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Existence of a classical solution for linear

parabolic systems of nondivergence form

Masashi Misawa

Abstract. We prove the unique existence of a classical solution for a linear parabolic sys-
tem of nondivergence and nondiagonal form. The key ingredient is to combine the energy
estimates with Schauder estimates and to obtain a uniform boundedness of a solution.

Keywords: linear parabolic system, nondivergence, nondiagonal form, L∞-estimate,
Schauder estimate

Classification: 35B45, 35K40, 45, 50

1. Introduction

Let T be a positive number and Ω be a bounded domain in the m-dimensional
Euclidean space R

m with smooth boundary ∂Ω. Put Q = (0, T )× Ω and ∂pQ =
{t = 0} × Ω ∪ [0, T ) × ∂Ω referred as the parabolic boundary of Q. Then we
consider the parabolic system with zero initial and boundary conditions:

∂tu
i − A

αβ
ij DαDβuj − B

β
ijDβuj − Ciju

j = f i in Q, i = 1, . . . , n,(1.1)

u = 0 on ∂pQ,(1.2)

where the summation notation over repeated indices is adopted and we assume

that A
αβ
ij , B

β
ij , Cij and f i, α, β = 1, . . . , m; i, j = 1, . . . , n, are uniformly Hölder

continuous functions defined on Q with a Hölder exponent δ, 0 < δ < 1, on the

parabolic metric and the matrix
(
Aαβ

ij

)
is symmetric, Aαβ

ij = Aβα
ji , and that there

exist positive numbers λ and µ, λ ≤ µ, such that

(1.3 ) λ|ξ|2 ≤ A
αβ
ij (z)ξ

i
αξ

j
β ≤ µ|ξ|2 for any z = (t, x) ∈ Q

and ξ =
(
ξi
α

)
∈ R

mn,

where the notation |ξ|2 = ξi
αξi

α is used for any ξ =
(
ξi
α

)
. Also suppose that f
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satisfies the compatibility condition:

(1.4) f = 0 on {t = 0} × ∂Ω.

The purpose of this note is to show the existence of a classical solution to the para-
bolic system (1.1) with (1.2). Parabolic systems of the type (1.1) naturally appear
when one considers gradient flows associated with variational problems and, in
particular, linearized parabolic systems of gradient flows (see [5]). For elliptic
and parabolic systems of non-diagonal form as (1.1), we can apply Campanato’s
method to make Schauder and Lp estimates. For elliptic systems, this is discussed
in the books [2], [3] and, for parabolic systems, in [1], [6]. For Campanato type
estimates for nonlinear parabolic systems, we can refer to [7] and [4]. However,
the complete proof of the existence of a classical solution of (1.1) and (1.2) does
not seem to be given in the previous literature. Since a maximum principal is
not known to hold for (1.1) and (1.2), we have to take care to make estimation
in L∞ of a solution. In this paper, we use the L2-estimate of the spatial second
derivative to make some energy estimate for (1.1) and (1.2) and, combining it
with the Schauder estimate, we derive the L∞-estimate for a solution and then,
we establish the unique existence of a classical solution of (1.1) and (1.2). As
application of these arguments, we can prove the existence of a classical solution
to the linearized parabolic system of gradient flows for p-harmonic maps between
Riemannian manifolds (see [5]). We will state this result in the last section.

Now we recall the notation which we will use in the following. Let us define the

parabolic metric dist(z1, z2) = max{|t1 − t2|
1/2, |x1 − x2|} for any zi = (ti, xi) ∈

(0,∞) × R
m, i = 1, 2. Let Cδ/2,δ (Q, Rn) be the space of uniformly Hölder

continuous functions defined on Q with exponent δ, 0 < δ < 1. It holds that

|v|δ,Q < ∞ for any v ∈ Cδ/2,δ (Q, Rn), where we set

(1.5)

|v|δ,Q = |v|0,Q + [v]δ,Q, |v|0,Q = sup {|v(t, x)| : (t, x) ∈ Q} ,

[v]δ,Q = sup

{
|v(t,x)−v(s,y)|

(dist((t,x),(s,y)))δ
: (t, x), (s, y) ∈ Q

}
.

