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UR Birkhoff interpolation

with rectangular sets of derivatives

Nicolae Crainic

Abstract. In this paper we characterize the regular UR Birkhoff interpolation schemes
(U = uniform, R = rectangular sets of nodes) with rectangular sets of derivatives, and
beyond.
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1. Introduction

The Birkhoff interpolation is one of most general form of multivariate poly-
nomial interpolation. For notational simplicity, we will restrict ourselves to the
two-dimensional case. Then the problem depends on

(i) a finite set Z ⊂ R
2 (of “nodes”);

(ii) for each z ∈ Z, a set A(z) ⊂ N
2 (of “derivatives at the node z”);

(iii) a lower set S ⊂ N
2, defining the interpolation space

PS = {P ∈ R[x, y] : P =
∑

(i,j)∈S

ai,jx
iyj}.

Recall that S is called lower if it has the property that:

(i, j) ∈ S =⇒ R(i, j) ⊂ S,

where R(i, j) is the rectangle

R(i, j) = {(i′, j′) ∈ N
2 : 0 ≤ i′ ≤ i, 0 ≤ j′ ≤ j}.

The interpolation problem consists of finding polynomials P ∈ PS satisfying the
equations

(1.1)
∂i+jP

∂xi∂yj
(z) = ci,j(z), ∀z ∈ Z, (i, j) ∈ A(z),
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where ci,j(z) are given arbitrary constants. When the conditions at each point
involve the same set A of derivatives (i.e. the sets A(z) = A do not depend on z),
we talk about the uniform problem associated to the triple (Z, A, S). One says
that (Z, A, S) is regular if, for any choice of the constants ci,j(z), the associated
equations (1.1) have a unique solution P ∈ PS . Of course, all these definitions
apply to arbitrary dimensions. However, the one-dimensional case (univariate
schemes) does behave differently and it is quite well understood (see e.g. [1], [3]).
Looking at particular types of multivariate problems is a necessary step towards
a better understanding of what happens in higher dimensions.
On the other hand, although there are several methods for studying Birkhoff

interpolation for generic sets of nodes ([4]), little is known in the case where the
shape of Z is more degenerate. One of the simplest and important cases is when
Z is rectangular , i.e. when it is of type:

Z = {(xi, yj) : 0 ≤ i ≤ p, 0 ≤ j ≤ q},

with p, q ≥ 0 integers, xi ∈ R distinct real numbers, and similarly the yj ’s. We
also say that Z is a (p, q)-rectangular set , and we put

Zx = {xi : 0 ≤ i ≤ p},

and similarly Zy . A UR Birkhoff scheme is a uniform scheme (Z, A, S) with
rectangular set of nodes Z. The study of UR Birkhoff schemes is part of the
author’s PhD thesis (see [2]).
In this paper we look at UR Birkhoff interpolation where also A has a rectan-

gular shape. However, since we will use only certain properties that rectangular
shapes have, the results we derive hold much more generally. Let us state here the
main result in the case where A is rectangular. Given S ⊂ N

2, we will consider
the intersection points of S with the coordinate axes, i.e.

Sx = {α : (α, 0) ∈ S},

and similarly Sy. In particular, any (bivariate) scheme (Z, A, S) will induce two
univariate schemes (Zx, Ax, Sx) and (Zy , Ay, Sy).

Theorem 1.1. If Z is a (p, q)-rectangular set of nodes, andA is (s, t)-rectangular,
then the UR Birkhoff interpolation scheme (Z, A, S) is regular if and only if

(i) S = R(p′, q′), with p′ = (s+ 1)(p+ 1)− 1, q′ = (t+ 1)(q + 1)− 1;
(ii) the univariate schemes (Zx, Ax, Sx) and (Zy , Ay, Sy) are regular.

The next two sections are devoted to this theorem: the next section takes
care of (i), while in the last section we present a stronger version of the theorem
(Theorem 3.1) together with its proof.
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2. Finding the interpolation space

In this section we show that, for regular UR schemes, the rectangularity con-
dition on A determines the interpolation space (i.e. the lower set S) uniquely.
Actually, we will use only one property that rectangular sets have: if A is rectan-
gular, then |A| = |Ax||Ay | (we use the notation |X | to denote the cardinality of
a point set X). We will prove that:

Proposition 2.1. If the UR Birkhoff scheme (Z, A, S) is regular and the set of
nodes Z is (p, q)-rectangular, then

|A| ≤ |Ax||Ay |.

Moreover, if the equality holds, then S must be:

S = R(p′, q′), p′ = (p+ 1)|Ax| − 1, q′ = (q + 1)|Ay | − 1.

The proof is based on a sequence of simple remarks. But first, let us introduce
some terminology.

