

= x2 − y for 0 ≥ y.

It is easy to check that f1 is a continuous function with a continuous derivative

on R
2 \ {(0, 0)}. The Hess’s matrix of y, x2 + y2

x2
− y and x2 − y is nonnegative

definite for y > x2, for x2 > y > 0 and for 0 > y, respectively. Since the function
f1 has a supporting affine functional at 0 and f1 is differentiable at the points of
the sets {y = x2, x 6= 0} and {y = 0, x 6= 0}, the function f1 is convex on every
line, therefore it is convex.
Analogously we prove that

f2(x, y) = x
2 + y for y ≥ 0,

= x2 +
y2

x2
+ y for 0 > y > −x2,

= −y for − x2 ≥ y
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is a convex function with continuous derivative on R
2 \ {(0, 0)}.

It is easy to prove that for (x, y) ∈ R
2

|f1(x, y)− f2(x, y)| ≤ 3x
2,

therefore f := f1 − f2 is a d.c. function which is differentiable also at 0. Since

∂f

∂y
(x, 0) = −2 for x 6= 0

and
∂f

∂y
(0, 0) = 0,

the function f is not strictly differentiable at (0, 0).
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