We also denote, by C
1,2
0 (Q, Rn), the functions which are twice differentiable in

space and once in time and the partial derivatives of which are uniformly continu-

ous inQ and, by C1,2δ (Q, Rn), the functions in C1,20 (Q, Rn), the partial derivatives

of which are in Cδ/2,δ (Q, Rn).

Then our theorem is the following:

Theorem 1. There exists a unique classical solution u ∈ C
1,2
δ (Q, Rn) to (1.1)

and (1.2).
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2. Schauder and energy estimates

In this section we use the L2(W 2,2)-estimate for solutions to (1.1) to obtain
some energy inequality and then, we use it in the Schauder estimate to have the

uniform estimates in C
1,2
δ for solutions to (1.1).

Let us suppose that, for a positive number Λ
(2.1)∣∣∣Aαβ

ij

∣∣∣
δ,Q

,
∣∣∣Bβ

ij

∣∣∣
δ,Q

,
∣∣Cij

∣∣
δ,Q ,

∣∣∣f i
∣∣∣
δ,Q

≤ Λ, α, β = 1, . . . , m; i, j = 1, . . . , n.

Theorem 2 (Schauder estimate). Let u ∈ C
1,2
0 (Q, Rn) be a solution to (1.1) and

(1.2). Then there exists a positive constant C, depending only on m, λ, µ,Λ, δ,Ω
and T , such that

(2.2) |D2u|δ,Q + |∂tu|δ,Q + |Du|δ,Q + |u|δ,Q ≤ C |f |δ,Q.

Proof: We have the following estimate, which is obtained from [6, Lemma 7,
pp. 1160–61; (44) and (45) in proof of Theorem 1] and the equation (1.1): There
exists a positive constant C depending only on m, λ, µ, δ,Ω and Λ, but not on T ,
such that

(2.3) |D2u|δ,Q + |∂tu|δ,Q + |Du|δ,Q + [u]δ,Q ≤ C
(
|u|0,Q + |f |δ,Q

)
.

Now we derive the L∞-estimate for a solution. Let R < min{T
1

2 , diam(Ω)/2} be
a positive number determined later. For any z0 ∈ Q, we can choose a parabolic
cylinder QR(z̃0) =

(
t̃0 − R2, t̃0

)
× BR(x̃0) ⊂ Q, z̃0 = (t̃0, x̃0) ∈ Q, such that

z0 ∈ QR(z̃0) and then, we have

(2.4)

|u(z0)| ≤ |u|0,QR(ez0)
≤

∣∣∣u − (u)QR(ez0)∣∣∣0,QR(ez0) + ∣∣∣(u)QR(ez0)∣∣∣
≤ Rδ [u]δ,QR(ez0) + (

1
|QR|

∫

QR(ez0) |u|2 dz

)1

2

,

where we denote by (u)QR(ez0) the integral average of u in QR(z̃0) and note that

|QR(z̃0)| = |QR| = ωmRm+2 does not depend on z0. Take the supremum of the
left hand side on z0 ∈ Q from (2.4) to see that

(2.5) |u|0,Q ≤ Rδ [u]δ,Q +

(
1

|QR|

∫

Q
|u|2 dz

)1

2
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holds for any positive number R < min{T
1

2 , diam(Ω)/2}. Substitute (2.5) into

(2.3) and choose a positive number R so small that CRδ ≤ 1
2 to have

(2.6) |D2u|δ,Q + |∂tu|δ,Q + |Du|δ,Q + |u|δ,Q ≤ C
(
C(R−1)|u|L2(Q) + |f |δ,Q

)
.