Definition 2.1. One says that a scheme (Z, A, S) is solvable if the interpolation
problem (1.1) has at least one solution P ∈ PS (for any choice of the constants).
One says that (Z, A, S) has the uniqueness property if the equations (1.1) have
at most one solution.

The simple remarks we will be using are put together in the following two
lemmas.

Lemma 2.1. For any lower set S ⊂ N
2 one has

|S| ≤ |Sx||Sy|,

and equality holds if and only if S = R(p′, q′), where p′ = |Sx| − 1, q
′ = |Sy| − 1.

Lemma 2.2. Let (Z, A, S) be a UR Birkhoff interpolation scheme.

(i) If (Z, A, S) is solvable, then |S| ≥ |A||Z|.
(ii) If (Z, A, S) has the uniqueness property, then |S| ≤ |A||Z|.
(iii) If the bivariate scheme (Z, A, S) has the uniqueness property, then so do

the induced univariate schemes (Zx, Ax, Sx), (Zy, Ay , Sy).

Proof: For Lemma 2.1, remark that the condition that S is lower implies that
S ⊂ R(p′, q′), and then one passes to cardinalities. For (i) and (ii) of Lemma 2.2,
one remarks that (1.1) is a system of |A||Z| linear equations, on |S| variables (the
coefficients of P ). For (iii), remark that a non-trivial solution P = P (x) of the
uniform problem associated to (Zx, Ax, Sx) will also be a nontrivial solution of
the homogeneous equations associated to (Z, A, S).
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We now prove the proposition. From (iii) of Lemma 2.2, and (ii) applied to
(Zx, Ax, Sx), it follows that |Sx| ≤ (p+ 1)|Ax|, and, similarly, |Sy| ≤ (q + 1)|Ay|.
Multiplying these two inequalities we get |Sx||Sy| ≤ (p+1)(q+1)|Ax||Ay |. Hence,
using also Lemma 2.1, we get |S| ≤ (p + 1)(q + 1)|Ax||Ay |. However, since
the scheme is regular we must have |S| = (p + 1)(q + 1)|A| (by (i) and (ii) of
Lemma 2.2), and this implies that |A| ≤ |Ax||Ay |. Equality would force the
intermediate equality of Lemma 2.1, hence the rectangularity of S. �

3. A regularity theorem

In this section we clarify the regularity of UR schemes with rectangular sets of
nodes. Again, the result is more general (and this is useful in examples [2]).

GivenA ⊂ N
2, we construct a lower set Sy(A) by movingA downwards (parallel

to the OY axis), and then to the left. Here is the more detailed description. We
cover A with lines l0, . . . , lk parallel to the OY axis, counted so that

|l0 ∩ A| ≥ . . . ≥ |lk ∩ A|

and we mark the points of A on these lines. On each li, we move the points of
A ∩ li downwards until they occupy the first positions with non-negative integer
coordinates (if li corresponds to the equation x = αi, then the new points will
be (αi, 0), (αi, 1), . . . (αi, ki), where ki = |A ∩ li| − 1). Next, we move each line
li over the line {x = i}. The new positions occupied by the elements of A will
define a lower set denoted Sy(A). With the previous notations, Sy(A) consists of
the pairs (i, j) with 0 ≤ i ≤ k, 0 ≤ j ≤ ki. The set Sx(A) is defined analogously
by interchanging the roles of the X- and Y -axes.

Remark 3.1. A is rectangular if and only if both Sy(A) and Sx(A) are rect-
angular. However, it may happen that Sy(A) is rectangular without A being
rectangular. An example is drawn in Figure 1 (the crosses mark the points of A).

To state the general result, we need one more notation: given an integer α, we
put

Ay[α] = {β : (α, β) ∈ A}.

We then have the following generalization of the theorem in the introduction.

Theorem 3.1. If Z is a (p, q)-rectangular set of nodes, and A has the property
that Sy(A) is (s, t)-rectangular (in particular, if A is (s, t)-rectangular), then the
scheme (Z, A, S) is regular if and only if

(i) S = R(p′, q′), with p′ = (s+ 1)(p+ 1)− 1, q′ = (t+ 1)(q + 1)− 1;
(ii) the univariate scheme (Zx, Ax, Sx) is regular;
(iii) all the univariate schemes (Zy, Ay [α], Sy), with α ∈ Ax, are regular.
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: the points of A 

y xS  (A) S  (A)

Figure 1

Proof: From Proposition 2.1 we know that the regularity of the scheme implies
(i) of our theorem. Hence we have to prove that, if S = R(p′, q′), and A is as in
the statement, then the regularity of (Z, A, S) is equivalent to (ii) and (iii). For
this we compute the determinant D(Z, A, S) associated to the system (1.1). But
first, note that Sy(A) is (s, t)-rectangular is equivalent to saying that

Ax = {α : (α, 0) ∈ A}

has (s+ 1) distinct elements, and that the sets

Ay [α] = {β : (α, β) ∈ A}, α ∈ Ax

all have the (t+ 1) elements. In other words, Sy(A) is rectangular if and only if
A is of form

A = {(αi, β
j
i ) : 0 ≤ i ≤ s, 0 ≤ j ≤ t},

where all the αi’s, as well as all the β
j
i for each i, are distinct. Then Ax =

{α0, . . . , αs}, and Ay [αi] = {β0i , . . . , βt
i}. We will use this description of A.