Here and in the following, we denote by |·|L2(P ) the L2-norm in a region P . Now

we make estimation of |D2u|L2 and |u|L2 . Denote by A
αβ
ij (0) the integral average

in Q of the coefficients Aαβ
ij . We now rewrite (1.1) in the following form

(2.7) ∂tu
i − A

αβ
ij (0)DαDβuj

=
(
A

αβ
ij − A

αβ
ij (0)

)
DαDβuj +B

β
ijDβuj + Ciju

j + f i, i = 1, . . . , n.

We multiply (2.7) by a test function u and integrate the resulting equality in
(t0, t1) × Ω for any t0, t1, 0 ≤ t0 < t1 ≤ T . Note the zero initial and boundary
condition (1.2) and make routine estimates with (2.1), Hölder’s and Cauchy’s
inequalities to see that

(2.8)

sup
t0≤t≤t1

∫

{t}×Ω
|u|2 dx+

∫

(t0,t1)×Ω
|Du|2 dz ≤ C

( ∫

{t=t0}×Ω
|u|2 dx

+

∫

(t0,t1)×Ω
|u|2 dz +

∫

(t0,t1)×Ω
|D2u|2 dz +

∫

(t0,t1)×Ω
|f |2 dz

)

holds for any t0, t1, 0 ≤ t0 < t1 ≤ T . Let τ < T be a small positive number
determined later. Divide a time-interval [0, T ] into a family of finite intervals
[kτ, (k+1)τ ], k = 0, 1, . . . , [T/τ ]+1. Here we use the L2(W 2,2)-estimate for (1.1)
in P = (t0, t1)× Ω (see [6, Theorem 2, p. 1167]):

(2.9) |∂tu|L2(P ) + |D2u|L2(P ) ≤ C
(
|f |L2(P ) + |u|L2(P )

)
,

where a positive constant C depends only on m, λ, µ,Ω, the L∞-norm of the

coefficients and the continuity of the coefficient A
αβ
ij . Use (2.8) and (2.9) with

t0 = kτ , t1 = (k + 1)τ on each Ω
τ
k = (kτ, (k + 1)τ) × Ω, k = 0, 1, . . . , [T/τ ] + 1,

and combine each resulting inequality to have

sup
kτ≤t≤(k+1)τ

∫

{t}×Ω
|u|2 dx +

∫

Ωτ
k

|Du|2 dz

≤ C

( ∫

{t=kτ}×Ω
|u|2 dx+

∫

Ωτ
k

|u|2 dz +

∫

Ωτ
k

|f |2 dz

)

≤ C

( ∫

{t=kτ}×Ω
|u|2 dx+ τ sup

kτ≤t≤(k+1)τ

∫

{t}×Ω
|u|2 dx+

∫

Ωτ
k

|f |2 dz

)
.
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Choose a positive number τ to be so small that Cτ ≤ 1
2 to see that

(2.10) sup
kτ≤t≤(k+1)τ

∫

{t}×Ω
|u|2 dx+

∫

Ωτ
k

|Du|2 dz

≤ C

( ∫

{t=kτ}×Ω
|u|2 dx+

∫

Ωτ
k

|f |2 dz

)

holds for any k = 0, 1, . . . , [T/τ ] + 1. Recall the zero initial condition (1.2) and
use each (2.10), k = 0, 1, . . . , [T/τ ] + 1, successively, to have

(2.11) sup
0≤t≤T

∫

{t}×Ω
|u|2 dx +

∫

Q
|Du|2 dz ≤ C

∫

Q
|f |2 dz

and then, substitute (2.11) into (2.9) with replacing P by Q to have

(2.12) |∂tu|L2(Q) + |D2u|L2(Q) ≤ C|f |L2(Q),

where the positive constants C in (2.11) and (2.12) depend on T .
Finally, by substitution of (2.11) into (2.6), we arrive at the desired estimate

(2.2). �

Proof of Theorem 1. Once we have (2.2) in Theorem 2, the validity of Theo-
rem 1 is shown by the continuation method, the argument of which is standard
and well-known and is thus omitted.

3. Application

As an application of the results from Section 2, we consider the parabolic
system of the form

(3.1) hij∂tu
j = A

αβ
ij DαDβuj +B

β
ijDβuj + Ciju

j + f i in Q, i = 1, . . . , n,

(3.2) u = 0 on ∂pQ,

where A
αβ
ij , B

β
ij , Cij and f i, α, β = 1, . . . , m; i, j = 1, . . . , n, are functions

satisfying the same conditions as in Sections 1 and 2. Suppose that hij are
uniformly Hölder continuous functions defined on Q with exponent δ, 0 < δ < 1,
on the parabolic metric and the matrix

(
hij

)
is symmetric, hij = hji, and that

there exist positive numbers ν and κ, ν ≤ κ, such that

(3.3) ν|η|2 ≤ hij(z)η
iηj ≤ κ|η|2 for any z = (t, x) ∈ Q and η =

(
ηi

)
∈ R

n.

Moreover, assume that, for a positive number Λ

(3.4)
∣∣hij

∣∣
δ,Q ≤ Λ, i, j = 1, . . . , n.
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Then, each component hij , i, j = 1, . . . , n, of the inverse matrix
(
hij

)
=

(
hij

)−1
of

(
hij

)
is Hölder continuous with exponent δ and it holds that

(3.5) 1
κ |η|

2 ≤ hij(z)ηiηj ≤ 1
ν |η|

2 for any z = (t, x) ∈ Q and η = (ηi) ∈ R
n.

Note that, if we multiply the both side of (3.1) by the inverse matrix
(
hij

)
, then

(3.1) is equivalent to the equation which is of the same form as (1.1)

(3.6) ∂tu
i = Ã

αβ
ij DαDβuj + B̃

β
ijDβuj + C̃iju

j + f̃ i in Q, i = 1, . . . , n,

where the coefficients are defined by

(3.7) Ã
αβ
ij = hilA

αβ
lj , B̃

β
ij = hilB

β
lj , C̃ij = hilClj , f̃ i = hilf l.

Since the original coefficients hij , A
αβ
ij , B

β
ij , Cij are uniformly Hölder continuous

in Q with exponent δ, the coefficients in (3.7) are also uniformly Hölder continuous

in Q with exponent δ. Note that the coefficient Ãαβ
ij is not necessarily symmetric

and uniformly elliptic. To obtain the Schauder estimate for (3.6) and (3.2), we
have to prove that the Campanato type estimates in [6, Lemma 3, pp. 1152–53]
hold for solutions to the following equation with (3.2):

(3.8) ∂tu
i − Ã

αβ
ij DαDβuj = f̃ i in Q, i = 1, . . . , n.

Now we explain how to modify the argument in the proof of [6, Lemma 3, pp. 1152–
53]. For this purpose, we use the same notation as in [6] in the following. Rewrite
(3.8) in the form

(3.9) ∂tu
l−Ã

αβ
lj (z0)DαDβuj =

(
Ã

αβ
lj − Ã

αβ
lj (z0)

)
DαDβuj+f̃ l, l = 1, . . . , n.

By multiplying both sides of (3.9) by the constant matrix (hil(z0)), we see that
(3.9) is equivalent to the equation

(3.10) hil(z0)∂tu
l − A

αβ
ij (z0)DαDβuj

= hil(z0)

(
Ã

αβ
lj − Ã

αβ
lj (z0)

)
DαDβuj + hil(z0)f̃ l, i = 1, . . . , n.