The computation of the determinant D(Z, A, S) will be based on several more
general remarks. For any matrix A, we denote by c(A), and l(A), the number of
its columns, and of its rows, respectively. For any two matricesM , and A = (ai,j),
we consider the “tensor product” matrix M ⊗A which is equal to

M ⊗A =







a1,1M a1,2M . . . a1,c(A)M

a2,1M a2,2M . . . a2,c(A)M

. . . . . . . . . . . .

al(A),1M al(A),2M . . . al(A),c(A)M







.
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Note that l(M ⊗ A) = l(M)l(A), c(M ⊗ A) = c(M)c(A). With this notation,
remark that the matrix M(Z, A, S) of the interpolation problem (and whose de-
terminant is D(Z, A, S)) is, up to a re-arrangement of its lines and columns, of
type

M(Z, A, S) =






M0 ⊗A0
M1 ⊗A1

. . .

Ms ⊗As






where the matrices Mi and Ai are defined as follows. To describe Ai, we consider
the row

lx(x) = (1 x . . . xp′)

and the rows of Ai will be

∂αlx

∂xα
(x0), . . . ,

∂αlx

∂xα
(xp),

with α = αi. Hence
c(Ai) = p′ + 1, l(Ai) = p+ 1.

To describe Mi, we consider the row ly(y) = (1 y . . . yq′), and the rows of Mi

will be
∂

β0
i ly

∂y
β0

i

(y0), . . . ,
∂

β0
i ly

∂y
β0

i

(yq)
. . . . . . . . .

∂βt
i ly

∂y
βt

i

(y0), . . . ,
∂βt

i ly

∂y
βt

i

(yq)

We now need one more notation. For square matrices Mi, 0 ≤ i ≤ k (k is any
non-negative integer), we consider

diag(M0, . . . ,Mk) =






M0 0 . . . 0
0 M1 . . . 0

. . . . . . . . . . . .

0 0 . . . Mk




 ,

while for any square matrixM we put

diagk(M) = diag(M, . . . ,M
︸ ︷︷ ︸

k

).

One clearly has det(diag(M0, . . . ,Mk)) =
∏

i det(Mi). With these, the tensor
product of a square matrix M (with m lines and m columns), with an arbitrary
matrix A is

M ⊗A = diagl(A)(M)(Im ⊗A).
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Also, for any matricesMi, Ai, 0 ≤ i ≤ s, with

c(Mi) = l(Ai),
∑

l(Mi) = c(A0) = . . . = c(As),

one has





M0 ⊗A0
M1 ⊗A1

. . .

Ms ⊗As




 = diag(M0, . . . ,Ms)






A0
A1
. . .

As




 .

Coming back to our determinant, we apply the previous formula to
Mi = diagp+1(Mi), Ai = Iq′+1 ⊗Ai, and we get (up to a sign)

D(Z, A, S) =
∏

i

det(diagp+1(Mi)) det





Iq′+1 ⊗A0
. . .

Iq′+1 ⊗As



 .

After a rearrangement of the lines and of the columns, the last matrix is precisely

Iq′+1 ⊗ M(Zx, Ax, Sx), hence has determinant D(Zx, Ax, Sx)
q′+1. Also, since

Mi =M(Zy, Ay(αi), Sy), we deduce that, up to a sign,

D(Z, A, S) = (
∏

i

D(Zy, Ay(αi), Sy))
p+1D(Zx, Ax, Sx)

q′+1.

This clearly implies the assertion in the statement. �

Example 1. The usefulness of Theorem 3 is best seen when combined with other
regularity criteria which allow further reductions (e.g. moving the elements of A
on the coordinate axes, or elimination of certain points of A). For such examples,
we refer to [2]. Here we look at the case where the set A is the one in the picture
(Figure 1) and p = q = 1. As shown in the picture, Sy(A) is (2, 2)-rectangular,
hence we can use the version of Theorem 3.1 obtained by replacing the role of the
coordinate axes. Condition (i) of the theorem forces S = R(5, 5). On the other
hand, all the univariate schemes corresponding to (ii) and (iii) are unidimensional
with two nodes, hence their regularity is equivalent to the Polya conditions (see [1],
[3], [4]) which, in turn, are clearly satisfied. In conclusion, for a (1, 1)-rectangular
set of nodes Z, and a lower set S, the scheme (Z, A, S) is regular if and only if
S = R(5, 5).
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