Noting (3.10), we consider the homogeneous parabolic system with constant co-
efficients

(3.11)
hil(z0)∂tu

l − Aαβ
ij (z0)DαDβuj = 0 in Q2,

u = 0 on Γ.
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It immediately follows that the fundamental estimates of Campanato type in [6,
Lemma 1, p. 1146; Lemma 2, pp. 1149–50] hold for solutions to (3.11). Then, use
(3.11) and make the similar perturbation estimations for (3.10) as in [6, the proof
of Lemma 3, pp. 1153–57]. Once we have [6, Lemma 3, pp. 1152–53] for (3.1) and
(3.2), we can argue exactly similarly as in [6, pp. 1157–62] to see that there exists
a positive constant C depending only on m, λ, µ, δ,Ω and Λ, but not on T , such
that

(3.12) |D2u|δ,Q + |∂tu|δ,Q + |Du|δ,Q + [u]δ,Q ≤ C
(
|u|0,Q + |f |δ,Q

)

holds for a solution of (3.1) and (3.2). For (3.6), make the energy estimates in
the same way as in the proof of Theorem 2. Here, recall (2.7) and rewrite (3.6)
similarly as in (3.10). To obtain the L2(W 2,2)-estimate (2.9) for (3.6), we have
to make the L2(W 2,2)-estimate for (3.8). However, it follows from Campanato
estimates for (3.11) and the perturbation estimations for (3.10), the arguments of
which are exactly similar as in the Schauder estimates above (see [6, Lemma 8,
p. 1163; the proof of Lemma 8, pp. 1163–65]). Then, we argue similarly as the
case p = 2 in [6, the proof of Theorem 2, pp. 1167–69] to conclude that (2.9) holds
for (3.6). As a result, we arrive at the Schauder estimate (2.2) valid for (3.6)
and (3.2).

Lemma 3 (Schauder estimate). Let u ∈ C
1,2
0 (Q, Rn) be a solution to (3.1) and

(3.2). Then there exists a positive constant C, depending only on m, ν, κ, λ, µ,Λ,
δ,Ω and T , such that

(3.13) |D2u|δ,Q + |∂tu|δ,Q + |Du|δ,Q + |u|δ,Q ≤ C |f |δ,Q.

Finally, we obtain the existence of a classical solution of (3.1) and (3.2).

Theorem 4. There exists a unique classical solution u ∈ C1,2δ (Q, Rn) to (3.1)
and (3.2).

Proof: For τ , 0 ≤ τ ≤ 1, consider the following problem, denoted by (Pτ ),

(3.14)

(
(1− τ) δij + τhij

)
∂tu

j = Lτui + f i in Q, u = 0 in ∂pQ,

Lτui = (1− τ)∆ui + τ
(
A

αβ
ij DαDβuj +B

β
ijDβuj + Ciju

j
)

,

i = 1, . . . , n.

Apply the continuation method to the problem (3.14) with (3.13) in Lemma 3.
�



482 M.Misawa

References

[1] Campanato S., Equazioni paraboliche del secondo ordine e spazi L2,θ(Ω, δ), Ann. Mat.
Pura Appl. (4) 73 (1966), 55–102.

[2] Giaquinta M.,Multiple integrals in the calculus of variations and nonlinear elliptic systems,
Annals of Mathematics Studies 105, Princeton Univ. Press, Princeton, NJ, 1983.

[3] Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser
Verlag, Basel, 1993.

[4] Giaquinta M., Struwe M., On the regularity of weak solutions of nonlinear parabolic sys-
tems, Math. Z. 179 (1982), 437–451.

[5] Misawa M., Existence and regularity results for the gradient flow for p-harmonic maps,
Electron. J. Diff. Equations 1998 (1998), no. 36, 1–17.

[6] Schlag W., Schauder and Lp estimates for parabolic systems via Campanato spaces, Comm.
Partial Differential Equations 21 (1996), no. 7–8, 1141–1175.

[7] Struwe M., Some regularity results for quasilinear parabolic systems, Comment. Math.
Univ. Carolinae 26 (1985), 129–150.

Department of Mathematics, Faculty of Science, Kumamoto University, Japan

(Received June 18, 2003, revised December 15, 2003)


		webmaster@dml.cz
	2012-04-30T22:31:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




